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Abstract

Erasures codes, particularly those protecting against
multiple failures in RAID disk arrays, provide a code-
specific means for reconstruction of lost (erased) data.
In the RAID application this is modeled as loss of strips
so that reconstruction algorithms are usually optimized
to reconstruct entire strips; that is, they apply only to
highly correlated sector failures, i.e., sequential sectors
on a lost disk. In this paper we address two more gen-
eral problems: (1) recovery of lost data due to scattered
or uncorrelated erasures and (2) recovery of partial (but
sequential) data from a single lost disk (in the presence
of any number of failures). The latter case may arise in
the context of host IO to a partial strip on a lost disk.
The methodology we propose for both problems is com-
pletely general and can be applied to any erasure code,
but is most suitable for XOR-based codes.

For the scattered erasures, typically due to hard er-
rors on the disk (or combinations of hard errors and
disk loss), our methodology provides for one of two
outcomes for the data on each lost sector. Either the
lost data is declared unrecoverable (in the information-
theoretic sense) or it is declared recoverable and a for-
mula is provided for the reconstruction that depends only
on readable sectors. In short, the methodology is both
complete and constructive.

1 Introduction
XOR-based erasures codes for disk arrays model lost
data most coarsely as loss of entire disks but more pre-
cisely as loss of entire symbols of the code. In practice,
a symbol typically maps to a “strip”, that is, multiple se-
quential sectors with one bit of the symbol correspond-
ing to one or (typically) more sectors and with each dif-
ferent symbol residing on a different disk (this is not al-
ways the case, but it is a common practice). The collec-
tion of related strips is called a “stripe”. To deal with
disk failures, each erasure code comes complete with a
specific reconstruction algorithm that is highly depen-
dent on the code construction. For example, the 2-fault-
tolerant X-code [10] is constructed geometrically, with
parity values computed along diagonal paths through the
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data sectors. When two disks fail, the reconstruction fol-
lows these diagonal paths, starting at some initial point;
that is, the reconstruction is both geometrically and re-
cursively defined. The BCP [1] code is less geometri-
cally designed, but still has a recursive reconstruction
algorithm. More examples are mentioned in Section 2.

Erasures then are seen as correlated sector failures: all
sectors in a strip are “lost” when the disk fails. However,
increasing disk capacity together with a fairly stable bit-
error rate implies that there is a significant probability of
multiple uncorrelated or scattered sector errors within
a given stripe, particularly in conjunction with one or
more disk failures. For example, two disk losses plus a
sector loss may occur often enough that even a two-disk
fault tolerant code may not provide sufficient reliability.
If all correlated and uncorrelated erasures occur within
at most t disks where t is the (disk) fault tolerance of
the code, then one method is to simulate loss of all af-
fected disks and rebuild according to the code-specific
reconstruction algorithm. However, this has two draw-
backs. First, it is clear that this can be highly ineffi-
cient since it requires either reconstruction of “known”
or readable data or it requires checking at each step of
the process to see if a reconstruction is required. More
importantly, however, this approach does not solve the
more general problem when more than t disks have been
affected with sector losses. In such a case, it is quite
possible that some or all of the lost sectors can be re-
constructed, though this is not obvious a priori from the
erasure correcting power of the code. For example, the
2-fault tolerant EVENODD code only claims to recover
from two lost disks, so any additional sector loss typi-
cally means all lost data is declared unrecoverable. In
fact, on average, anywhere from 40-60% of the lost sec-
tors may be recovered in this situation.

In addition, while each erasure code provides a means
to reconstruct entire strips (e.g., during a rebuild opera-
tion), to our knowledge, the literature does not contain
any methods that explicitly address the problem of re-
constructing a partial strip of lost data; such a need may
arise in a host read operation to a failed disk during an
incomplete rebuild operation. Of course, the strip re-
construction method could be applied in this case, but it
is likely that such reconstruction will recover additional
unnecessary lost sectors; that is, do more work than is
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required to service the host read, thereby adversely af-
fecting performance. (This extra work may be worth the
performance penalty in that the additional recovered sec-
tors can be cached or added to the rebuild log, but that
may not always be a desirable option.)

In this paper, we address both these problems. Our
methodology is universal in that it can be applied to any
erasure code of any fault tolerance. It applies to any fail-
ure scenario from full disk to scattered sectors to com-
binations of the two. It is based solely on the generator
matrix for the erasure code. Consequently, a general era-
sure code reconstruction module could implement this
methodology and use the generator matrix as one of its
inputs. To emphasize the point, we address the problem
of arbitrary sector (bit) erasures for any code designed
with a strip (symbol) erasure failure model.

For the first problem of scattered (correlated and/or
uncorrelated) sector loss, our methodology provides a
mathematical guarantee: for each lost sector, either that
sector’s data is declared as (information-theoretically)
unrecoverable (that is, a “data loss event”) or the sec-
tor’s data is declared recoverable and a reconstruction
formula is generated. The reconstruction formula is a
linear equation (XOR equation in case of XOR-based
codes) involving known or readable data and parity sec-
tors. In this respect, our methodology is both complete,
constructive and universally applicable. It provides the
best guarantee to meet the following requirement:

User Contract: For any erasure scenario, the storage
system shall recover any and all lost data sectors that
the erasure code is information-theoretically capable of
recovering.

It should be noted that for 1-fault tolerant codes (e.g.,
RAID1, RAID4 or RAID5), the solution to both these
problems is quite simple and obvious. Similarly, for
Reed-Solomon codes [9] where the symbol is mapped to
bytes or words (not sets of sectors), the standard Reed-
Solomon procedure addresses both problems directly as
well. The more interesting cases then are non-Reed-
Solomon multiple fault-tolerant codes. Such codes are
typically XOR-based as those have the most practical
application. Careful and complex analysis of a specific
code may produce a solution to this problem (and to our
second problem). However, our solutions are universal.
It is also clear that our methods can be extended to more
general codes (e.g., some of the non-XOR codes in [3]).
Furthermore, this methodology can be applied not just
for RAID controllers but any application of these types
of erasure codes such as dRAID (distributed Redundant
Arrangement of Independent Devices) node-based sys-
tems.

For the second problem of partial strip reconstruction,
we propose a hybrid solution: combine the inherent re-
cursive method of the erasure code for full rebuild with

the methodology for recovering scattered sectors. We
also propose an alternative that is in many cases equiv-
alent to the code-specific method, better in some cases
and universally applicable to any erasure code.

Our methodology is based on principles of matrix the-
ory and pseudo-inverses. Many codes (see [8, 9]) use
full inverses to prove both that their codes have the de-
clared fault tolerance and to provide reconstruction for-
mulas. However, they apply it only to recover full code
symbols, under maximal failures (where unique inverses
exist) and not to the more general bit-within-a-symbol
(a.k.a, sector within a strip) level that we address in this
work.

The paper is organized as follows. We close the intro-
duction with some definitions. The next section contains
a few remarks on related work. Section 3 contains a brief
review of the concepts from linear algebra that we need,
particularly the notion of pseudo-inverse. In Section 4
we present a brief description of the generator matrix
and parity check matrix for an erasure code. Section 5
explains how we simulate scattered sector loss and how
we determine reconstructability in addressing our first
problem. Section 6 contains algorithms for construct-
ing pseudo-inverse matrices. We develop our methods
in a detailed example in Section 7. Section 8 outlines
the hybrid method for partial strip reconstruction (our
second problem) and includes experimental results. We
conclude with a brief summary.

1.1 Vocabulary

sector: the smallest unit of IO to/from a disk (typically
512 bytes at the disk drive, but perhaps 4KB from
the filesystem or application layer).

element: a fundamental unit of data or parity; this is the
building block of the erasure code. In coding the-
ory, this is the data that is assigned to a bit within
a symbol. We assume for simplicity that each ele-
ment corresponds to a single sector; the more gen-
eral case can be derived from this case.

stripe: a complete (connected) set of data and parity el-
ements that are dependently related by parity com-
putation relations. In coding theory, this is a code
word; we use “code instance” synonymously.

strip: a unit of storage consisting of all contiguous ele-
ments (data, parity or both) from the same disk and
stripe. In coding theory, this is associated with a
code symbol. It is sometimes called a stripe unit.
The set of strips in a code instance form a stripe.
Typically, the strips are all of the same size (con-
tain the same number of elements).

array A collection of disks on which one or more in-
stances of a RAID erasure code is implemented.
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2 Related Work
The two main results of this paper are (a) the application
of pseudo-inverses of matrices to the problem of recon-
struction of uncorrelated lost sectors and (b) a hybrid
reconstruction that combines code-specific recursive re-
construction methods with this matrix method to effi-
ciently reconstruct partial strips. To our knowledge nei-
ther of these problems has been specifically addressed in
the literature. As remarked before, the theory of matrix
inverses is used in the proof that some codes meet their
declared strip (i.e., symbol) fault tolerance. For exam-
ple, the Reed-Solomon code [8, 9] proves fault tolerance
by solving a system of linear equations. In this case,
the matrix inverse method is used to solve for complete
symbols (full strips in our terminology) under maximum
failures. In contrast, our method addresses individual
bits in symbols (i.e., elements) for any distribution of
erased bits (within or beyond symbol fault tolerance).
The binary BR [3] codes have a recursive solution to
two full strip losses; the authors provide a closed form
solution to the recursion. For the EVENODD code [2],
the authors give a recursion and point out that it could
be solved explicitly. An explicit solution to the recur-
sion is equivalent to our matrix solution in the special
case of full strip losses (again, our method has no such
correlation requirements). The BCP [1], ZZS [11], X-
code [10], and RDP [4] codes all have recursive re-
construction algorithms. The latter two (as well as the
EVENODD code) are “geometric” and easy to visualize;
the former are more “combinatorial” and less intuitive.
In either case, these codes with recursive reconstruction
algorithms are well-suited to our hybrid methodology. In
addition, a variant of our hybrid method applies to any
erasure codes suitable for disk arrays, with or without a
recursive reconstruction algorithm.

3 Binary Linear Algebra – A Review
In this section we recall and elaborate on some basic no-
tions from the theory of linear algebra over a binary field
(which is assumed for all operations from now on with-
out further comment – the theory extends easily to non-
binary fields as well). A set of binary vectors is linearly
independent if no subset sums modulo 2 to the zero vec-
tor. Let G be a rectangular matrix of size N × M with
N ≤ M . The “row rank” of G is the maximum number
of linearly independent row vectors. The matrix G has
“full row rank” if the row rank equals N (the number of
rows). A “null space” for G is the set of all vectors that
are orthogonal (have zero dot-product) with every row
vector of G. This is a vector space closed under vector
addition modulo 2. A “null space basis” is a maximal
set of linearly independent vectors from the null space.
If the null space basis has Q vectors, then the entire null
space has 2Q − 1 total non-zero vectors.

We will write the null space vectors as column vec-
tors, to make matrix multiplication simpler to write
down, though this is not the standard convention.

Let B be a basis for the null space of G. More pre-
cisely, B is a matrix whose columns form a basis for the
null space. If G has full row rank, then B has dimen-
sions M × Q where Q = M − N .

Suppose G is full row rank. A “right pseudo-inverse”
is a matrix R (of size M × N ) so that

G · R = IN

where IN is the N ×N identity matrix. If M = N , then
R is the unique inverse. A right pseudo-inverse must
exist if G has full rank and is never unique if N < M .

More generally, let G have row rank K ≤ N , then a
“partial right pseudo-inverse” (or partial pseudo-inverse)
is a matrix R so that

G · R = JK

where JK is an N -dimensional square matrix with K
ones on the diagonal, N − K zeros on the diagonal and
zeros elsewhere. Note that R is a partial pseudo-inverse
if the product G · R has a maximal number of ones over
all possible choices for R. If G is full row rank then K =
N , JN = IN and R is a (complete) pseudo-inverse. The
matrix JK is unique; that is, the positions of zero and
non-zero diagonal elements are determined from G and
are independent of the choice of R.

Let B be a M × Q basis for the null space basis for
G (perhaps padded with all-zero columns), and R some
specific partial pseudo-inverse for G. As X varies over
all binary Q × N matrices, we have

G · (R + (B · X)) = JK . (1)

so R+(B ·X) runs over all partial pseudo-inverses (the
proof of this is a simple calculation). What X does in (1)
is add a null space vector to each of the columns of R.
For our purposes, an optimal R would have minimum
weight (fewer ones) in each column (that is, be the most
sparse). In Section 6 we discuss algorithms for comput-
ing pseudo-inverses and in Section 6.2 we discuss algo-
rithms for finding an optimal pseudo-inverse.

For each column of JK with a zero on the diagonal,
the corresponding column of R can be replaced with
the all-zero column without affecting the partial pseudo-
inverse property and in fact such an action clearly im-
proves the weight of R. Consequently, we add this prop-
erty to the definition of a partial pseudo-inverse.

Strictly speaking, the term “pseudo-inverse” applies
only to real or complex matrices and implies uniqueness
(optimality in a metric sense). We overload the term here
with a slightly different meaning – we allow for non-
uniqueness and do not require optimality (most sparse).
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In the next section we apply these notions to the prob-
lem of reconstruction of scattered sectors in a stripe.

4 Generator and Parity Check Matrices
In this section we recall the erasure code notions of “gen-
erator matrix” and “parity check matrix”. These are the
basic structures upon which we develop our methodol-
ogy. For a basic reference, see [7].

The generator matrix G of an erasure code converts
the input “word” (incoming data) into a “code word”
(data and parity). The parity check matrix verifies that
the “code word” contains consistent data and parity (par-
ity scrub). In the context of erasure codes for disk arrays,
the generator matrix actually provides much more.

The generator matrix is given a column block struc-
ture: each block corresponds to a strip and each col-
umn within a block corresponds to an element within
the strip. If the column contains only a single 1, then the
element contains user data. We call such a column an
“identity column” because it is a column of an identity
matrix. If the column contains multiple 1s, then it corre-
sponds to an element which is the XOR sum of some set
of user data elements; that is, the element is a parity ele-
ment. In other words, the generator matrix specifies the
data and parity layout on the strips, the logical ordering
of the strips within the stripe, and the equations used to
compute parity values. For example, the generator ma-
trix for the EVENODD(3,5) code with prime p = 3 on
5 disks is

G =




1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0




.

(more details on this example are given in Section 7).
Though it is not a requirement, the generator matrix

for disk arrays typically has an identity column for each
user data element (so that this data is always copied to
the element’s sectors verbatim in some strip and can then
be read with minimal IO costs). In coding theory, a gen-
erator matrix of this form is called “systematic”.

Let D be a row vector of input user data values, then
the row vector S, given by the expression

S = D · G, (2)

represents the data and parity elements that are stored in
the stripe on the disks. The vector D is indexed by the
logical addresses of the user data values (say, as viewed
by the host). The vector S represents the physical ad-
dresses of the data and parity elements, both the disk
(actually, strip, identified by the block of the generator
matrix) and the sector addresses on the disk (element or

offset within the strip, identified by the column within
the block). S is also block-structured with blocks match-
ing those of G. (See our example in Section 7.)

If there are N data elements input into the code and Q
parity elements computed by the code, then the genera-
tor matrix has dimensions N × (N + Q). (Note that N
is the total number of data elements within a stripe, not
the number of strips; similarly, Q is the number of parity
elements in the stripe, not the number of parity strips.)

The “parity check matrix” H has dimensions (N +
Q) × Q and can be derived directly from the generator
matrix (and vice-versa). Communication channels use
the parity check matrix to detect errors. Each column
corresponds to a parity element. After the data and parity
is read off the channel, the parity is XORed with the
data as indicated by its corresponding column to produce
a “syndrome”. If a syndrome is not zero, an error has
occurred (either in the received parity symbol or in one
of the dependent data symbols). For erasure codes in
disk arrays, this is a parity consistency check (or parity
scrub). In other words, with S = D ·G as above, the test

S · H == 0 (3)

is a parity consistency check.
The parity check matrix is row blocked exactly corre-

sponding to the column blocks of G (or S) and it can be
arranged to contain an embedded identity matrix (cor-
responding to the parity elements) – this is easy if G
is systematic. The parity check matrix for the example
generator matrix G above is

H =




1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 1
1 0 1 1
0 1 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




.

In short, the generator matrix is used to compute the
data and parity (and its layout) for storage on the disks.
The parity check matrix can be used when all the data
and parity are read off the disk (e.g., during parity scrub)
to look for errors.

If a code can tolerate t ≥ 1 lost disks or strips, then
G must have the property that if any t blocks of G are
removed (or zeroed), then the resulting matrix must have
full row rank. The parity check matrix is full column
rank (because of the embedded identity matrix).

Also, (3) implies that

D · G · H = 0
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should hold for every data vector D. This means that
G · H = 0 identically, so that each vector in H is in
the null space of G. A simple dimensionality argument
shows that in fact H is a basis of the null space of G.

In addition, it should be clear that if G is systematic,
then there exists an M × N matrix R0 containing an
embedded identity matrix of size N × N so that R0 is
a pseudo-inverse for G. R0 just picks off the embed-
ded systematic portion of G. If G is not systematic, a
pseudo-inverse R0 can still be constructed, but it will
not be so simple (see Section 6.3).

5 Simulating Scattered Sector Loss and
Reconstruction

In this section, we develop our theory for solving the
first of our two problems: how to deal with uncorrelated
sector loss. An example is given in Section 7

We indicated above that a t-fault-tolerant code G must
have the property that zeroing any t blocks of G should
leave G full rank so that a complete pseudo-inverse for G
must exist. This suggests that we can simulate correlated
and/or uncorrelated sector loss by zeroing or removing
the associated individual columns from G. It should
be clear that certain combinations of uncorrelated sector
losses will result in some or all data loss events (some or
all lost sectors having unrecoverable data); other combi-
nations may involve no data loss events. Our methodol-
ogy will determine, in a straightforward manner, exactly
what sectors become data loss events and for those that
do not, will provide a reconstruction formula for the data
from these sectors.

Suppose we detect a set F of failed sectors in a stripe
(correlated, perhaps because of disk failure, or uncor-
related, because of medium errors, or a combination of
these). Completely ignoring the block structure of G,
let Ĝ be a version of a generator matrix G, with zeroed
columns corresponding to the sectors in F . Suppose we
can find a matrix R of size M × N so that

• R is a partial pseudo-inverse of Ĝ, and
• R has zeros in all rows that correspond to the lost

columns of Ĝ.

We associate the columns of R to the user data values
in D. In Section 6 we discuss algorithms for construct-
ing R. The following theorem contains our main theo-
retical result:

Theorem 1. Let G, Ĝ, and R be as above. Any theoret-
ically recoverable user data value corresponds to a non-
zero column of R and the non-zero bit positions indicate
the data and parity elements whose XOR sum equals the
data value. As a special case, a directly readable data
value corresponds to an identity column in R. A data
loss event (unrecoverable data value) corresponds to an
all-zero column of R.

Proof. Let Ŝ be the vector S as in (2) but with zeros
in the positions corresponding to the lost elements (the
zeroed columns of G). Then it is clear that

D · Ĝ = Ŝ.

Consequently, we have

Ŝ · R = D · Ĝ · R = D · JK = D̂,

where D̂ is the vector D with zeros in all locations cor-
responding to zero’s on the diagonal of JK which also
corresponds to the all-zero columns of R.

The fact that JK is uniquely determined by Ĝ means
that any zero diagonal entry of JK induces a zero in D̂;
this corresponds to a data loss event. Any non-zero di-
agonal entry of JK induces a non-zero (not identically
zero) data value in D̂. But the non-zero diagonal entries
of JK corresponds to non-zero columns of R and the
zero diagonal entries correspond to all-zero columns of
R. This proves part of the first and last statements.

Now consider a non-zero column of R. Each non-
zero bit in such a column selects into an XOR formula
a data or parity element from Ŝ. Because R has zeros
in row positions corresponding to zeroed positions in Ŝ,
such a formula does not depend on any lost data or parity
element. The XOR formula then indicates that a specific
XOR sum of known data and parity elements equals the
data value associated to that column. That is, such a
column provides a formula for the reconstruction. This
proves the rest of the first statement in the theorem. The
second claim of the theorem is clear. 2

We emphasize that this theorem makes no assump-
tions about the location of the failed sectors, whether
they are correlated, uncorrelated or some of both. Con-
sequently, the theorem can be applied to the case of full
disk/strip losses (highly correlated) or even to the case
where there is a lost sector on every strip (highly uncor-
related). It also does not depend on any special structure
(for example geometric layout) of the erasure code. All
the information we need is embedded within the gener-
ator matrix.

Recall that R is not necessarily unique and that given
a basis for the null space of Ĝ, it is easy to construct, as
in (1), other pseudo-inverses that satisfy the same prop-
erties as R in the theorem. In the next section, we discuss
methods for constructing pseudo-inverses and bases for
null spaces. We use the null space bases for improving
the sparseness of the pseudo-inverse.

6 Pseudo-inverse Constructions
There are many possible algorithms for computing
pseudo-inverses and null space bases. Fundamentally,
they are equivalent though the data structures and ap-
proaches differ somewhat.
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From now on, we use the label B to indicate a ma-
trix whose columns form a null space basis for some ze-
roed matrix Ĝ, perhaps with all-zero column vectors as
padding. Furthermore, because we are concerned only
with uncorrelated sector loss, we ignore the block struc-
ture of G. As a result, we can assume without loss of
generality that the generator matrix G has its systematic
identity submatrix in the first N columns, with the parity
columns in the right most Q columns – we call this “left
systematic”. (If not, a permutation of the columns of G
and corresponding column positions in Ĝ, S, and Ŝ and
row positions of B, H and R will reduce us to this case.)

The input to our algorithms is the original generator
matrix G (and/or its parity check matrix H) and a list F
of data or parity elements which are declared lost (un-
readable) in the stripe.

The output of our algorithms will be two matrices R
and B: R is a pseudo-inverse of Ĝ (obtained from G by
zeroing the columns of G corresponding to the elements
in F ) and B is a basis for the null space of Ĝ.

Our algorithms use “column operations” and/or “row
operations” to manipulate matrices. Columns operations
are equivalent to right multiplication by simple matrices
(for rows, the operations are on the left). We consider
three simplified column (or row) operations:

• Swap: exchange two columns (or rows)
• Sum and Replace: add column c to column d (mod-

ulo 2) and replace column d with the sum (similarly
for rows).

• Zero: zero all the entries in a column (or row).

The first two are invertible (reversible), the Zero opera-
tion is not.

Our preferred algorithm, called the “Column-
Incremental” construction, can be viewed as a dynamic
or on-line algorithm. It progressively updates data struc-
tures as new lost sectors are detected (simulated by a
incremental processing of the elements in F ). In Sec-
tion 6.3, we outline some additional constructions in-
cluding static or off-line algorithms.

6.1 Column-Incremental Construction

The algorithm presented here is an incremental algo-
rithm. It starts with a pseudo-inverse and null space ba-
sis for the matrix G (in the “good” state) and incremen-
tally removes (simulates) a lost data or parity element,
while maintaining the pseudo-inverse and null space ba-
sis properties at each step. The algorithm is space ef-
ficient and for most well-designed codes, has relatively
few operations. It requires space in R only for the lost
data elements (there is no need to provide recovery for-
mulas for parity elements as these can be easily derived
from the original formulas in the generator matrix – al-
ternatively, parity columns may be added to R and so

provide additional formulas for a parity computation that
reflect the lost data elements). For clarity of exposition,
our description is not optimally space efficient; we leave
that to the expert implementor.

The process is reversible so long as the pseudo-inverse
has full rank; that is, at any step, it is possible to model
reconstruction of data values for lost elements (in any
order) and compute a new pseudo-inverse and null space
basis equivalent to one in which the recovered elements
were never lost. This is described in Section 6.4

In this algorithm, column operations are performed
on a workspace matrix. The lost data or parity elements
index a row of R and B.

Algorithm: Column-Incremental Construction
1. Construct a square workspace matrix W of size

(N + Q). In the first N columns and rows, place
an identity matrix. In the last Q columns, place the
parity check matrix H . Let R represent the first
N columns and B represent the last Q columns of
W , so W = (R B), where initially, B = H and

R =
(

IN

0

)
.

2. For each lost element in the list F , let r indicate the
row corresponding to the lost element; perform the
following operation:

(a) Find any column b in B that has a one in row
r. If none exists, Zero any column in R that
has a one in row r and continue to the next lost
element. (Note that zeroing these columns ze-
ros the entire row r in W .)

(b) Sum and Replace column b into every column
c of W (both R and B portions) that has a one
in row r.

(c) Zero column b in B; equivalently, add column
b to itself. Continue to the next lost element,
until the list F has been processed.

3. (Optional) Use the columns of B to improve the
weight of non-trivial columns of R (corresponding
to lost data elements processed so far). See equa-
tion (1) and Section 6.2.

4. Output R (the first N columns of W ) and the non-
zero columns of B (from the last Q columns of W ).

A proof that this algorithm satisfies the required prop-
erties can be found in the appendix of the full technical
report [5]. We make the following observations.

• In practice, the workspace matrices are not very
large. For example, the EVENODD code on 8 strips
(with prime p = 7) and 16 strips (with p = 17) con-
sumes only 288B and 8KB, respectively. In addition,
the operations are XOR or simple pointer operations,
so implementation can be very efficient. On the other
hand, the invocation of this algorithm happens in an
error code-path, so performance is less important than
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meeting the User Contract set forth in Section 1.
• The runtime complexity of the algorithm (exclud-

ing the optimizing step 3) can be bounded by O(|F | ·
M2) bit operations since at each of the |F | steps, at
most M ones can appear in row r and each such one
induces M bit operations (one column operation). This
is clearly an excessive upper bound as generally the ma-
trices will be very sparse and only very few (typically
O(t) or O(Q)) ones will be in each row.

• The optimizing step 3 on R can be done either as
given in a penultimate or post-processing step or dur-
ing the loop after step 2c. Preferably, it is done post-
processing as this step can be quite expensive (see Sec-
tion 6.2). It can also be skipped; it is used to possibly
minimize the XOR/IO costs but is not necessary to meet
the requirements of the User Contract.
• At step 2a, there may (most likely will) be multi-

ple choices for the column. There is no known theory
that provides a criterion so that the resulting R is opti-
mal or near optimal. One heuristic (the greedy-choice)
is to use the column in B of minimal weight, but that
has not always precluded a post-processing step 3 in our
experiments. However, this approach does introduce the
optimal formula for the current lost element (though this
may change at later rounds of the loop).

An alternative heuristic is the following: in the algo-
rithm, a column b of B is chosen with a one in position
r among all such columns of B. This selected column
is added to each of the others in B. This suggests that a
heuristic for b is to pick the one that minimizes the to-
tal weight of the resulting columns. In 2-fault-tolerant
codes, there are typically at most two such columns to
choose from, so this approach is equivalent to the one of
minimal weight above; this is not true for higher fault-
tolerant codes.
• For only data elements (and systematic codes), it is

always the case that column c = r has a 1 in position
r (and no other 1s elsewhere) so is always acted on in
the key step. In fact, the result for this column is that
we replace this column by the parity column b and then
toggle the bit off in position r.
• We claim that after each lost element in the list

is processed, the matrix R is a (partial or complete)
pseudo-inverse for a zeroed generator matrix Ĝ that has
exactly the columns zeroed corresponding to the set of
elements processed so far. This is clear in the first step
because no elements have been processed, Ĝ = G,
the generator matrix, R is essentially an identity matrix
which extracts the identity portion of G and B = H is
the parity check matrix, a.k.a. the null space basis for G.
The fact that this holds true at every other step will be-
come clear from the proof (see the appendix in the full
technical report [5]).
• We never actually write down the intermediate (or

final) matrix Ĝ. This is all handled implicitly, and so no
space is used for this purpose.

• Because we perform only column operations on R,
it is easy to see that what we are doing is perform-
ing, in parallel, the operations needed to determine a
reconstruction formula for all lost data elements. That
means that one could perform this process on individ-
ual columns as needed (e.g., to recover a single element
on-demand). This would be fairly expensive globally be-
cause one repeats the same search and process algorithm
on H each time, but may be marginally quicker if only
one column is really needed.

• For the same reason, given the list of lost elements
F , one can operate only on these columns in R and ig-
nore all other columns. In our construction, we use all
columns because in principle, we do not know what col-
umn is coming next (the algorithm does not care), so we
operate on all of R at once.

• The algorithm can be used in an on-line fashion
to maintain recovery formulas for lost data elements as
they are detected in the stripe. As each new loss is
detected, the matrices R and B get updated. If a lost
element’s value is reconstructed, the algorithm of Sec-
tion 6.4 may be applied to again update these matrices
to incorporate this new information. Alternatively, the
algorithm can be applied as an off-line algorithm and
applied after detection of all lost elements in the stripe.

This algorithm was a key ingredient to the results
of [6] where it was applied to measure performance
costs for a large variety of very different 2-fault-tolerant
codes.

6.2 Improving a Pseudo-inverse
In this section we outline some approaches to im-
plementing the optimizing step 3 in the Column-
Incremental construction algorithm given above. As
noted earlier, this step is not required to meet the User
Contract stated in Section 1.

The following algorithm provides a systematic
(though potentially very expensive) approach to finding
an optimal R.

Algorithm: Improve R
1. Compute all the null space vectors (by taking all pos-

sible sums of subsets of the basis vectors).
2. For each non-identity (and non-zero) column of R,

do the following:

(a) For each null space vector (from step 1), do
the following:

i. Add the null space vector to the column
of R to generate a new formula.

ii. If the formula generated has lower
weight, then replace it in R.

3. End
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Of course, this is only practical if the null space has
small enough basis set. If the null space basis has very
few vectors, then this algorithm provides an exhaustive
search solution to finding an optimal R. In general, one
can use any subset of the full null space to find better, but
perhaps not optimal, pseudo-inverses (in Step 1 above,
compute only some subset of the null space). One sim-
ple choice, is to use only the basis vectors themselves,
or perhaps the basis vectors and all pairwise sums. It
is an open mathematical question if there are better al-
gorithms for finding the optimal R than that given here.
However, for the extensive experiments we ran for [6],
the difference between optimal and near optimal was
quite minimal.

6.3 Alternative Constructions

There are alternative constructions that can be applied
to computing pseudo-inverses. Among them is a Row-
Incremental variation that is analogous to the Column-
Incremental method described above but uses row oper-
ations instead of column operations. Most of the steps
are the same as for the Column-Incremental construc-
tion. At step 2b, for each one in positions s 6= r in the
selected column b of B, Sum and Replace row r into
row s of B; mirror this operation in R. At step 2c zero
row r in B and R and proceed to the next lost element.
This algorithm has all the same properties as the column
variation (including reversibility), but is typically more
expensive, requiring more row operations.

Alternatively, there are both column and row versions
that parallel the classical algorithm for computing an in-
verse. Namely, start with two matrices, the original gen-
erator matrix and an (N + Q)-identity matrix. Zero the
columns of the generator matrix and the identity matrix
corresponding to each lost data and parity element. Per-
form column (or row) operations on the modified gen-
erator matrix to convert it to column (or row) reduced
echelon form. Parallel each of these operations on the
identity matrix; the resulting matrix contains both the
pseudo-inverse and null space basis. These variations
are static, off-line constructions as they utilize the com-
plete set of lost elements in the very first step. As before,
the column version has marginally less computation.

We do not give proofs for any of these constructions
as they vary only slightly from the proof of the Column-
Incremental construction found in the appendix of the
full technical report [5]. The static algorithms can also
be used to construct an initial pseudo-inverse matrix for
the full generator matrix in the case when G is not sys-
tematic.

6.4 Reversing The Column Incremental
Construction

As mentioned, the incremental process can be used to
start with a fully on-line stripe and, step by step, as
medium errors are detected in the stripe, maintain a
set of reconstruction formulas (or a declaration of non-
reconstructability) for every data element in the stripe.
As new medium errors are detected, the matrices are up-
dated and new formulas are generated.

It might be useful to reverse the process. Suppose the
array has had some set of medium errors, but no data loss
events and suppose a data element is reconstructed by its
formula in R. If this reconstructed data is replaced in the
stripe, it would be helpful to update the formulas to re-
flect this. There are two reasons for this. First, we know
we can replace the formula in R by an identity column
(we no longer need the old formula). But second, it may
be the case that other lost elements can be reconstructed
by better formulas that contain this newly reconstructed
element; we should update R to reflect this fact.

One approach would be to use any algorithm to re-
compute from scratch the formulas for the revised set of
sector losses. However, the incremental algorithm sug-
gests that we might be able to reverse the process; that
is, to update R and B directly to reflect the fact that the
data element has been reconstructed (e.g., its column in
R is replaced by an identity column).

To fully reverse the incremental construction of the
previous section, it must be the case that no information
(in the information-theoretic sense) is lost through each
step. Mathematically, this happens whenever we per-
form a non-invertible matrix operation, i.e., that corre-
sponds to multiplication by a non-invertible matrix. This
occurs essentially in only one place in the construction:
whenever we can find no vector in the null space basis
with a one in the desired row. This corresponds exactly
to the case where we have data loss events.

Consequently, we have the following result: so long
as we never encounter the data loss branch, then (in prin-
ciple), the sequence of steps can be reversed. However,
the algorithm we give below works even after data loss
events, so long as the restored element has a reconstruc-
tion formula in R, i.e., it is not itself a data loss event .
Note that it makes little sense to consider restoring into
the matrix an element corresponding to a data loss event
(the theorem says that this is theoretically impossible).

The algorithm below performs this incremental
restoration step in the case of a (recoverable) data ele-
ment. Section 6.4.1 discusses the parity element case.

The input to this algorithm is a workspace matrix
W = (R B) (possibly) generated by the incremental
algorithm and having the property that

Ĝ · W = (IN 0)
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where Ĝ is the generator matrix with zeroed columns
for each data or parity element in the set F of assumed
lost elements (prior to a reconstruction). The other input
is a data element index, that is, a row number r ≤ N
of W . The output of the algorithm is a revised ma-
trix W so that the above formula holds with Ĝ having
column r replaced by the appropriate identity column.
The new matrix W will have an identity column in po-
sition r. (As before, the algorithm does not track the
changes to Ĝ directly, only implicitly.) Note that this
process does not depend on which element is being re-
stored from among the set of elements removed during
the incremental phase (that is, it need not be the last el-
ement removed). We assume that B contains enough
all-zero columns so that it has Q columns in total.

If the restored element is not from the set F , then this
algorithm has no work to do, so we assume that the lost
element is from F .

Algorithm: Reverse Incremental Construction
1. (Optional) For each column c in the inverse portion

of W (first N columns) that has a one in every
row that column r has (that is, if the AND of the
columns c and r equals column r), do the follow-
ing:

(a) Sum and Replace column r into column c;
that is, for each position of column r that has
a one, set the corresponding value in column
c to zero.

(b) Set position r in column c to the value 1.

2. Find any all-zero column b in the null space portion
of W (in the last Q columns).

3. Set position (r, r) and (r, b) in W to the value 1.
4. Swap columns r and b of W .
5. (Optional) Use the null space basis vectors in B of

W to reduce the weight of any column in the in-
verse portion R of W .

6. Return the updated W .

This algorithm works because it takes the reconstruc-
tion formula for the data element and unfolds it back
into the null space basis, then replaces the formula with
an identity column.

The first optional step replaces any occurrence of the
formula for data element r in the original W by that ele-
ment itself. In particular, it explicitly restores into other
columns a dependence on the restored data element. In
the process, it improves the weight of these formulas.

This algorithm does not necessarily completely re-
verse the incremental algorithm in that it does not nec-
essarily produce identical matrices going backward as
were seen going forward. However, the difference will
always be something in the null space.

A proof of this construction is given in the appendix
of the full technical report [5].

6.4.1 Restoring parity elements

To add a parity element back in to the matrices, we need
to have the original parity column from the generator
matrix G (for the data columns, we know a priori that
this column is an identity column so we do not need to
keep track of this externally). Suppose that this parity is
indexed by column c in G.

Take this parity column and for each 1 in the column,
sum together (modulo 2) the corresponding columns of
R in W and place the result in an all-zero column of B in
W . (This is exactly what we did for a data column since
there was only one such column!) Replace the zero in
position c of this new column by 1. Replace column c of
G0 by this parity column (restore it). (Again, this is ex-
actly what we did for a restored data column, except we
also had to set the (r, r) position in the inverse portion of
W to 1 – in the case of a parity column, no such position
exists in the inverse portion so this step is skipped.)

A proof is given in the appendix of the full technical
report [5].

7 An Example: EVENODD Code

Consider the EVENODD(3,5) code [2] with prime p =
3, n = 5 total disks, n− 2 = 3 data disks and two parity
disks. The data and parity layout in the strips and stripe
for one instance is given in the following diagram:

S0 S1 S2 P0 P1

d0,0 d0,1 d0,2 P0,0 P0,1

d1,0 d1,1 d1,2 P1,0 P1,1

The columns labeled S0, S1, S2 are the data strips in the
stripe (one per disk); the columns labeled P0 and P1 are
the horizontal and diagonal parity strips, respectively.
We order the data elements first by strip and then, within
the strip, down the columns (this is the same view as the
ordering of host logical blocks within the stripe). In this
example, N = 6 and Q = 4.

The generator matrix G defined for this code is:

G =




1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0




.

This is column blocked to indicate the strip boundaries.
The matrix indicates that the parity P0,1 is the XOR sum
of the data elements indexed by the 0th, 3th, 4th and 5th
rows of G, i.e.,

P0,1 = d0,0 + d1,1 + d0,2 + d1,2. (4)
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The parity check matrix H is:

H =




1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 1
1 0 1 1
0 1 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




.

The parity check matrix is row blocked exactly to corre-
spond to the column blocks of G and it contains in the
lower portion an embedded identity matrix. It is easy to
see that G · H = 0; that is, H is in the null space of G
(and forms a basis as well). Each column of the parity
check matrix corresponds to a parity value in the array
(the identity rows and the block structure provide this
association).

For example, column 3 of the parity check matrix says

d0,0 + d1,1 + d0,2 + d1,2 + P0,1 = 0.

If this equation is not satisfied for the actual data and
parity read from the disks (or detected on a channel),
then an error has occurred somewhere.

More generally, we interpret these matrices in the fol-
lowing way. As labeled above, we consider the user data
values as a row vector (ordered as already indicated):

D = (d0,0, d1,0|d0,1, d1,1|d0,2, d1,2) .

The product S = D · G equals

(d0,0, d1,0|d0,1, d1,1|d0,2, d1,2|P0,0, P1,0|P0,1, P1,1)

indicates the data layout in strips (via the block struc-
ture) as well as the formulas for computing the parity.
We saw an example of this in equation (4).

The parity check matrix implies that

S · H = 0,

regardless of the actual values of the data elements.
Any binary linear combination of the columns of H

will also be orthogonal to all the vectors in G. E.g., take
the binary sum (XOR) of columns 0 and 3 in H:

(1, 1|0, 1|0, 0|1, 0|0, 1)t.

It is easy to see that this has the desired orthogonality
property. We can replace any column in H by any such
combination and still have a “parity check matrix”. Typ-
ically, the H constructed directly from the parity equa-
tions is the most sparse.

7.1 The Example – Scattered Sector Loss
Suppose we loose strip S0 and only data element d0,2 of
S2 in the EVENODD(3,5) code above. We then have a
“zeroed” matrix Ĝ in the form:

• • •

Ĝ =




0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0




where the • over the column indicates the column has
been removed by zeroing.

Using the data vector D, we see that we have a revised
set of relationships:

D · Ĝ = Ŝ, (5)

where

Ŝ = (0, 0|d0,1, d1,1|0, d1,2|P0,0, P1,0|P0,1, P1,1) .

When we view the vector Ŝ as “known” data and par-
ity elements (in fact, the labeled components represent
the sectors that are still readable in the stripe), this equa-
tion represents a system of linear equations for the “un-
known” vector D in terms of the known vector Ŝ.

The following two matrices R and R′ are easily seen
to be pseudo-inverses for Ĝ:

R =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 0 0 0 0 0
1 1 0 0 1 1
1 0 0 0 0 0
1 1 0 0 1 0
0 0 0 0 0 0
1 0 0 0 1 0




, R′ =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 1 1 0
0 0 0 0 0 0
1 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 0
0 0 0 0 1 0
1 0 0 0 1 0




.

(6)
We show how these matrices are obtained in Section 7.2.

The columns of R (or R′) correspond to the data el-
ements as ordered in the vector D. Each non-zero row
corresponds to a position in the vector Ŝ of known el-
ements. Each all-zero row matches a lost element in
Ŝ. Each column represents an XOR formula for recon-
structing the data element to which it corresponds. For
example, to reconstruct d0,2, we look at column 4 of R.
It indicates the following formula:

d0,2 = d0,1 + d1,2 + P1,0 + P1,1,

and by looking at column 4 of R′ we get the formula:

d0,2 = d1,1 + P0,0 + P1,0 + P0,1 + P1,1.
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It is easy to see from the original code that both of these
formulas are correct (and that they do not depend on any
lost sectors!).

Because the code is MDS and can tolerate two
disk/strip failures, it is easy to see from dimension
counting that Ĝ has only one non-zero vector in its null
space. This vector turns out to be

(0, 0|1, 1|0, 1|1, 0|1, 0)t. (7)

This is also the sum of columns 4 of R and R′ (indicating
that R′ is derived from R by adding a vector from the
null space).

The weight of each of the formulas for reconstruct-
ing data via R is at least as good as those in R′, conse-
quently, R is a better solution than R′ for our purposes.
In fact, with only one vector in the null space, it is clear
that R is optimal.

7.2 The Example – Constructing R

We start with the EVENODD(3,5) code as before and
assume as above that data elements d0,0, d1,0, and d0,2

are lost from strips S0 and S2. These elements corre-
spond to columns r = 0, 1, 4 of G (and also to this set
of rows in our workspace).

The initial workspace is

W = (R B) =




1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




.

For row r = 0, we find some column in B that has a one
in this row. There are two choices, b = 6 or b = 8. We
choose b = 6 because its weight is less. We add this to
columns c = 0 and c = 8 (where there is a one in row
0), then zero column b = 6. The result is

W =




0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1 1 1
1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 1 1 0
1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




.

For r = 1, select column b = 7 (again, this has the
minimum weight), then add this to columns c = 1, 9,

then zero column b = 7. This gives:

W =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1
0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
1 1 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




.

Similarly, for r = 4 (using b = 9), the result is

W =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 0
1 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0




Note that the left portion of this workspace equals R
in (6). Furthermore, our null space basis B contains
only the vector in (7); adding this vector to column 4
of W produces R′ from (6). As R contains the optimal
reconstruction formulas, no post-process step is required
in this example.

It can be checked that at each stage the claimed prop-
erties of pseudo-inverse and null space of the interme-
diate results all hold. It should be noted that this is
not against the final Ĝ but the intermediate Ĝ which we
never write down).

7.3 The Example – Additional Sector Loss
Now suppose in addition that element d0,1 of strip S1 is
also lost. This corresponds to a situation where sectors
are lost from all three data strips of the stripe. Nomi-
nally, the EVENODD(3,5) code can only protect against
losses on 2 strips; we have three partial strips, a case not
covered in the literature.

The element d0,1 corresponds to r = 2. We select
column b = 8, perform the operations in the algorithm
and the result is

W =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0




. (8)
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At this point, we have no more null space basis vectors
(B is all zero). Any further sector loss implies a “data
loss event” (see below).

Observe that any column corresponding to a data ele-
ment that is not lost has remained unchanged as an iden-
tity column. In addition, even though we have lost sec-
tors in three strips, all sectors are still recoverable.

If we further assume that data element d1,1 (corre-
sponding to row r = 3) is also lost, we can continue the
algorithm. In this case, there is no null space basis vec-
tor with a one in this row. So, the algorithm says to zero
all columns in R with a one in this row (that is, columns
1, 2, 3, 4). This produces the matrix

W =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0




.

This indicates that data elements corresponding to
columns 1, 2, 3, 4 are “data loss events”. However, col-
umn 0 corresponding to data element d0,0 is still recov-
erable (as is d1,2 which was never lost).

7.4 The Example – Reversing The Con-
struction

We start with the result of our incremental construc-
tion example in equation (8) where we have lost sec-
tors d0,0, d1,0, d0,2 and d0,1 corresponding to columns
r = 0, 1, 4, 2 of G. Suppose we have reconstructed data
element d0,0 of column r = 0 (which is not the last el-
ement we simulated as lost). The reverse incremental
algorithm above has the following steps. (We include
the optional steps for completeness.)

First, we examine each of the first six columns to see
if column r = 0 is contained in it. Column r = 0 has
one’s in positions 5, 6, 7, 9. No other column has ones in
all these positions, so we continue to the next step.

Next we select the all-zero column b = 6 and set po-
sition 0 in this column and in column r = 0 to the value
1, then we swap these two columns:

W =




1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0
0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0




.

Next we look for null space basis elements (there’s only
one to choose from) that might improve the inverse por-
tion. For example, column 4 has weight 5. If we com-
bine (XOR) columns 4 and 6, we get a new matrix

W =




1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0




.

where the new column 4 now has weight 4. This step
improved the weight of this column, as we wanted.

Note that our final result does have an identity column
in position 0 so we have restored this data element.

8 Efficient Reconstruction of Partial
Strips

In this section we introduce the hybrid reconstruction
method. It applies the reconstruction methodology
based on the matrix method in another way to address
the problem of partial strip reconstruction.

Suppose the array’s erasure code can tolerate two strip
failures. Most such erasure codes have a recursive al-
gorithm defined for reconstructing the two lost strips.
This can be quite efficient for rebuild of both lost strips
in their entirety. The steps are generally quite simple
and explicitly assume use of intermediate reconstructed
elements. However, such a method will be very code-
dependent; that is, the recursion will depend on the spe-
cific code layout and parity formulas. On the other hand,
the matrix methodology above is completely generic.
If applied without the Reverse Incremental construc-
tion, no intermediate results are used; consequently, the
amount of XOR computation could be quite large com-
pared to a recursive method. But the Reverse Incremen-
tal construction would directly take advantage of inter-
mediate results and improve overall XOR computation
costs. In fact, if applied appropriately (as a special case
of our algorithm below), the matrix method (including
the Reverse Incremental construction) would reduce to
the recursive method in most cases (and be very similar
in all others).

Now consider a host request to read a single block
from one of the two lost strips (prior to completion of
any background process to reconstruct the stripe). If the
element is very deep into the recursion, a number of in-
termediate reconstructions (of lost elements) must take
place; these intermediate results are not needed for the
immediate host request and, though they can be cached,
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are potentially extraneous work for the task at hand. The
matrix method above, however, gives a (near) optimal
formula for direct reconstruction of any single element
without reconstruction of any additional elements.

We see that for single element reconstruction, the
generic direct method of the matrix methodology is gen-
erally more efficient than the recursive method provided
with a specific code. Conversely, for reconstruction of
all lost elements the generally preferred method is the
recursive method (either explicitly using the code’s spe-
cific theory or implicitly using the matrix method to-
gether with the Reverse Incremental construction).

We now consider the problem of reconstructing a par-
tial strip, say, to satisfy a host read for multiple consec-
utive blocks that span multiple elements in a strip. We
assume that multiple strips are lost (though that is not a
requirement at all). The above discussion suggests that
neither the direct nor the recursive methods may be op-
timal to address this problem efficiently. We propose the
following algorithm. The input to the algorithm is the
set of lost sectors F , the parity check matrix (or the gen-
erator matrix) and a subset T of F containing sectors to
reconstruct (we assume that no element in T is a data
loss event). The output is the data values for the ele-
ments in T . That is, F is the complete set of lost sectors
and T is that partial set we need to reconstruct.

Algorithm: Code-specific Hybrid Reconstruction
1. Compute the pseudo-inverse R and a (padded) null

space basis for B for the lost sectors F (say, using
the Column Incremental construction).

2. Do the following until all of T has been recon-
structed:

(a) Find an unreconstructed element t ∈ T
whose reconstruction vector in R has minimal
weight; reconstruct the value for t.

(b) Examine the recursion to see if any other el-
ement t′ ∈ T can be reconstructed by some
fixed number of iterations of the recursion
when starting that recursion at t. (e.g., for
2-fault-tolerant codes, this typically means at
most two steps).

(c) If such a t′ exists, reconstruct t′ following the
recursion; set t← t′ and return to step 2b.

(d) If no such t′ exists, do:

i. (Optional) Update R and B using the
Reverse Incremental construction for all
values reconstructed so far.

ii. Return to step 2a.

3. Return the reconstructed values for the sectors in T .

Essentially, this algorithm uses the direct method to
jump into the recursion at the first point the recursion
intersects the set T (thereby avoiding reconstruction of

unneeded values). The optional step 2(d)i ensures that
we have factored into the direct reconstruction formulas
all values reconstructed to this point, thereby allowing
these elements to be used in later reconstruction formu-
las (lowering XOR computational costs).

During step 2c, we can avoid physical reconstruction
of intermediate steps in the recursion that are not in set
T (that is, not immediately required for the host) by log-
ically collapsing the recursion equations. That is, we
combine the steps of the recursions to get from t to t′.
This has two advantages. First, it avoids a computation
and temporary memory store of any unneeded interme-
diate result. Second, the combination can eliminate the
need for some data or parity values that appear multiply
(an even number of times) in the set of recursive formu-
las. This avoids a possible disk read to access this data
as well as the memory bandwidth costs to send this data
into and out of the XOR engine multiple times.

Step 2b looks for efficient ways to utilize the recur-
sion. If none exist, we reapply the direct method (up-
dated, perhaps) to jump back into the recursion at some
other point in T of minimal direct costs.

Together, these steps enable efficient reconstruction
of only those elements that are needed (those in T ) and
no others. There are two special cases: (a) if T is a
singleton, then this method will apply the direct method
in the first step then exit; (b) if T is the union of all
the elements on all lost strips, then the algorithm will
default to the application of the recursion alone. We see
then that this algorithm interpolates between these two
extremes to find efficient reconstruction of partial strips.
(Note that T need not be a partial strip, but that is the
most likely application.)

More generically, we can apply the following algo-
rithm as a means to efficiently solve the same problem,
without reference to the specific recursion of the code
(assuming it has one).

Algorithm: Generic Hybrid Reconstruction
1. Compute the pseudo-inverse R and a (padded) null

space basis matrix B for the lost sectors F (say,
using the Column Incremental Construction).

2. Do the following until all of T has been recon-
structed:

(a) Find an unreconstructed element t ∈ T
whose reconstruction vector in R has minimal
weight and reconstruct it.

(b) Update R and B using the Reverse Incremen-
tal construction with input t.

(c) Return to step 2a.

3. Return the reconstructed values for the sectors in T .

It is not hard to see that in the presense of a straight
forward recursion, the code-specific and generic hybrid
methods will produce similar results (perhaps in differ-
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ent order of reconstruction, but with the same or sim-
ilar costs). The application of the recursion in step 2c
in the code-specific algorithm implicitly applies the Re-
verse Incremental algorithm.

Figure 1 shows the advantages of this hybrid method
for the EVENODD code [2]. The chart shows the XOR
costs (total number of XOR input and output variables)
for disk array sizes from 5 to 16. These numbers are the
average over all 1/2-strip-sized (element-aligned) host
read requests to lost strips and averaged over all possible
2 strip failures. They are normalized to the Direct XOR
costs. The figure shows that the direct cost is generally
(except for very small arrays) more expensive than ap-
plication of the recursive method (as one would expect
for long reads), but it also shows that the Hybrid method
is significantly more efficient than both.

1/2-Strip Reconstruction Cost Comparison 
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Figure 1: Comparision of Direct, Recursive
and Hybrid reconstruction methods for 1/2
lost strip reconstruction, EVENODD code.

9 Summary

We developed a language to model uncorrelated and/or
correlated loss of sectors (or elements) in arbitrary array
codes. We provided a direct methodology and construc-
tive algorithms to implement a universal and complete
solution to the recoverability and non-recoverability of
these lost sectors. This method and algorithm meets the
User Contract that says that what is theoretically recov-
erable shall be recovered. Our solution can be applied
statically or incrementally. We demonstrated the power
of the direct method by showing how it can recover data
in lost sectors when these sectors touch more strips in
the stripe than the fault tolerance of the erasure code.
The direct method can be joined with any code-specific
recursive algorithm to address the problem of efficient
reconstruction of partial strip data. Alternatively, the in-
cremental method can be reversed when some data is
recovered to provide a completely generic method to ad-
dress this same partial strip recovery problem. Finally,

we provided numerical results that demonstrate signifi-
cant performance gains for this hybrid of direct and re-
cursive methods.
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