Check out the new USENIX Web site.

USENIX Home . About USENIX . Events . membership . Publications . Students
4th USENIX Conference on File and Storage Technologies—Abstract

Pp. 183–196 of the Proceedings

Matrix Methods for Lost Data Reconstruction in Erasure Codes

James Lee Hafner, Veera Deenadhayalan, and KK Rao, IBM Almaden Research Center; John A. Tomlin, Yahoo! Research

Abstract

Erasures codes, particularly those protecting against multiple failures in RAID disk arrays, provide a codespecific means for reconstruction of lost (erased) data. In the RAID application this is modeled as loss of strips so that reconstruction algorithms are usually optimized to reconstruct entire strips; that is, they apply only to highly correlated sector failures, i.e., sequential sectors on a lost disk. In this paper we address two more general problems: (1) recovery of lost data due to scattered or uncorrelated erasures and (2) recovery of partial (but sequential) data from a single lost disk (in the presence of any number of failures). The latter case may arise in the context of host IO to a partial strip on a lost disk. The methodology we propose for both problems is completely general and can be applied to any erasure code, but is most suitable for XOR-based codes.

For the scattered erasures, typically due to hard errors on the disk (or combinations of hard errors and disk loss), our methodology provides for one of two outcomes for the data on each lost sector. Either the lost data is declared unrecoverable (in the informationtheoretic sense) or it is declared recoverable and a formula is provided for the reconstruction that depends only on readable sectors. In short, the methodology is both complete and constructive.

  • View the full text of this paper in HTML and PDF.
    Click here if you have forgotten your password Until December 2006, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2005 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 8. Dec. 2005 rc
Technical Program
FAST '05 Home
USENIX home