
 110 ;login: VOL. 36, NO. 1

by instrumenting their pages and monitoring the click-
through behavior of its many users. Vijay Gurbani noted that
the lack of labeled logs is primarily an issue with computer
science education—students are taught how to program,
but not how to properly organize their program’s log output
nor how to label and then study the output to understand
their programs. Also in response, Wei noted that labeling is
especially difficult, because the same log message may mean
different things to different people (e.g., a developer versus
a system administrator). Mitchell Blank raised the related
logging incentives challenge—developers will always opt for
an easier way, so one must provide an incentive for them to
produce meaningful and easy-to-analyze logs.

Sixth Workshop on Hot Topics in System
Dependability (HotDep ’10)

October 3, 2010
Vancouver, BC, Canada

Distributed Algorithms

Summarized by Hussam Abu-Libdeh (hussam@cs.cornell.edu)

Storyboard: Optimistic Deterministic Multithreading
Rüdiger Kapitza, Matthias Schunter, and Christian Cachin, IBM

Research— Zurich; Klaus Stengel and Tobias Distler, Friedrich-Alexander

University Erlangen-Nuremberg

Rüdiger Kapitza opened his talk by noting how nowadays
conventional infrastructure is replaced with network-based
services where redundancy via state machine replication is
used to balance load and achieve high availability. In a typical
deterministic state machine replication setting, clients talk
to the replicated service via agreement nodes that produce an
ordering among client requests, which are then forwarded to
execution nodes. As a consequence, we expect that every non-
faulty replica will produce the same non-faulty output for the
same sequence of client requests. Even though this sounds
simple, multi-threaded execution at the replicas complicates
things by introducing nondeterminism due to scheduling.

To solve this issue, Rüdiger introduced the Storyboard design
for lock prediction and controlled execution, where an oracle
is used to predict replica concurrency issues by represent-
ing execution paths as ordered lists of lock accesses, which
are then executed in a controlled multi-threaded fashion.
In the Storyboard design, clients talk to agreement nodes,
which then talk to predictor nodes that predict and forecast
locks usage, and finally a controlled execution is carried out
by the replica nodes which operate according to the forecast
Storyboard. In a controlled execution, threads are allowed to
execute at their own speed, but they are only allowed to enter
into the predicted list of critical sections and are not allowed

During the discussion of common analysis metrics, user
studies were pointed out as a rigorous means to evaluate
graphical log representations. To this Ari asked, what sorts
of user studies in particular would the SLAML community
trust and find useful? Adam responded that this is not
something the community has a standard for. Wanchun
Li noted that usability studies in security research face a
similar issue. Everyone knows that evaluating usability is
often an important aspect of the research, but there is little
progress on establishing common usability metrics.

Another challenge touched on by a few participants is that
the meaning of logged messages may change over time. This
can, for example, make log priority levels meaningless (what
used to be an error message is now an informational note).
This is in part because there is no incentive to remove a log
line after the error is fixed. Greg proposed fault injection as
a potential solution. With fault injection one can see which
messages correlate, and this reveals information about the
underlying dependency graph. After all, Greg asked, isn’t this
the only thing we can find out, namely that certain events
correlate, while others do not? Alice questioned whether
fault injection can be a complete solution. In particular, she
asked about how one translates information gained from
fault injection in a testing environment into a production
environment. Greg admitted that this is a limitation, but also
emphasized that by performing fault injection across differ-
ent configurations one can often glean important properties
of the system, such as its scalability. Raja also thought fault
injection to be impractical because it is difficult to trust
results gathered in an artificial setting. He pointed out that
interesting real-world bugs always seem to be much more
involved, and reproducing them in fault injection studies is a
research study in itself.

The mention of many limiting features of system logs led
Ivan Beschastnikh to ask whether the community should
instead consider bridging log analysis with program analy-
sis, as program source can offer logs analysis key contextual
clues. Ari Rabkin mentioned relevant work by Ben Liblit on
cooperative BUG isolation, which leverages large numbers
of execution observations (execution logs) for debugging. Ari
also indicated that Ivan’s proposal is impractical because
program analysis rarely scales to large software and that sys-
tem software analysis is especially difficult, as it may involve
tracing complex execution (e.g., across multiple bash scripts).
Alice pointed out that instrumenting real code has an over-
head and it’s difficult to tell which pieces are important to
instrument and which ones do not add much more value.

Alice mentioned that a key challenge in applying machine
learning to logs is the lack of labels. She suggested that crowd
sourcing (e.g., via Mechanical Turk) can be leveraged to
label existing logs. For example, Google improves its search

 ;login: FEBRUARY 2011 Conference Reports 111

to balance load, keep faults independent, exploit multicore,
and reduce bottlenecks. A preliminary evaluation was made
on Emulab with a micro-benchmark of reading/writing key-
value pairs from a hashtable. The evaluation demonstrated
the scalability of the ordering service by adding more nodes
to the configuration and achieving higher ordering through-
put. The scalability was measured in terms of adding more
clusters and more machines to a fixed set of clusters.

One attendee wondered whether it would make more sense
to consider correlation at the rack level rather than on a
per-core/process level, and Manos acknowledged that failure
correlation depends on the actual deployment environment
and the availability required of the service. Hakim Weather-
spoon from Cornell University asked about the performance
of a service in case of a failure, and Manos responded that a
machine’s failure will require reconfiguration and realloca-
tion of replicas to other machines. Finally, Atul Singh from
Princeton University questioned the usefulness of having a
single common ordering service for applications that do not
share data, as this extra service might not be all that crucial
to the applications. Manos answered that their motivation is
to allow scalability such that ordering is never an issue. An
added benefit of having an ordering service is that it is one
less thing for developers to worry about; just use “the order-
ing service” and you’re done.

Active Quorum Systems
Alysson Bessani, Paulo Sousa, and Miguel Correia, University of Lisbon,

Faculty of Sciences

Alysson argues that state machine replication is conceptu-
ally simple and it usually provides linearizability, which is
a stronger consistency model that is not required in many
applications. This makes it difficult to implement tasks like
housekeeping/cron jobs, asynchronous messaging, or multi-
threaded services. The current mantra is that strong consis-
tency should be avoided at all costs and that led us to embrace
eventual consistency. However, eventual consistency is not
always adequate and some applications just require strong
consistency.

The research question posed is, would it be possible to build
dependable and consistent services that rely on strong
synchrony only when it is absolutely necessary? To answer
this question, Alysson looked at high-level abstractions like
coordination services, and low-level abstractions like read/
write quorum systems, leader election, and barriers.

Along those lines, Alysson proposes Active Quorum Sys-
tems (AQS), which he describes as a Byzantine quorum
system with synchronization power. AQS breaks the system
state into small objects, where instead of having the entire
service as a replicated state machine, the service is viewed
as a set of replicated objects. AQS supports three types of

to overtake other threads into a critical section, and thus the
execution will follow the forecast “story.”

This was the main idea of Storyboard, and Kapitza proceeded
to talk about implementation issues such as handling mispre-
dictions and complex locking structures such as condition
variables to synchronize multiple threads, and nested locks.
Development is currently underway for a Storyboard pro-
totype, and preliminary results showed an analysis of lock
usage in CBASE-FS.

After the talk an audience member asked whether execu-
tion rolls back if a thread needs to take an unpredicted lock.
Kapitza answered that there is no need for rollbacks, since
the current system pauses the execution at the point where
an unpredicted lock is requested, and that will enforce
the new story across the different replicas. In response to
another question, the presenter acknowledged that the cur-
rent Storyboard design does not address situations with data
races, although that is a point for future work.

Scalable Agreement: Toward Ordering as a Service
Manos Kapritsos, UT Austin; Flavio P. Junqueira, Yahoo! Research

Common practice in reliable services is to deploy replicated
execution nodes that are preceded by ordering nodes that
order client requests so that replicas execute in the same
order. However, ordering is left for service developers to
deploy, which requires us to provision for nodes that do not do
computation and that can additionally become a bottleneck if
the core service becomes popular. With this setting, Manos
presented his vision for request ordering as a utility service.

A problem is that ordering uses agreement protocols which
do not scale, and in fact, generally, adding more machines to
agreement protocols increases complexity and not through-
put. This is because in most agreement protocols, clients con-
tact a primary node that proposes an order for the requests
and broadcasts it to replicas that do an all-to-all communica-
tion to agree on the order and finally execute.

Scalable ordering protocols are needed to enable Ordering-
as-a-Service, and here Manos proposes leveraging multiple
small ordering clusters to compute partial orders and using
virtual slot space to get the full order. In virtual slot space
each ordering cluster is assigned a color, and the full order is
composed by interleaving a slot from each color. For example,
given three ordering clusters—blue, red, green—a full order-
ing schedule can be obtained by executing the first request
from the blue cluster first, followed by the first request from
the red cluster, followed by the first from the green. Next
comes the second request from the blue cluster followed by
the second from the red, and so on.

After explaining the general idea, Manos described imple-
mentation details such as mapping clusters to physical nodes

 112 ;login: VOL. 36, NO. 1

independent user-space processes, resulting in a multiserver
microkernel-based OS architecture. Each process follows an
event-driven model and is solely dedicated to carrying out a
specific task in a loop, termed the task loop. By design, the top
of the task loop is a local stable state. The task loop can gener-
ate idempotent messages throughout, and any non-idempo-
tent messages generated while handling a request are pushed
to the end of the loop. Lightweight recovery code is added
through instrumentation by LLVM and is used to revert to
the last stable state in the event of failure. A shadow state
region is used and memory allocations are tracked, as are
object state changes, etc. These changes are all committed at
the top of the event loop. When the system manager detects
a crash (e.g., in the Process Manager component), a replica of
the component has the last stable state transferred to it and
resumes operation as if nothing bad happened. The system
manager then cleans up the dead component. The authors
have prototyped the ideas described in the paper on top of the
MINIX 3 microkernel.

One audience member voiced concerns about several issues,
including multi-threaded servers, communication through
shared memory, and blocking on I/O. Cristiano responded by
saying that they are not aiming for backward compatibility
but, rather, designing a new system using the event-driven
model. This model would use asynchronous IPC instead. The
performance evaluation was questioned, as this system was
compared to unmodified MINIX 3 rather than Linux. Cris-
tiano called attention to the fact that the scalability graph
was normalized data, only showing relative performance/
overhead. How long did this work take? It was hard for Cris-
tiano to separate the time involved for different parts, but he
said that about one year was spent on implementation, with
previous work already having been done on the design.

Improved Device Driver Reliability Through
Verification Reuse
Leonid Ryzhyk, NICTA and University of New South Wales; John Keys,

Intel Corporation; Balachandra Mirla, NICTA and University of New

South Wales; Arun Raghunath and Mona Vij, Intel Corporation; Gernot

Heiser, NICTA and University of New South Wales

Leonid Ryzhyk observed that while hardware device verifica-
tion and device driver development have a remarkable degree
of similarity, the two processes are currently completely dis-
joint. Thus we are robbed of an opportunity for more reliable
driver development. Leonid’s presentation began in the same
fashion as the previous one, with a Blue Screen of Death, and
the audience continued to find this gag funny.

Current techniques for dealing with driver reliability
include runtime isolation, static analysis and model check-
ing, safe languages, etc. At the end of the day, drivers are
still much less reliable than we’d like, and Leonid proposes

low-level operations: read, write, and read-modify-write,
which updates the state of an object using its old value. Read
and write operations are implemented as in typical quorum-
based asynchronous protocols. The read-modify-write
operation is implemented as an extension to PBFT (Practical
Byzantine Fault Tolerance) where the primary acts locally on
a received request and then broadcasts the triple (start state,
command, result) to all the replicas. If the replicas approve,
then the change is committed; otherwise the most recent
copy of the state is sent back to the primary and the opera-
tion is repeated until consensus is achieved. A final design
principle of AQS is that the service specification is exploited
in order to find opportunity for optimization (so not based on
the environment, because it can change). An example of that
is determining the level of consistency by the service needs,
and the same goes for writer access control. Alysson argued
that the benefits of AQS are that it makes minimal assump-
tions, achieves communication optimality, and provides
stability for non-favorable executions.

In response to a question from the audience, Alysson noted
that unfortunately AQS adds complexity to building systems
for non-experienced users. Hakim Weatherspoon asked what
would happen if the service assumptions were violated. For
example, what would happen if the system were to evolve to
allow multiple writers? Alysson responded that the idea of
having multiple writers is not associated with contention but
with access control. They in fact encountered a case of evolv-
ing the system when working on LDAP but it has not been
completely worked out.

OS Reliability

Summarized by Mark Spear (mspear@cs.ubc.ca)

We Crashed, Now What?
Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum, Vrije

Universiteit, Amsterdam

Cristiano Giuffrida presented an operating system model
that addresses many problems involved in crash recovery.
He immediately brought laughs to the audience with a Blue
Screen of Death slide; in this particular BSOD, a device driver
bug brought down the entire operating system. Much of the
related work on crash recovery focuses on isolated subsys-
tems (e.g., device drivers, file systems). In these works, a
portion of the system is trusted to monitor the untrusted por-
tion (e.g., the driver). But when extending crash recovery to
the entire system, that model would require monitoring the
monitor, ad infinitum, “like a dog chasing its tail.”

Instead, Cristiano’s group elected to combine OS design
and lightweight instrumentation to scale crash recovery to
the entire OS. They break down the operating system into

 ;login: FEBRUARY 2011 Conference Reports 113

rare anymore. The reliability has to come from the software,
but even the big players get it wrong sometimes (e.g., Sidekick
data loss, Facebook photo loss). Thanh argues that current
testing of failure recovery is insufficient. In response to this
problem, his group has developed a pair of tools that work in
concert to explore failures. In the time since their paper was
submitted to HotDep, these tool, FTS (Failure Testing Ser-
vice) and DTS (Declarative Testing Specification), have been
renamed FATE and DESTINI, respectively.

FATE is a failure injection framework. It targets I/O points
and can exercise many combinations of failures. A “Failure
ID” is their representation of a failure: It contains a failure
point (the system/library call that performs disk or network
I/O), a failure type (crash, exception, etc.), a stack trace, and
some domain-specific information (e.g., source, destination,
message). The hash of a failure ID is used to log the failure
history when exploring the failure space. Aspect-oriented
programming (AspectJ) is used to instrument Java programs
with no changes required to the system under test. Multiple
failures are injected, including failures during recovery.
DESTINI is responsible for testing whether actual behavior
is consistent with what was expected. Violations are detected
through evaluation of Datalog style rules.

The authors applied their system to three cloud systems,
HDFS, ZooKeeper, and Cassandra, writing 74 recovery
specifications at an average length of 3 lines per specifica-
tion. Their system found 16 bugs and reproduced 74. The bugs
caused reduced availability and performance, data loss dur-
ing multiple failures, and errors in the recovery protocol.

The first questioner pointed out that one man’s bug is another
man’s feature: What do you do when you don’t have a precise
specification? Thanh noted that even without a precise speci-
fication, you should at least have a high-level expectation of
how the system works. If necessary, the specification could
be refined later, and there is no need to start at a low level.
Another questioner asked about one of the hardest situations
to test: arbitrary corruption. The framework supports vari-
ous kinds of corruption (e.g., network packets), but the full
answer about arbitrary state corruption was taken offline.
Finally, an audience member noted that when considering
multiple possible failures, the state space explodes. Thanh
mentioned that they were looking at heuristics for pruning
the failure space, prioritizing some failures, and focusing on
“interesting points,” and that some of that work was submit-
ted to NSDI.

a complementary approach for improving driver reliability.
He presented the observation that the most common class of
driver bug is device protocol violation (e.g., using an invalid
sequence of commands, wrong use of DMA descriptor, inter-
preting data incorrectly). Hardware designers communicate
to the driver developers through a datasheet, which often
contains inaccurate information. However, the hardware
verification engineers are privy to more details about the
device, and lots of effort is put into the verification testbench.
The testbench has several layers, including scenario, agent,
and the device under test, which have analogs in the OS I/O
stack. The scenario layer should be extended to be OS-based
and simulate how the OS uses a driver. The agent layer has
a similar role to that of a driver (translating a high-level
request to low-level operations, and changing state of the
device). Leonid suggests that an actual driver could replace
the agent layer, so that hardware and software are being co-
verified. In order to facilitate cross-platform use of the single
driver under test, Leonid proposes unified driver interfaces
(per device class), instead of naively emulating existing OS
interfaces in the testbench (which would lead to OS-specific
testing). The resulting driver could then be used without
modification in real operating systems.

This could result in several benefits, including a reduced dev
cycle and (naturally) fewer bugs in the end product. They
found a number of defects in USB and UART drivers, an Eth-
ernet hardware race condition, and several other bugs that
weren’t found using the conventional development method.

A number of questions involving different testing configu-
rations were asked. The first inquiry was about different
versions of a hardware device. That could require updated
testbenches in both the conventional and the proposed
model. The same questioner also asked about different ver-
sions of a driver. The response was that drivers would require
testing anyway, so now it would be done through the test-
bench. When an operating system changes, is it the job of the
hardware vendor to retest the driver? It would require work
if the testbench was emulating the OS, but instead a generic
interface is assumed, so that isn’t an issue.

Towards Automatically Checking Thousands of Failures
with Micro-specifications
Haryadi S. Gunawi, University of California, Berkeley; Thanh Do,

University of Wisconsin, Madison; Pallavi Joshi and Joseph M.

Hellerstein, University of California, Berkeley; Andrea C. Arpaci-Dusseau

and Remzi H. Arpaci-Dusseau, University of Wisconsin, Madison;

Koushik Sen, University of California, Berkeley

Thanh Do presented a mechanism for exploring complex
failures and error recovery scenarios. In the era of cloud com-
puting and using thousands of machines, failures are not so

 114 ;login: VOL. 36, NO. 1

A Rising Tide Lifts All Boats: How Memory Error
Prediction and Prevention Can Help with Virtualized
System Longevity
Yuyang Du and Hongliang Yu, Tsinghua University; Yunhong Jiang and

Yaozu Dong, Intel Research and Development, Asia-Pacific; Weimin

Zheng, Tsinghua University

Yuyang Du began his talk with the surprising claim that
RAM errors cause the plurality of system failures (including
both software and hardware causes). While these could be
prevented with hardware fault tolerance or even simple ECC,
Du claimed that cost prevented widespread deployment of
these techniques. He further noted that in the increasingly
important cloud hosting economy, consumers don’t have
direct control over the hardware on which their applications
run. He also claimed that virtualization compounded the
problem of unreliable memory, because the physical hard-
ware was multiplexed across multiple servers.

Du noted that memory chips produced both correctable
(soft) and uncorrectable (hard) errors. He proposed that for
virtualized servers, a cost-effective approximation of ECC
could be achieved by using observed soft errors to predict
future hard errors and migrate virtual memory off the failing
physical RAM before they happened. He had not yet evalu-
ated his failure predictor or any gains in reliability versus
the cost of disabling physical RAM. He noted that this sort of
project was very slow to test, since it depended on waiting for
memory to fail.

The questioning focused on two topics: the accuracy of Du’s
hard memory error predictor, and on the idea of creating
graduated memory protection. Steve Hand (Cambridge)
asked about using ECC memory for the hypervisor but only
best-effort, predictive protection for virtual machines.
Karthik Pattabiraman (UBC) took the idea further, propos-
ing that individual applications might be able to make use
of memory of varying reliability. Du agreed that these were
interesting avenues of research.

A Design for Comprehensive Kernel Instrumentation
Peter Feiner, Angela Demke Brown, and Ashvin Goel, University of

Toronto

Peter Feiner and his co-authors would like to protect systems
from faulty device drivers, using techniques like Microsoft
Research’s Byte Granularity Isolation. The trouble is that
such techniques require source code, but often the source
for device drivers is unavailable. Applying this technique
to binary code requires a dynamic binary instrumentation
(DBI) framework (like Valgrind, DynamoRIO or Pin), but
Feiner claims that no such framework exists that can operate
on kernel code.

Management and Debugging

Summarized by Brendan Cully (brendan@cs.ubc.ca)

Focus Replay Debugging Effort on the Control Plane
Gautam Altekar and Ion Stoica, UC Berkeley

Gautam Altekar began his presentation with the observation
that debugging datacenter software is particularly difficult,
for three reasons: it is large-scale, data-intensive, and non-
deterministic. Altekar argued that static techniques do not
scale to the state space of these large systems, and so we need
a way to do deterministic recording and replay of production
systems in order to reproduce nondeterministic bugs. But
production systems will not tolerate a great deal of overhead
in either performance or logging data rate.

Altekar proposed that datacenter applications will typically
have two somewhat distinct components: a control plane for
managing data flow and maintaining replica consistency,
and a data plane of relatively simple data processing engines.
He then hypothesized that the control plane, being complex,
would have a much higher relative bug rate than the data
plane. At the same time, it would have a much lower data rate.
For reproducing bugs in the control plane, which he argued
were the most important and difficult, Altekar claimed that
it would suffice to maintain deterministic recordings of the
control plane.

To test this hypothesis, he chose three applications (Hyper-
table, KFS/CloudStore, and OpenSSH) and used taint track-
ing to classify code that accessed user data as data plane code
(this classification needed manual refinement because of the
high rate of false positives produced by taint tracking at the
CPU level, and because classification based on observed exe-
cution had poor coverage). Bearing in mind that the results
were not very scientific, his initial analysis appeared to jus-
tify his hypothesis: 99% of the bugs reported in these applica-
tions were in “control plane” code, but this code accessed only
1% of the data processed during execution. Altekar believed
that this result warranted further investigation.

There were a lot of questions about how cleanly control and
data plane code could be separated in practice. Derek Mur-
ray (Cambridge) wondered how this would work for systems
like Google Percolator, in which the results of the data plane
could affect the control plane. Dutch Meyer (UBC) asked
whether data traffic could be distinguished by directly exam-
ining the data. Altekar responded that the distinguishing
feature of data plane data was volume. Steve Hand (Cam-
bridge) noted that the chosen applications were application
frameworks and wondered how well the observed bug rates
would correspond with those for actual applications built on
the frameworks. Altekar intended to look into that.

 ;login: FEBRUARY 2011 Conference Reports 115

median distance for a given server is tested against a thresh-
old: The (per-server) threshold for “anomalous” is set via a
fault-free high-stress training phase, to find the maximum
deviation expected under normal conditions. This requires
training on each cluster/filesystem combination, but not
based on workload.

Examining the most anomalous metrics facilitates root-
cause analysis. Given an indicted node, and its feature vec-
tors over time compared to others, the system can present a
list of possible anomalies for manual inspection. Different
metrics are good at different kinds of faults. Disk faults are
best detected by the time metric, since blocking I/O calls
are used. Count metrics are good for detecting packet loss:
dropped packets cause more non-blocking reads, resulting in
a higher function call count. Sampling is useful for detect-
ing the “network hog” fault, as TCP retransmits increase the
CPU load.

Steve Hand (Cambridge) asked a question about how the
threshold was selected. It appeared to be a constant number;
why not set the threshold as a function of what is observed at
runtime (like a number of standard deviations)? Mike noted
that it is not really an absolute number, although the example
slide may have made it seem that way. Instead, it is a maxi-
mum degree of tolerable deviation.

What Consistency Does Your Key-Value Store Actually
Provide?
Eric Anderson, Xiaozhou Li, Mehul A. Shah, Joseph Tucek, and Jay J.

Wylie, Hewlett-Packard Laboratories

Xiaozhou (Steve) Li presented an analysis of key-value
stores. Service-level agreements for consistencies of key-
value stores are likely on the horizon. Most stores only prom-
ise eventual consistency, but for some workloads (depending
on the number of updates, how much contention there is), it
may perform better.

Key-value stores are commercial black boxes. What can
you do to analyze the consistency to see if you need a higher
level of service? Client machines can record sequences of
get/put requests and record the time that requests are sent
and replies are received. Based on the observed sequence,
one can attempt to analyze atomicity, regularity, and safety
(properties from Lamport’s work on register-based consis-
tency). The presentation focused on atomicity, and a graph
theoretical approach was offered. The vertices represent
operations and edges represent precedence. The sequence is
a “good” sequence if and only if it is a directed acyclic graph.
A cycle would imply that a vertex should happen before itself
(because edges are precedence). There are three types of
edges: time (if an operation precedes another entirely), data

The authors see two approaches to constructing a kernel-
level DBI framework: either port an existing tool like Pin
to an existing hypervisor, or build a minimal hypervisor
with just enough code to support DBI. Claiming that a port
would be difficult due to the amount of code that would need
changing, they instead investigated the features required
of a custom DBI hypervisor. Feiner spent the rest of his talk
enumerating many of the tricky issues involved in perform-
ing invisible code translation at the kernel level.

I was surprised both by the claim that a port approach was
more difficult, and that it hadn’t been done before. I asked
Feiner how his model compared to PinOS, which combined
Pin with Xen and was described in a VEE paper in 2007.
Feiner said that the disadvantage of PinOS was that the TCB
for the translation engine was much larger. Others asked
about overhead, and issues dealing with self-modifying code.
Feiner noted that his talk was about a proposed architecture
rather than an implemented system, and so discussions of
mechanics and performance were not yet relevant.

Storage and File Services

Summarized by Mark Spear (mspear@cs.ubc.ca)

Behavior-Based Problem Localization for Parallel File
Systems
Michael P. Kasick, Rajeev Gandhi, and Priya Narasimhan, Carnegie

Mellon University

Mike Kasick described a method of diagnosing problems
in parallel file systems by analyzing system behavior via
CPU instruction pointer sampling and function call trac-
ing. This work was motivated by real problems experienced
by the developers of PVFS (Parallel Virtual File System):
limping-but-alive servers that reported no errors, faulty and
overloaded switches, buggy RAID controllers, and a variety
of other problems that may pass their respective diagnostic
tests. Previous work has shown instances where perfor-
mance manifestations of problems were masked by normal
deviations. However, behavioral manifestations may be more
prominent than performance manifestations.

Fault-free peers have similar behavior: e.g., large I/O
requests are striped across all servers, and small I/O
requests, in aggregate, also equally load all servers. A system
exhibiting a fault (e.g., “Write-Network-Hog Fault”) will have
a behavioral manifestation (e.g., a gross discrepancy in calls
to the kernel tcp_v4_rcv function). Each server has a feature
vector of several metrics from a sliding window of time. The
features include samples, function call counts, and time. To
detect anomalous behavior, Manhattan distances between
feature vectors are computed pair-wise between servers. The

 116 ;login: VOL. 36, NO. 1

If we can drop the voltage and frequency, then we can expect
a drop in power. In 1994 we saw 25–65% savings up through
2009, when work saw a 30% energy savings with a meager 4%
performance loss. Unfortunately, there is also a static power
component that includes leakage current, memory refresh
power, hard drive motors, etc. Thus, running more slowly can
potentially degrade the overall power.

The authors consider the mcf and gzip benchmarks and
observe that mcf gets the largest benefit from DVFS because
it is memory bound rather than CPU bound. Looking across
three different Opteron CPUs, they found that the older two
had a power-optimal point around 1.6GHz but that, with
a more modern processor, DVFS was ineffective at saving
power. One shortcoming of this technique is that it assumes
that the computer is not consuming any power after the
benchmark completes. To consider the idle power following
the experiment run, Etienne described their padding meth-
odology to measure the idle power up to the time of the long-
est running DVFS-scaled benchmark. Using this technique,
we start to see some reduction in energy, but we only see
improvements in energy delay if running on all system cores.

Moving forward, we can expect that shrinking feature sizes
and increasing cache size and memory bandwidth will make
improvements by scaling down via DVFS even less likely.
Surprisingly, however, features such as Intel’s Turbo-Boost
can actually reduce total power by scaling up the clock fre-
quency and racing to idle effectively.

An audience member asked how DVFS can impact embedded
platforms. Etienne observed that the CPU power can be very
low relative to the total system power and that DVFS won’t
be able to impact total power. Another audience member
observed that AMD has introduced DVFS on the cache and
memory controllers.

A Case for Opportunistic Embedded Sensing in Presence
of Hardware Power Variability
Lucas Wanner, Charwak Apte, Rahul Balani, Puneet Gupta, and Mani

Srivastava, University of California, Los Angeles

Puneet Gupta demonstrated how shrinking feature sizes
leads to immense variability in the physical manifestation of
hardware designs. For example, in an experimental 80-core
processor the performance spread across cores on a single die
was 80%. The degree of variability is not tied to the design
alone, as the same design sourced from different manufac-
turers can get different degrees of variability. Furthermore,
aging can cause wires to slow and reduce performance by
20–30%. Today, variability is masked by guard bands. Pro-
cessor manufacturers typically bin processors by functional
speed, with space for any aging effects. Unfortunately, scal-

(write 0->read 1; the value of the write should appear in the
value of the read), and “hybrid” edges (which enforce the
invariant that “all writes time-preceding a read should hap-
pen before the read’s dictating write”). Cycles are counted via
DFS, and the number of cycles detected is representative of
how severely inconsistent a trace is.

Measurements of the same sequence of operations from the
service provider’s side are necessarily shorter, because they
wouldn’t include network latency. Therefore, more time edges
would be added to the graph (from the service provider’s
perspective). Thus, a user detecting a violation (i.e., a cycle in
the graph) would imply that the service provider would also
know there was a violation. Some evaluation was done, and
it was noted that their key-value store, Pahoehoe (which is
eventually consistent), with sufficiently low contention, is
about atomic.

Steve agreed with an interesting possibility presented by an
audience member: With these commercial systems exposing
the same interface, if violations are noticed, one could take
action and switch to another provider. Another audience
member asked, if a service provider violation is detected, how
can you prove it? Steve noted the service provider, if running
this analysis, would also detect the violation, because they
would have more time edges (because of the apparent short-
ening of operations). But to actually “prove” the violation, you
would need to incorporate non-repudiation techniques to
convince a third party, using digital signatures and related
techniques. The final question was whether the algorithm
could be run in parallel if keys were in disjoint cliques, and
the answer was yes: it is straightforward, as if they are differ-
ent keyspaces.

2010 Workshop on Power Aware Computing
and Systems (HotPower ’10)

October 3, 2010
Vancouver, BC, Canada

Impact of Hardware Trends

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Dynamic Voltage and Frequency Scaling: The Laws of
Diminishing Returns
Etienne Le Sueur and Gernot Heiser, NICTA and University of New South

Wales

Etienne Le Sueur observed that dynamic voltage and fre-
quency scaling is a technique commonly used to reduce the
power of a running system. The dynamic power of a system
scales linearly with frequency and quadratically with voltage.

 ;login: FEBRUARY 2011 Conference Reports 117

energy-proportional computing has limited benefits. The
capital expense of servers accounts for the largest portion of
the total cost of ownership.

To minimize costs in provisioning, Microsoft is moving
towards modular data centers. A video showing the modules
is available at http://www.microsoft.com/showcase/en/us/
details/84f44749-1343-4467-8012-9c70ef77981c. The mod-
ules function using adiabatic cooling with outside air and
only using top-of-rack fans to adjust for cooling/heating as
appropriate. To reduce the cost of power, there are techniques
for eliminating conversion steps. Surprisingly, running AC to
the servers is not significantly different from DC in total con-
version efficiency. Right-sizing for density suggests a sweet
spot, with the lowest-voltage processor getting a surprising
performance/watt/cost benefit. Right-sizing storage can be
achieved by in-depth storage trace analysis to understand
workload patterns and dynamic range to pack better.

Overall, researchers need to be sure that they take a holistic
view. Current research areas are in optimal provisioning for
high dynamic range workloads, addressing energy propor-
tionality via system architecture innovations, power-aware
task scheduling on large clusters, and energy-conscious
programming using controlled approximation.

One audience member asked why their efficiency approaches
don’t work in all data centers. Kushagra responded that get-
ting all of the layers of UPSes and voltage conversion requires
control of the entire data center, which few have the scale to
accomplish. What are the implications of low-power CPUs in
data centers? For Bing workloads, Xeon systems are 2.3x bet-
ter in performance/watt/cost. Someone asked why they don’t
turn off servers. Kushagra replied that it can lead to response
time spikes, that turn-on time can be long, and that if you can
turn off servers, you brought too many online or you are doing
poorly at task scheduling.

Data Center I

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Analyzing Performance Asymmetric Multicore
Processors for Latency Sensitive Datacenter
Applications
Vishal Gupta, Georgia Institute of Technology; Ripal Nathuji, Microsoft

Research

Asymmetric multicore processors (AMPs) are being explored
in multiple dimensions, where cores are combined with dif-
ferent performance characteristics and deployed with differ-
ent functional characteristics. Vishal Gupta presented their
technique for understanding the impact that AMPs can have
on data centers with respect to power and throughput.

ing with the guard band is much worse than the nominally
achievable results.

Puneet advocates that exposing aspects of this variability to
software can allow improved functionality. Such exposure
could happen via active measurement or prior testing, but
it can have a significant impact. For instance, in sensing
applications the sleep power is dominant and can affect the
amount of data that can be acquired on a given power budget.
The authors found that for 10 off-the-shelf Cortex M3 pro-
cessors, the active power varied by 10%, but the sleep power
varied by 80%. Furthermore, the sleep and active power
vary with temperature. Using a power model calibrated to
temperature and sensors for power, Puneet demonstrated
that they can achieve more effective sensing by energy-aware
duty cycling. Thus, a node with lower sleep power can sample
1.8x more data than it would have if all nodes were timed to
the worst sleep power. Moving forward, one challenge is to
discover the right interface for exposing the variability and
sense data to software.

An audience member observed that this data is already inte-
grated in modern CPU power management units for manag-
ing the frequency within temperature and power bounds.
Puneet responded that it is important to actually expose
this information to the software layer, which most of these
techniques fail to do. Another audience member asked about
the overhead of these techniques. Puneet observed that the
information is already being collected for quality control but
it is not exposed to software. Finally, an audience member
asked about the difficulty managing other system compo-
nents. Puneet said that the complexity would depend on the
abstraction.

Invited Talk

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Datacenter Power Efficiency: Separating Fact from
Fiction
Kushagra Vaid, Microsoft Corporation

Kushagra Vaid posed the question of how to maximize power
efficiency at a large scale. A data center consists of a power
substation, chillers, batteries, an ops room, generators, fuel,
and computing equipment. The efficiency of a facility is often
measured by PUE, which is the facility power divided by the
IT equipment power. Common PUE values range around
1.5–2.0, but good deployments reach close to ideal at 1.05.

Kushagra observed that the cost of power is fairly low rela-
tive to the overall costs of the facility. Amortizing using a
three-year replacement model, power consumption con-
sists of 16% of the cost. Thus, reducing dynamic power and

 118 ;login: VOL. 36, NO. 1

Data Center II

Summarized by Etienne Le Sueur (elesueur@cse.unsw.edu)

Energy Savings in Privacy-Preserving Computation
Offloading with Protection by Homomorphic Encryption
Jibang Liu and Yung-Hsiang Lu, Purdue University

Yung-Hsiang Lu presented this paper, which discusses the
issues that arise when compute-intensive tasks are offloaded
from mobile devices to a centralized server. The main issue
their work addresses is that of privacy, when sensitive data
needs to be transferred off the mobile device, using a public
network, to a server which may not be trusted.

Their work mitigates this privacy issue by protecting the data
using a homomorphic encryption algorithm. Homomorphic
encryption is unlike traditional encryption techniques in
that computations can be done on the cipher-text itself rather
than being decrypted first. This way, the server operating on
the data need not actually know what information the data
contains.

The use-case they describe in the paper deals with image-
matching—for example, when a user of a mobile phone takes
a photo and wants a remote server to do some analysis to try
and determine what objects the photo contains. They used an
iPad portable device and a server with a 2GHz CPU for pro-
cessing the images, with evaluation based on how many posi-
tive matches were made. Using their modified Gabor filter,
they were able to get a correct match approximately 80% of
the time when the analysis was performed on the cipher-text.

The work seems promising, and a future direction was
clearly given which will address the issues with noise in the
encryption system.

An audience member asked whether there were other classes
of functions where it makes sense to offload computation.
They haven’t reached a point where there’s a general rule for
when to apply the technique. How strong is the encryption
and can it easily be broken? The strength of the encryption
depends on the key length. The discussion was continued
offline.

Green Server Design: Beyond Operational Energy to
Sustainability
Jichuan Chang, Justin Meza, Parthasarathy Ranganathan, Cullen Bash,

and Amip Shah, Hewlett Packard Labs

Justin Meza presented this paper, which discusses a way to
quantify sustainability when designing data centers. The
usual motivations for the work were given: e.g., reduction of
carbon footprint, secondary costs (power and cooling), and
government regulation.

Vishal described two use cases: energy scaling and parallel
speedup. Energy scaling involves execution on a combination
of the small and large cores to achieve the same computation
within a deadline at lower power. Parallel speedup occurs
when a larger core on an AMP can execute serial sections
faster. To ascertain the effects of these use cases, Vishal
treats each processor as an M/M/1 queue, which models pro-
cessing times as an exponential distribution where the pro-
cessing time is parameterized in proportion to the chip area.
Overall completion time is parametrized by the paralelliz-
able fraction of the code. Using this model, Vishal finds that
for a higher fraction of parallelizable work, power savings
increase with AMP use. While there are practical consider-
ations, AMPs offer more potential for parallel speedup than
for energy speedup.

Energy Conservation in Multi-Tenant Networks through
Power Virtualization
Srini Seetharaman, Deutsche Telekom R&D Lab, Los Altos

Networks are typically power oblivious and it is hard for
network users to ascertain the impact. By packing flows into
fewer devices and turning off unused devices, the system
can turn off individual ports and even entire switches. Given
a multi-tenant data center, how can tenants be influenced
to reduce their system usage? Switching from a flat rate for
networking to a power-based price can incentivize power
savings.

Srini Seetharaman proposed the idea of virtual power.
Because network power is not proportional usage, the most
intuitive definition for virtual power is to split the power con-
sumption of a component over all sharing tenants. This has
the effect of penalizing a tenant for being the only occupant
and encourages reuse of pre-paid/pre-powered-on elements.
An implementation is in progress but there are no results yet.
The specific methods of billing and pricing can influence
the outcome; for instance, auctions might introduce differ-
ent behavior than allocations that degrade over time. In the
future, the question is how we can achieve good performance
while conserving power.

In the Q&A, Srini clarified that it makes more sense to
conserve in a reactive mode, turning on devices as neces-
sary. One audience member asked whether rate-based power
differences can affect power. Srini replied that the power
differences are typically small. The same person also asked
whether the placement of tenants in the data center could
penalize them in terms of the available pricing. Srini replied
that this was a concern.

