
84	 ; LO G I N : 	VO L . 	3 4, 	N O. 	3

to track these statistics; in their measurements, CLIC 
needed less than 1% of the cache space for this tracking.

Kenneth compared the TPC-C and TPC-H hit ratios 
achieved by CLIC, an ad hoc hint policy (TQ), two poli-
cies that do not use hints (LRU and ARC), and the optimal 
policy (knowledge of the future) for varying cache sizes. 
CLIC and TQ usually dominated LRU and ARC, CLIC often 
dominated TQ, and OPT typically dominated all.

One audience member asked how CLIC performs with 
a large number of clients and with a varying dynamic 
workload. Kenneth answered that they have not tested 
with a large number of clients or time-varying workloads. 
However, at present, CLIC occasionally throws out all 
logs, using exponential decay. Another person asked how 
CLIC responds to clients that use hints to try to hurt other 
clients. Kenneth responded that CLIC helps the clients that 
benefit the most from the cache. Finally, someone asked 
whether the authors had thought of CLIC giving feedback 
to the client about which hints are the most useful. Kenneth 
said they had not and that this might be interesting. 

n	 Minuet: Rethinking Concurrency Control in Storage Area 
Networks
Andrey Ermolinskiy and Daekyeong Moon, University of Califor-
nia, Berkeley; Byung-Gon Chun, Intel Research, Berkeley; Scott 
Shenker, University of California, Berkeley, and ICSI

Andrey Ermolinskiy discussed two limitations of using 
distributed locking to coordinate reads and writes among 
clients of a Storage Area Network (SAN), and he presented a 
new coordination approach that addresses these two limita-
tions through optimistic, instead of strict, concurrency by 
adding logic to storage system nodes.

Using distributed locking to coordinate access to shared 
state has two issues: (1) it does not guarantee correct seri-
alization of requests, and (2) it requires a majority of the 
locking server nodes to be available. Minuet guarantees the 
correct serialization of disk requests and removes the need 
to contact any locking server. Instead, the storage nodes 
themselves, via a guard, mediate requests and can reject 
incorrectly ordered requests. In Minuet, requests are aug-
mented with session annotations that are used to order the 
requests. Distributed transactions can be constructed atop 
Minuet using logging and recovery.

Remaining challenges to Minuet-like systems include the 
adoption of guard logic into storage arrays, storage and 
bandwidth overheads of session metadata, and the program-
ming model change of request rejection and forced lock 
revocations.

One audience member asked why an equivalent system 
cannot be built on top of SCSI-3 reservations. Andrey 
responded that he had not considered this. Another person 
asked about the efficacy of caching version numbers for 
concurrency control. Andrey answered that their implemen-
tation does scale; version numbers are stored in NVRAM on 

storage devices and perhaps could be stored on disk with 
some also in RAM.

First Workshop on the Theory and Practice of 
Provenance (TaPP ’09)

February 23, 2009 
San Francisco, CA

invited talk

n	 Causality, Responsibility, and Blame: A Structural-Model 
Approach
Joe Halpern, Cornell University

Summarized by Kiran-Kumar Muniswamy-Reddy  
(kiran@eecs.harvard.edu) with assistance from Peter Macko

Halpern’s talk introduced the theoretical aspects of causal-
ity, responsibility, and blame and their implications for the 
provenance community.

The world can be modeled using structural equations that 
model the outcome of events using one or more random 
variables. The values of exogenous variables come from 
outside the model, while endogenous random variables de-
pend on other variables in the system. There are, however, 
two choices of uncertainty over which reasonable people 
can disagree: first, we do not know whether our model is 
correct or sufficiently detailed, and, second, we may not be 
certain about the values of some variables. Consequently, 
we should introduce probabilities into the model that reflect 
our confidence in it. A model with no probabilities is com-
pletely deterministic.

Causality can be informally defined as follows. A set of 
events A caused event B, assuming that both A and B actu-
ally happened. Changing the outcome of A and possibly 
also the outcomes of some other events X would cause B not 
to happen. But if A happened, so would B, regardless of the 
outcomes of X. For example, this definition can gracefully 
handle the following scenario: it is sufficient to drop one 
match in order to burn a forest. If two people drop matches 
and the forest burns down, the definition correctly identi-
fies both of them as the causes.

This definition of causality has one very important implica-
tion: it is not transitive. This challenges the interpretation 
of provenance as a form of causality, since provenance is 
believed to be transitive. The intransitivity of causality can 
be illustrated using the following example: a patient has 
an illness that can be cured by one dose of medicine, but 
two doses would kill him. On Monday, doctor A gives the 
patient a dose of medicine. On Tuesday, doctor B does not 
give him the medicine, because he already received it the 
day before. On Wednesday, the patient is alive and well. 
Clearly, doctor A caused doctor B not to administer the 
medicine, and by doing so, B caused the patient to be alive. 
If causality were transitive, A would also be a cause that the 
patient is alive, but this is not true: if doctor A did not give 
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the medicine, the patient would still be alive on Wednesday, 
regardless of the subsequent action of doctor B.

While causality is binary, the degrees of responsibility and 
blame can be expressed as numbers between 0 and 1. Your 
responsibility is 0 if you are not a cause, or 1/(k+1), if k–1 
is the minimum number of variables that must be changed 
in order to change the outcome of the event. For example, 
in a 6–5 voting scenario the responsibility of the six voters 
is 1, while in an 11–0 scenario the individual degrees of 
responsibility would be smaller. The degree of blame is the 
expected degree of responsibility given all possible situ-
ations considered by an agent. For example, consider the 
following situation: ten marksmen are ordered to shoot a 
prisoner. Nine of them receive fake bullets and only one 
gets a live bullet, but no one knows which one. If none of 
them misses the target, only the marksman with the live 
bullet is responsible with degree 1, while each of them has 
the same degree of blame 1/10.

Moving on to applications: causality can be used for model 
checking. If there is an error in the specification of a pro-
gram, causality can be used to perform coverage estimation. 
In particular, one can ask the question, “Which parts of the 
spec cause the program to be satisfied?” If 90% is irrelevant, 
then the spec is flawed. Causal models can also be used 
when one is uncertain about provenance.

One member of the audience asked if the model the speaker 
presented considered the Trio definition of provenance. The 
speaker was unfamiliar with Trio, but it seems as though 
the two models address the same issues. For example, Trio 
tries to answer questions such as “Why does a tuple appear 
in a result?” which is basically causality.

morning sessions

Summarized by Kiran-Kumar Muniswamy-Reddy  
(kiran@eecs.harvard.edu)

n	 A Formal Model of Provenance in Distributed Systems
Issam Souilah, University of Southampton, UK; Adrian Fran-
calanza, University of Malta, Malta; Vladimiro Sassone, Univer-
sity of Southampton, UK

In this talk, the speaker presented a provenance-based 
calculus to study trust in distributed systems, in particular, 
a formalism that is an extension of Pi-calculus. The basic 
idea is to annotate all data with their provenance. Users 
can use this provenance to make decisions; for example, 
a product made in China may be more desirable than a 
product made in Zimbabwe. They considered a few more 
approaches before deciding on this approach: static analysis 
does not scale. A dynamic analysis cannot do a full-blown 
verification or use proof-carrying code as decisions. Deci-
sion criteria need to be computationally lightweight. With 
their method, provenance tracking is automated and is 
orthogonal to programming. Their approach also ensures 

provenance annotation standardization and provides circu-
lar reasoning with respect to trust. One more contribution 
of the work is that they provide a definition for provenance 
correctness and prove the correctness for the provenance-
tracking semantics that they have proposed.

One member of the audience asked what happens if the 
same value is sent to two different processes in two differ-
ent channels. The speaker said that the messages sent on 
individual channels are considered to be different copies, 
so their approach holds. Next, James Cheney asked what 
happens if one of the entities lies and sends the wrong 
provenance. The speaker replied that they are assuming 
that the system is running in a trusted environment, i.e., 
the principals tell the truth about themselves so others can 
make decisions based on that.

n	 Towards Semantics for Provenance Security
Stephen Chong, Harvard University

Summarized by Kiran-Kumar Muniswamy-Reddy  
(kiran@eecs.harvard.edu) with assistance from Peter Macko

Stephen Chong presented formal definitions for provenance 
security that ensure that we do not reveal sensitive data 
and the provenance does not reveal sensitive informa-
tion. The work assumes a simple language-based model, 
where the program has input locations and produces single 
output. The provenance trace T describes the execution of 
a program. The partial provenance of T allows parts of T 
to be elided (hide some values or even entire statements 
from T). At this point, an audience member asked who was 
deciding what provenance to elide. Stephen replied that 
the system assumes the existence of some access control 
scheme that basically tells whether some provenance should 
be elided. Each input location has a security policy for data 
and provenance (high or low security). A user knows the 
values of low-security inputs and is given output and partial 
provenance trace.

Basically, users are allowed to know the existence of objects 
but may not be allowed to know that they were involved 
in generating an output. In this system, T is secure if it 
accurately describes the execution and does not contain 
any high provenance locations, but that does not prevent 
reasoning using correlations. T satisfies provenance security 
if it is accurate and there exists another execution where the 
high provenance point is not even involved.

One member of the audience asked if there was a unique 
minimal reduction. The speaker replied that this was still 
an open question.

n	 Scalable Access Controls for Lineage
Arnon Rosenthal, Len Seligman, Adriane Chapman, and Barbara 
Blaustein, The MITRE Corporation

Adriane Chapman described securing the sensitive infor-
mation that lineage contains. Role-based Access Control 
(RBAC), used in prior lineage security work, does not scale. 
RBAC might lead to situations where a new role has to be 
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created for each user, leading to role explosion. Instead, 
Chapman proposed a model based on Attribute Based Ac-
cess Control (ABAC). In classic ABAC, attributes are used 
to determine access. If the attributes, such as age or taste, 
satisfy some properties, then access is allowed. However, 
ABAC rules are hard to change once specified. Instead, they 
allow stakeholders to specify the access allowed, and when 
the stakeholders have conflicting opinions, they reconcile 
them. In their system, the basic ownership defaults are that 
the process node is owned by the process creator, the data 
node is owned by the data creator, and the edge between 
nodes is the union of stakeholders. They have further ex-
tended ABAC to return a fake node if a user is denied access 
to a node.

Margo Seltzer pointed out that not just the nodes of the 
provenance graph but even the edges connecting the graph 
have provenance. Chapman replied that taking the union of 
the permissions at the edges is sufficient. Next, Erez Zadok 
asked if they had considered the MLS model, to which 
Chapman replied that they had not thought about it. An-
other member of the audience asked if giving away a bogus 
node isn’t giving away some information. Chapman replied 
that they are still working on this aspect. Another member 
asked if the fact that some entities have the ability to create 
nodes does not leak information. Chapman replied that they 
are looking into it.

n	 On Explicit Provenance Management in RDF/S Graphs
P. Pediaditis, G. Flouris, I. Fundulaki, and V. Christophides, 
ICS-FORTH

The context of the work is provenance management in 
RDF/S (a collection of data and schema triples). RDF/S (Re-
source Description Framework Schema language) is used to 
add semantics to RDF triples by imposing inference rules. 
This entails new implicit triples (facts) that are not explicitly 
asserted. Deletion/update of some triples will ensure that 
some of the implicit information will be lost, even though 
some of that information is still valid. To solve this, they 
introduce RDF/S graphs that help these issues by perform-
ing queries and updates. 

RDF/S graphs are a set of RDF named graphs that are asso-
ciated with a URI and have a set of triples whose ownership 
is shared by the named graphs that constitute the graph set. 
The authors further extended RQL to handle provenance 
queries and to support updates to graph sets through an 
extended version of RUL.

An audience member said that if things change, inference 
might change, so why should we care about retaining it? 
The speaker replied that this is because they are using 
coherent values and not operational semantics. Another 
member of the audience asked if they had studied whether 
querying semantics could be simulated with foundational 
or operational semantics. The speaker replied that there has 

been a lot of study in the literature, but there is no clear 
marking between the two.

n	 Application of Named Graphs Towards Custom Provenance 
Views
Tara Gibson, Karen Schuchardt, and Eric Stephan, Pacific North-
west National Laboratory

Tara Gibson described making provenance more acces-
sible to users. Workflow provenance is very detailed and 
presents a machine view of things, which is probably much 
more detailed than a human can understand. In this talk, 
Tara presented a filtering technique that extends SPARQL 
(SPARQL Protocol and RDF Query Language) to help avoid 
information overload. Furthermore, since this is a generic 
extension to the query language, users do not have to con-
stantly rewrite code every time they want to customize their 
views. 

In particular, their approach leverages extensions to RDF 
Named Graphs (NG). They extend SPARQL to include the 
new keyword APPLY, which tells the query interface what 
views should be applied to the query result. Based on the 
views specified, each NG is grouped into a user-defined 
node. The new node is then created based on the properties 
associated with the NG definition. They then restore links 
between the new aggregate nodes in the result. Currently, 
they are working on implementation of the system.

An audience member asked if they know of any properties 
that must hold for their extension to transform the nodes 
and whether their method destroys some of these proper-
ties. The speaker replied that since they still maintain the 
original graph at the lower level, users can get back to it if 
they want to. Another member from the audience asked if 
they allow users to abstract things at runtime. The speaker 
replied that in theory it is possible. 

n	 Authenticity and Provenance in Long Term Digital Pres-
ervation: Modeling and Implementation in Preservation 
Aware Storage
Michael Factor, Ealan Henis, Dalit Naor, Simona Rabinovici-
Cohen, Petra Reshef, and Shahar Ronen, IBM Research Lab in 
Haifa, Israel; Giovanni Michetti and Maria Guercio, University 
of Urbino, Italy 

Michael Factor discussed his team’s work on long-term digi-
tal preservation, which involves processes, strategies, and 
tools to allow future usability of digital assets. Their work 
leverages the Open Archival Information System (OAIS) 
standard for digital preservation. It consists of content infor-
mation (data and representation information) and preserva-
tion descriptive information (reference, provenance, context, 
fixity, and representation information).

Architecting a preservation store that supports authenticity 
and provenance is a challenge. To this end, their work (and 
the talk) presented a novel model for managing authenticity 
in a preservation environment and an implementation that 
integrates the concept of provenance.
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Someone asked if the OAIS standard makes it easy to 
preserve information. The speaker replied that their work 
provides a concrete implementation of the model. Another 
audience member asked if there are scenarios where a bit 
stream can change without semantics also changing. The 
speaker replied that an example of this is when you change 
the format of a document from MS Office 97 to Office 2000. 
The challenge is to ensure that data has not been corrupted 
during the migration from one format to another. A final 
questioner pointed out that many archival experts do not 
consider format conversion an appropriate mechanism and 
prefer the use of virtual machines. The speaker replied that 
some data is application-independent, and that does need to 
be updated as systems are updated.

n	 Steps Toward Managing Lineage Metadata in Grid Clusters
Ashish Gehani and Minyoung Kim, SRI International; Jian 
Zhang, Louisiana State University

Ashish Gehani explained that their work is set in the con-
text of the grid, i.e., distributed systems with non-inter-
active workloads that involve a large number of files. The 
goal is to provide low-latency lineage queries that enable a 
number of applications: for example, dynamic toolchain se-
lection, safety/reliability (check tool dependencies), etc. The 
speaker then presented a set of discarded approaches which 
included use of auxiliary files, a local database, in-band 
encoding, and headers and footers to store provenance, as 
well as making the file server provenance-aware. 

They are currently experimenting with a hybrid approach 
which uses an overloaded namespace for storing prove-
nance. In this approach, the system sends provenance when 
the end of a file is reached. This approach transparently 
makes protocols such as FTP and SCP provenance-aware. 
They also built a scheme where lineage is replicated at the 
nodes that actually consume it, thus ensuring that lineage is 
more readily available at those nodes. Finally, they store all 
the lineage in a HyperTable distributed database, ensuring 
that all clients have access to the lineage.

An audience member asked why they don’t store all the 
provenance in a central location and then just query it. The 
speaker replied that as long as the users do not care about 
synchronous queries, the central-location approach should 
not be a problem.

invited talk

n	 The State of Provenance in 2019
Margo Seltzer, Harvard University

Summarized by Peter Macko (pmacko@fas.harvard.edu)

It is the year 2019, and we won! Provenance is everywhere. 
It is secure, reliable, mandatory, and globally searchable. All 
kinds of storage systems collect provenance, including local 
file systems, network-attached storage, and storage in the 
cloud. All major programming languages are provenance-
aware; consequently, all programs implemented in them col-

lect provenance. Web browsers are provenance-aware, and 
so is the entire Web.

Provenance is secure and verifiable, and users can easily 
restrict access to the provenance of their objects in order to 
prevent release of confidential information. For example, 
if we had this technology back in 2009, the public would 
never learn the value of the Facebook settlement. Prove-
nance collection cannot be turned off, which makes forging 
digital signatures or plagiarism easily detectable! All viruses 
can be tracked immediately back to the Web sites they were 
downloaded from, which helped to solve the virus problem.

How did we get there? Back in 2004, efficient provenance 
collection was not even thought to be possible. Soon, the 
first few provenance-aware (PA) systems appeared: domain-
specific solutions, workflows, and storage systems. The 
next big step was the development of PA programming 
languages, which introduced more detail into provenance 
collection and essentially eliminated false provenance. 
Then the first few PA applications were developed, which 
was soon followed by the emergence of PA protocols. Most 
remarkably, email provenance solved the spam problem. 
And, starting in 2010, there was some fundamental work 
on graph databases and formalism, which greatly improved 
querying provenance graphs.

Fortunately, space and computational overhead of prov-
enance collection simply became irrelevant during the past 
10 years. The cost of storage went down, so that a terabyte 
is essentially free. Processors have hundreds of cores, and 
we still do not know how to exploit all this parallelism. You 
can devote a hundred cores solely to provenance collection 
and no one would ever notice any performance impact.

Formalism was also necessary for the success of prov-
enance. It was discovered that causality is not transitive, 
which forced us to rethink what provenance really is. The 
community then approached provenance from the perspec-
tive of an information flow, and soon provenance semantics 
and calculus were developed. Related security work solved 
issues of the reliability and verifiability of provenance, 
which helped provenance become accepted as the method 
for system auditing. Another important aspect of security is 
protecting provenance itself in order to prevent leakage of 
confidential information. 

The success of provenance would not be possible without 
proper standardization (in order to allow interoperability) 
and policies. Provenance was standardized through a grass-
roots effort, creating a need for provenance before standard-
izing it, and instead of inventing the standard, standard-
izing the practice. The need for provenance was created by 
the financial crisis of 2009: In 2010, the government passed 
an act that required companies to prove additional regula-
tory compliance, and provenance was perfectly suited for 
this purpose. The provenance community jumped on this 
bandwagon and was soon joined by industry.
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This talk spawned a lot of interest and started a long discus-
sion. One member of the audience reminded the speaker of 
a thriving black market of legacy systems without prove-
nance, while another talked about “provenance-free Fin-
land.” When asked about the people who do not care about 
provenance, the speaker explained that they would not be 
affected in any way—provenance collection is transpar-
ent, essentially free, and comes with reasonable security 
defaults.

Other members of the audience were concerned with the 
Big Brother aspect of provenance and the (in)ability to post 
anonymously on the Internet. The speaker agreed that 
provenance has the potential for  misuse, but this risk can 
be made minimal if the security settings are correctly con-
figured. However, there would always be new ways to find 
exploits. Other issues raised by the audience included topics 
such as pre-existing unannotated data, false positives, and 
implicit information flows.

first  afternoon session

Summarized by Peter Macko (pmacko@fas.harvard.edu)

n	 A Framework for Fine-grained Data Integration and 
 Curation, with Provenance, in a Dataspace
David W. Archer, Lois M.L. Delcambre, and David Maier, 
 Portland State University

Some tasks require fine-grained data integration from a 
large variety of sources, which is done manually by experts 
in the particular field. This process usually involves copying 
and pasting data from database tables, emails, documents, 
and Web pages, followed by manual editing and cleaning. 
The talk presented the research in capturing the provenance 
of such process. The collected information can be used 
to answer questions such as: where does the data in this 
column come from? if there are multiple conflicting data 
sources, which of them was preferred by the user?

The research group developed a provenance-aware editor 
of tabular data, which logs all user actions. When data is 
copied and pasted from an external application, the editor 
annotates it with information about where the data came 
from. This information is currently provided by Micro-
soft applications via an Office add-in, or it can be entered 
manually. The editor explicitly supports entity resolution, 
in which the user merges two rows that correspond to the 
same entity (event) and resolves any conflicting values. 
Similarly, the user can resolve two columns that correspond 
to the same attribute.

The system can parse the edit log and produce a provenance 
graph for any given data value. The graph shows where the 
value came from, when it was entered, and, if the user per-
formed any form of resolution, what the conflicting values 
were. The log can also be queried to learn a wide variety of 
information about both individual values and sets of values, 

such as the names of all data sources, the age of the oldest 
source, or the total number of resolutions.

n	 The Case for Browser Provenance
Daniel W. Margo and Margo Seltzer, Harvard University

Web browsers keep track of a large amount of information, 
which causes “a little big data management problem.” The 
amount of data is tractable for a computer but not for users. 
The traditional solution is bookmarks. More advanced solu-
tions include auto-complete, history search, and the smart 
location bar. These features are based on history and usage 
statistics, which is, in fact, provenance. In this talk, Dan-
iel Margo explored how this provenance, which is already 
collected by the browser, can be used to provide additional 
sophisticated features.

One of the possible use cases is determining the lineage 
of downloaded files, because in many cases the URL alone 
is not sufficient. For example, learning that a picture was 
downloaded from ImageShack is usually not good enough. 
Instead, browsing history can be used to determine the 
exact sequence of user actions to obtain the given down-
loaded file. Provenance can also be used to improve history 
search and personalize Web search. For example, the 
browser can use it to learn that when a user searches for 
“rosebud,” she is interested in gardening, but not in Citizen 
Kane. The browser can use this extra information to refine 
Web search results or clarify the search query by adding the 
word “flower” to the query.

This talk was followed by a long discussion—almost as long 
as the talk itself. Some members of the audience were con-
cerned about security: what if someone steals the collected 
provenance? what if someone modifies it? The speaker 
pointed out that browsers already collect all the data (they 
are just not using it), so if this is the concern, we should al-
ready have it now. He also explained that we do not need to 
worry about users faking their provenance, because, in the 
end, it would only hurt them. When asked about how much 
history is necessary for these features, the speaker admit-
ted that he did not study this issue. He mentioned that his 
personal browsing history was sufficient to get reasonable 
results.

Other audience members were concerned about the irrel-
evant parts of the history, such as clicking on an uninter-
esting link or the possibility of including irrelevant steps 
in a lineage of a downloaded file. The speaker explained 
that uninteresting links are being handled gracefully by the 
applied graph algorithms. When tracing back through the 
download lineage, most users can identify parts that they 
recognize before reaching the earlier irrelevant actions.

n	 Provenance as Data Mining: Combining File System 
 Metadata with Content Analysis
Vinay Deolalikar and Hernan Laffitte, Hewlett Packard Labs

A large amount of information is stored in an unstructured 
setting as (text) documents without provenance. This talk 



; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rt s	 89

presented a method of discovering the provenance of a 
document by combining file system metadata with data 
mining techniques. The advantage of this approach is that it 
does not assume any modification of the file system; conse-
quently, it can also operate on legacy documents.

The algorithm is based on the following two observations: 
two documents that are one link apart in a provenance 
chain tend to be similar, and the direction of the informa-
tion flow can be inferred from the file creation and modi-
fication times. The algorithm starts by coarsely clustering 
documents by their feature vectors, such as TF-IDF (term 
frequency-inverse document frequency). It then identifies 
the cluster that contains the document of interest, reclusters 
it finely, and adds other related documents (such as those 
in the same directory) to the working set. Then, starting at 
the document of interest, the algorithm works backward by 
finding files with similar feature vectors until some stopping 
criterion is met.

The experimental results presented by the speaker showed 
that this approach is indeed effective and produces few false 
positives, but many members of the audience were skepti-
cal. The speaker clarified that this algorithm works even if 
you do not keep old versions of your documents, although 
many users do indeed keep some. Other concerns raised by 
the audience included scalability, reproducibility of results, 
and application of this technique to other domains, such as 
images or media.

final session

Summarized by Richard P. Spillane (necro351@gmail.com) 

n	 Story Book: An Efficient Extensible Provenance  Framework
R. Spillane, Stony Brook University; R. Sears, University of Cali-
fornia, Berkeley; C. Yalamanchili, S. Gaikwad, M. Chinni, and 
E. Zadok, Stony Brook University

Richard Spillane argued that provenance-aware systems 
should make it easier to support application-specific prov-
enance tracking and should at the same time utilize a sim-
pler design. Simply logging provenance is a straightforward 
design that leads to a more stable and reliable implementa-
tion, but it consumes too much disk space. Spillane intro-
duced Story Book, a system that utilizes a write-optimized 
database and a FUSE-based file system to log provenance 
records and general compression algorithms to reduce disk 
consumption. Rather than maintain a provenance graph in 
memory while capturing provenance events, these events 
are instead logged and compressed. Later, during queries, 
a provenance graph is constructed from the indexed log 
records. To support application-specific modifications, Story 
Book allows developers to record different provenance for 
different file types upon file system access. Story Book also 
has an API to allow applications to manually insert applica-
tion-specific provenance.

To evaluate the performance of Story Book, Spillane com-
pared Story Book to Waldo, the log indexing tool imple-
mented in PASS (Muniswamy-Reddy et al., 2006 USENIX 
Annual Technical Conference), and also implemented an 
alternative version of Story Book that stores provenance log 
records in a traditional read-optimized database (Berkeley 
DB). Spillane noted that Story Book performs as expected: 
its write-optimized version is 2.8 times faster than its read-
optimized version when processing provenance log records. 
In comparison, Waldo performs 3.5 times faster than Story 
Book’s write-optimized version. Waldo, however, was in-
serting pre-compressed data while Story Book was inserting 
uncompressed data; Waldo is a subset of PASS, which per-
forms its compression before log indexing. Spillane noted 
that read performance for write-optimized Story Book is 3 
times slower than for read-optimized Story Book, but argues 
that this is an unimportant workload for provenance track-
ing, which he asserts is generally a logging workload.

One audience member asked whether the authors had con-
sidered providing multiple alternative provenance graphs 
to users on queries. Spillane replied that they had not but 
that Story Book’s design did not preclude such a feature. 
Another member asked whether Story Book provided prov-
enance graphs on queries. Spillane asserted that a full and 
complete provenance graph is provided on queries.

n	 Making a Cloud Provenance-Aware
Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo 
Seltzer, Harvard University

Kiran-Kumar Muniswamy-Reddy outlined the motivation 
for a provenance-aware storage system (PASS) which used a 
remote database (Web service) as a backing store. He argued 
that storage sizes for large scientific data sets are becom-
ing unwieldy and that using a shared storage back end is 
a practical way to share storage costs among multiple labs. 
If, however, some lab still wants to track the provenance 
of files accessed by all labs, a PASS built on top of the Web 
service is required. Muniswamy-Reddy clarified, however, 
that creating a PASS on top of a Web service is complicated 
by the differing semantics of different Web service provid-
ers. He argued that a practical PASS should satisfy: (1) a 
Read Correctness constraint, which dictates that reads on 
data should be accompanied with up-to-date provenance; 
(2) Causal Ordering, which dictates that the provenance 
of a file-update or process action is always complete as of 
the time that operation occurred; and (3) Efficient Query, 
which specifies that provenance queries should be feasible. 
Muniswamy-Reddy outlined the evolution of a PASS built 
on top of a Web service that eventually satisfies all these 
constraints.

Muniswamy-Reddy described three systems: (1) S3, an ob-
ject store that allows the insertion and removal of key and 
value pairs; (2) SimpleDB, which supports at least insertion 
into and query on a basic table with 256 attributes; and 
(3) SQS, which acts as a basic queuing service for clients 
to pass messages through. He first described a system that 
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uses only S3 to store both data and the provenance of this 
data but is limited in query performance, violating the Ef-
ficient Query constraint. He improves query performance 
by storing provenance data in SimpleDB and data in S3; 
however, this violates the Read Correctness constraint. Mu-
niswamy-Reddy’s final design utilizes the work of Branthner 
et al. and uses SQS as write-ahead logging order to ensure 
Read Correctness. The final design incurs an estimated 
32.2% overhead on top of simply copying the data (without 
storing provenance) to a remote Web service. Muniswamy-
Reddy estimates that roughly 71,000 operations on the 
remote Web service would be required to recover the prov-
enance of a file in his benchmark data set, which he asserts 
is reasonable.

One audience member asked what kinds of modifications 
Muniswamy-Reddy would make to one of the Web services 
he utilized in order to better support provenance capture. 
He replied that he would modify the service to capture and 
store the provenance internally, without involving the client.

n	 Transparently Gathering Provenance with Provenance 
Aware Condor
Christine F. Reilly and Jeffrey F. Naughton, University of Wis-
consin, Madison

Christine F. Reilly described the modifications she made to 
Condor, a distributed job executing environment, to track 
the provenance of files modified by jobs. Condor by itself 
does not do this, but Reilly utilizes two new extensions to 
extend Condor to track provenance: Quill, a tool to scan 
and insert Condor logs into an SQL database, and FileTrace, 

a tool to track interactions between jobs and a shared file 
system. This extended system is called Provenance-Aware 
Condor, or PAC. The primary advantage of PAC is that it 
requires no modification to the source code of any job that 
could run in Condor.

To evaluate PAC, Reilly extrapolated the size of a prove-
nance table for jobs that ran for a year from shorter-running 
jobs. She estimated that the largest provenance table would 
be 1.15TiB (tebibyte) after a year of running, and the second 
largest table would be 0.9TiB. Reilly evaluated four syn-
thetic applications in PAC and in an unmodified Condor 
system (no Quill or FileTrace extensions). The paper shows 
the overheads for these synthetic workloads as negligible. 
Finally, Reilly looked at the application of PAC to tracking 
the provenance of a Web site called DBLife, which is an 
online community designed to manage information about 
the database research community. Limitations of PAC were 
illustrated in this section of the talk—namely, the lack 
of application-specific knowledge needed for answering 
DBLife-specific provenance queries.

One questioner asked about the overhead of the FileTrace 
tool itself on top of an untracked process. Reilly had not 
yet investigated this. Some audience members commented 
that despite the small amount of file data modified by a job, 
the estimated size of the provenance table after a year was 
indeed large, contrary to Reilly’s claim. When asked about 
how PAC tracks processes that are being waited upon by 
parents or are already being tracked, Reilly responded that 
such applications weren’t typically run on a Condor system.


