Check out the new USENIX Web site.

USENIX Home . About USENIX . Events . membership . Publications . Students
NSDI '05 — Abstract

Awarded Best Student Paper!

Botz-4-Sale: Surviving Organized DDoS Attacks That Mimic Flash Crowds

Srikanth Kandula and Dina Katabi, Massachusetts Institute of Technology; Matthias Jacob, Princeton University; Arthur Berger, Massachusetts Institute of Technology/Akamai

Abstract

Recent denial of service attacks are mounted by professionals using Botnets of tens of thousands of compromised machines. To circumvent detection, attackers are increasingly moving away from bandwidth floods to attacks that mimic the Web browsing behavior of a large number of clients, and target expensive higher-layer resources such as CPU, database and disk bandwidth. The resulting attacks are hard to defend against using standard techniques, as the malicious requests differ from the legitimate ones in intent but not in content.

We present the design and implementation of Kill-Bots, a kernel extension to protect Web servers against DDoS attacks that masquerade as flash crowds. Kill-Bots provides authentication using graphical tests but is different from other systems that use graphical tests. First, Kill-Bots uses an intermediate stage to identify the IP addresses that ignore the test, and persistently bombard the server with requests despite repeated failures at solving the tests. These machines are bots because their intent is to congest the server. Once these machines are identified, Kill-Bots blocks their requests, turns the graphical tests off, and allows access to legitimate users who are unable or unwilling to solve graphical tests. Second, Kill-Bots sends a test and checks the client's answer without allowing unauthenticated clients access to sockets, TCBs, and worker processes. Thus, it protects the authentication mechanism from being DDoSed. Third, Kill-Bots combines authentication with admission control. As a result, it improves performance, regardless of whether the server overload is caused by DDoS or a true Flash Crowd.

  • View the full text of this paper in HTML and PDF.
    Until May 2005, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2005 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.

To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 9 June 2005 rc
Technical Program
NSDI '05 Home
USENIX home