
84	 ; LO G I N : 	VO L . 	3 4, 	N O. 	3

to track these statistics; in their measurements, CLIC
needed less than 1% of the cache space for this tracking.

Kenneth compared the TPC-C and TPC-H hit ratios
achieved by CLIC, an ad hoc hint policy (TQ), two poli-
cies that do not use hints (LRU and ARC), and the optimal
policy (knowledge of the future) for varying cache sizes.
CLIC and TQ usually dominated LRU and ARC, CLIC often
dominated TQ, and OPT typically dominated all.

One audience member asked how CLIC performs with
a large number of clients and with a varying dynamic
workload. Kenneth answered that they have not tested
with a large number of clients or time-varying workloads.
However, at present, CLIC occasionally throws out all
logs, using exponential decay. Another person asked how
CLIC responds to clients that use hints to try to hurt other
clients. Kenneth responded that CLIC helps the clients that
benefit the most from the cache. Finally, someone asked
whether the authors had thought of CLIC giving feedback
to the client about which hints are the most useful. Kenneth
said they had not and that this might be interesting.

n	 Minuet: Rethinking Concurrency Control in Storage Area
Networks
Andrey Ermolinskiy and Daekyeong Moon, University of Califor-
nia, Berkeley; Byung-Gon Chun, Intel Research, Berkeley; Scott
Shenker, University of California, Berkeley, and ICSI

Andrey Ermolinskiy discussed two limitations of using
distributed locking to coordinate reads and writes among
clients of a Storage Area Network (SAN), and he presented a
new coordination approach that addresses these two limita-
tions through optimistic, instead of strict, concurrency by
adding logic to storage system nodes.

Using distributed locking to coordinate access to shared
state has two issues: (1) it does not guarantee correct seri-
alization of requests, and (2) it requires a majority of the
locking server nodes to be available. Minuet guarantees the
correct serialization of disk requests and removes the need
to contact any locking server. Instead, the storage nodes
themselves, via a guard, mediate requests and can reject
incorrectly ordered requests. In Minuet, requests are aug-
mented with session annotations that are used to order the
requests. Distributed transactions can be constructed atop
Minuet using logging and recovery.

Remaining challenges to Minuet-like systems include the
adoption of guard logic into storage arrays, storage and
bandwidth overheads of session metadata, and the program-
ming model change of request rejection and forced lock
revocations.

One audience member asked why an equivalent system
cannot be built on top of SCSI-3 reservations. Andrey
responded that he had not considered this. Another person
asked about the efficacy of caching version numbers for
concurrency control. Andrey answered that their implemen-
tation does scale; version numbers are stored in NVRAM on

storage devices and perhaps could be stored on disk with
some also in RAM.

First Workshop on the Theory and Practice of
Provenance (TaPP ’09)

February 23, 2009
San Francisco, CA

invited talk

n	 Causality, Responsibility, and Blame: A Structural-Model
Approach
Joe Halpern, Cornell University

Summarized by Kiran-Kumar Muniswamy-Reddy
(kiran@eecs.harvard.edu) with assistance from Peter Macko

Halpern’s talk introduced the theoretical aspects of causal-
ity, responsibility, and blame and their implications for the
provenance community.

The world can be modeled using structural equations that
model the outcome of events using one or more random
variables. The values of exogenous variables come from
outside the model, while endogenous random variables de-
pend on other variables in the system. There are, however,
two choices of uncertainty over which reasonable people
can disagree: first, we do not know whether our model is
correct or sufficiently detailed, and, second, we may not be
certain about the values of some variables. Consequently,
we should introduce probabilities into the model that reflect
our confidence in it. A model with no probabilities is com-
pletely deterministic.

Causality can be informally defined as follows. A set of
events A caused event B, assuming that both A and B actu-
ally happened. Changing the outcome of A and possibly
also the outcomes of some other events X would cause B not
to happen. But if A happened, so would B, regardless of the
outcomes of X. For example, this definition can gracefully
handle the following scenario: it is sufficient to drop one
match in order to burn a forest. If two people drop matches
and the forest burns down, the definition correctly identi-
fies both of them as the causes.

This definition of causality has one very important implica-
tion: it is not transitive. This challenges the interpretation
of provenance as a form of causality, since provenance is
believed to be transitive. The intransitivity of causality can
be illustrated using the following example: a patient has
an illness that can be cured by one dose of medicine, but
two doses would kill him. On Monday, doctor A gives the
patient a dose of medicine. On Tuesday, doctor B does not
give him the medicine, because he already received it the
day before. On Wednesday, the patient is alive and well.
Clearly, doctor A caused doctor B not to administer the
medicine, and by doing so, B caused the patient to be alive.
If causality were transitive, A would also be a cause that the
patient is alive, but this is not true: if doctor A did not give

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rt s	 85

the medicine, the patient would still be alive on Wednesday,
regardless of the subsequent action of doctor B.

While causality is binary, the degrees of responsibility and
blame can be expressed as numbers between 0 and 1. Your
responsibility is 0 if you are not a cause, or 1/(k+1), if k–1
is the minimum number of variables that must be changed
in order to change the outcome of the event. For example,
in a 6–5 voting scenario the responsibility of the six voters
is 1, while in an 11–0 scenario the individual degrees of
responsibility would be smaller. The degree of blame is the
expected degree of responsibility given all possible situ-
ations considered by an agent. For example, consider the
following situation: ten marksmen are ordered to shoot a
prisoner. Nine of them receive fake bullets and only one
gets a live bullet, but no one knows which one. If none of
them misses the target, only the marksman with the live
bullet is responsible with degree 1, while each of them has
the same degree of blame 1/10.

Moving on to applications: causality can be used for model
checking. If there is an error in the specification of a pro-
gram, causality can be used to perform coverage estimation.
In particular, one can ask the question, “Which parts of the
spec cause the program to be satisfied?” If 90% is irrelevant,
then the spec is flawed. Causal models can also be used
when one is uncertain about provenance.

One member of the audience asked if the model the speaker
presented considered the Trio definition of provenance. The
speaker was unfamiliar with Trio, but it seems as though
the two models address the same issues. For example, Trio
tries to answer questions such as “Why does a tuple appear
in a result?” which is basically causality.

morning sessions

Summarized by Kiran-Kumar Muniswamy-Reddy
(kiran@eecs.harvard.edu)

n	 A Formal Model of Provenance in Distributed Systems
Issam Souilah, University of Southampton, UK; Adrian Fran-
calanza, University of Malta, Malta; Vladimiro Sassone, Univer-
sity of Southampton, UK

In this talk, the speaker presented a provenance-based
calculus to study trust in distributed systems, in particular,
a formalism that is an extension of Pi-calculus. The basic
idea is to annotate all data with their provenance. Users
can use this provenance to make decisions; for example,
a product made in China may be more desirable than a
product made in Zimbabwe. They considered a few more
approaches before deciding on this approach: static analysis
does not scale. A dynamic analysis cannot do a full-blown
verification or use proof-carrying code as decisions. Deci-
sion criteria need to be computationally lightweight. With
their method, provenance tracking is automated and is
orthogonal to programming. Their approach also ensures

provenance annotation standardization and provides circu-
lar reasoning with respect to trust. One more contribution
of the work is that they provide a definition for provenance
correctness and prove the correctness for the provenance-
tracking semantics that they have proposed.

One member of the audience asked what happens if the
same value is sent to two different processes in two differ-
ent channels. The speaker said that the messages sent on
individual channels are considered to be different copies,
so their approach holds. Next, James Cheney asked what
happens if one of the entities lies and sends the wrong
provenance. The speaker replied that they are assuming
that the system is running in a trusted environment, i.e.,
the principals tell the truth about themselves so others can
make decisions based on that.

n	 Towards Semantics for Provenance Security
Stephen Chong, Harvard University

Summarized by Kiran-Kumar Muniswamy-Reddy
(kiran@eecs.harvard.edu) with assistance from Peter Macko

Stephen Chong presented formal definitions for provenance
security that ensure that we do not reveal sensitive data
and the provenance does not reveal sensitive informa-
tion. The work assumes a simple language-based model,
where the program has input locations and produces single
output. The provenance trace T describes the execution of
a program. The partial provenance of T allows parts of T
to be elided (hide some values or even entire statements
from T). At this point, an audience member asked who was
deciding what provenance to elide. Stephen replied that
the system assumes the existence of some access control
scheme that basically tells whether some provenance should
be elided. Each input location has a security policy for data
and provenance (high or low security). A user knows the
values of low-security inputs and is given output and partial
provenance trace.

Basically, users are allowed to know the existence of objects
but may not be allowed to know that they were involved
in generating an output. In this system, T is secure if it
accurately describes the execution and does not contain
any high provenance locations, but that does not prevent
reasoning using correlations. T satisfies provenance security
if it is accurate and there exists another execution where the
high provenance point is not even involved.

One member of the audience asked if there was a unique
minimal reduction. The speaker replied that this was still
an open question.

n	 Scalable Access Controls for Lineage
Arnon Rosenthal, Len Seligman, Adriane Chapman, and Barbara
Blaustein, The MITRE Corporation

Adriane Chapman described securing the sensitive infor-
mation that lineage contains. Role-based Access Control
(RBAC), used in prior lineage security work, does not scale.
RBAC might lead to situations where a new role has to be

86	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	3

created for each user, leading to role explosion. Instead,
Chapman proposed a model based on Attribute Based Ac-
cess Control (ABAC). In classic ABAC, attributes are used
to determine access. If the attributes, such as age or taste,
satisfy some properties, then access is allowed. However,
ABAC rules are hard to change once specified. Instead, they
allow stakeholders to specify the access allowed, and when
the stakeholders have conflicting opinions, they reconcile
them. In their system, the basic ownership defaults are that
the process node is owned by the process creator, the data
node is owned by the data creator, and the edge between
nodes is the union of stakeholders. They have further ex-
tended ABAC to return a fake node if a user is denied access
to a node.

Margo Seltzer pointed out that not just the nodes of the
provenance graph but even the edges connecting the graph
have provenance. Chapman replied that taking the union of
the permissions at the edges is sufficient. Next, Erez Zadok
asked if they had considered the MLS model, to which
Chapman replied that they had not thought about it. An-
other member of the audience asked if giving away a bogus
node isn’t giving away some information. Chapman replied
that they are still working on this aspect. Another member
asked if the fact that some entities have the ability to create
nodes does not leak information. Chapman replied that they
are looking into it.

n	 On Explicit Provenance Management in RDF/S Graphs
P. Pediaditis, G. Flouris, I. Fundulaki, and V. Christophides,
ICS-FORTH

The context of the work is provenance management in
RDF/S (a collection of data and schema triples). RDF/S (Re-
source Description Framework Schema language) is used to
add semantics to RDF triples by imposing inference rules.
This entails new implicit triples (facts) that are not explicitly
asserted. Deletion/update of some triples will ensure that
some of the implicit information will be lost, even though
some of that information is still valid. To solve this, they
introduce RDF/S graphs that help these issues by perform-
ing queries and updates.

RDF/S graphs are a set of RDF named graphs that are asso-
ciated with a URI and have a set of triples whose ownership
is shared by the named graphs that constitute the graph set.
The authors further extended RQL to handle provenance
queries and to support updates to graph sets through an
extended version of RUL.

An audience member said that if things change, inference
might change, so why should we care about retaining it?
The speaker replied that this is because they are using
coherent values and not operational semantics. Another
member of the audience asked if they had studied whether
querying semantics could be simulated with foundational
or operational semantics. The speaker replied that there has

been a lot of study in the literature, but there is no clear
marking between the two.

n	 Application of Named Graphs Towards Custom Provenance
Views
Tara Gibson, Karen Schuchardt, and Eric Stephan, Pacific North-
west National Laboratory

Tara Gibson described making provenance more acces-
sible to users. Workflow provenance is very detailed and
presents a machine view of things, which is probably much
more detailed than a human can understand. In this talk,
Tara presented a filtering technique that extends SPARQL
(SPARQL Protocol and RDF Query Language) to help avoid
information overload. Furthermore, since this is a generic
extension to the query language, users do not have to con-
stantly rewrite code every time they want to customize their
views.

In particular, their approach leverages extensions to RDF
Named Graphs (NG). They extend SPARQL to include the
new keyword APPLY, which tells the query interface what
views should be applied to the query result. Based on the
views specified, each NG is grouped into a user-defined
node. The new node is then created based on the properties
associated with the NG definition. They then restore links
between the new aggregate nodes in the result. Currently,
they are working on implementation of the system.

An audience member asked if they know of any properties
that must hold for their extension to transform the nodes
and whether their method destroys some of these proper-
ties. The speaker replied that since they still maintain the
original graph at the lower level, users can get back to it if
they want to. Another member from the audience asked if
they allow users to abstract things at runtime. The speaker
replied that in theory it is possible.

n	 Authenticity and Provenance in Long Term Digital Pres-
ervation: Modeling and Implementation in Preservation
Aware Storage
Michael Factor, Ealan Henis, Dalit Naor, Simona Rabinovici-
Cohen, Petra Reshef, and Shahar Ronen, IBM Research Lab in
Haifa, Israel; Giovanni Michetti and Maria Guercio, University
of Urbino, Italy

Michael Factor discussed his team’s work on long-term digi-
tal preservation, which involves processes, strategies, and
tools to allow future usability of digital assets. Their work
leverages the Open Archival Information System (OAIS)
standard for digital preservation. It consists of content infor-
mation (data and representation information) and preserva-
tion descriptive information (reference, provenance, context,
fixity, and representation information).

Architecting a preservation store that supports authenticity
and provenance is a challenge. To this end, their work (and
the talk) presented a novel model for managing authenticity
in a preservation environment and an implementation that
integrates the concept of provenance.

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rt s	 87

Someone asked if the OAIS standard makes it easy to
preserve information. The speaker replied that their work
provides a concrete implementation of the model. Another
audience member asked if there are scenarios where a bit
stream can change without semantics also changing. The
speaker replied that an example of this is when you change
the format of a document from MS Office 97 to Office 2000.
The challenge is to ensure that data has not been corrupted
during the migration from one format to another. A final
questioner pointed out that many archival experts do not
consider format conversion an appropriate mechanism and
prefer the use of virtual machines. The speaker replied that
some data is application-independent, and that does need to
be updated as systems are updated.

n	 Steps Toward Managing Lineage Metadata in Grid Clusters
Ashish Gehani and Minyoung Kim, SRI International; Jian
Zhang, Louisiana State University

Ashish Gehani explained that their work is set in the con-
text of the grid, i.e., distributed systems with non-inter-
active workloads that involve a large number of files. The
goal is to provide low-latency lineage queries that enable a
number of applications: for example, dynamic toolchain se-
lection, safety/reliability (check tool dependencies), etc. The
speaker then presented a set of discarded approaches which
included use of auxiliary files, a local database, in-band
encoding, and headers and footers to store provenance, as
well as making the file server provenance-aware.

They are currently experimenting with a hybrid approach
which uses an overloaded namespace for storing prove-
nance. In this approach, the system sends provenance when
the end of a file is reached. This approach transparently
makes protocols such as FTP and SCP provenance-aware.
They also built a scheme where lineage is replicated at the
nodes that actually consume it, thus ensuring that lineage is
more readily available at those nodes. Finally, they store all
the lineage in a HyperTable distributed database, ensuring
that all clients have access to the lineage.

An audience member asked why they don’t store all the
provenance in a central location and then just query it. The
speaker replied that as long as the users do not care about
synchronous queries, the central-location approach should
not be a problem.

invited talk

n	 The State of Provenance in 2019
Margo Seltzer, Harvard University

Summarized by Peter Macko (pmacko@fas.harvard.edu)

It is the year 2019, and we won! Provenance is everywhere.
It is secure, reliable, mandatory, and globally searchable. All
kinds of storage systems collect provenance, including local
file systems, network-attached storage, and storage in the
cloud. All major programming languages are provenance-
aware; consequently, all programs implemented in them col-

lect provenance. Web browsers are provenance-aware, and
so is the entire Web.

Provenance is secure and verifiable, and users can easily
restrict access to the provenance of their objects in order to
prevent release of confidential information. For example,
if we had this technology back in 2009, the public would
never learn the value of the Facebook settlement. Prove-
nance collection cannot be turned off, which makes forging
digital signatures or plagiarism easily detectable! All viruses
can be tracked immediately back to the Web sites they were
downloaded from, which helped to solve the virus problem.

How did we get there? Back in 2004, efficient provenance
collection was not even thought to be possible. Soon, the
first few provenance-aware (PA) systems appeared: domain-
specific solutions, workflows, and storage systems. The
next big step was the development of PA programming
languages, which introduced more detail into provenance
collection and essentially eliminated false provenance.
Then the first few PA applications were developed, which
was soon followed by the emergence of PA protocols. Most
remarkably, email provenance solved the spam problem.
And, starting in 2010, there was some fundamental work
on graph databases and formalism, which greatly improved
querying provenance graphs.

Fortunately, space and computational overhead of prov-
enance collection simply became irrelevant during the past
10 years. The cost of storage went down, so that a terabyte
is essentially free. Processors have hundreds of cores, and
we still do not know how to exploit all this parallelism. You
can devote a hundred cores solely to provenance collection
and no one would ever notice any performance impact.

Formalism was also necessary for the success of prov-
enance. It was discovered that causality is not transitive,
which forced us to rethink what provenance really is. The
community then approached provenance from the perspec-
tive of an information flow, and soon provenance semantics
and calculus were developed. Related security work solved
issues of the reliability and verifiability of provenance,
which helped provenance become accepted as the method
for system auditing. Another important aspect of security is
protecting provenance itself in order to prevent leakage of
confidential information.

The success of provenance would not be possible without
proper standardization (in order to allow interoperability)
and policies. Provenance was standardized through a grass-
roots effort, creating a need for provenance before standard-
izing it, and instead of inventing the standard, standard-
izing the practice. The need for provenance was created by
the financial crisis of 2009: In 2010, the government passed
an act that required companies to prove additional regula-
tory compliance, and provenance was perfectly suited for
this purpose. The provenance community jumped on this
bandwagon and was soon joined by industry.

88	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	3

This talk spawned a lot of interest and started a long discus-
sion. One member of the audience reminded the speaker of
a thriving black market of legacy systems without prove-
nance, while another talked about “provenance-free Fin-
land.” When asked about the people who do not care about
provenance, the speaker explained that they would not be
affected in any way—provenance collection is transpar-
ent, essentially free, and comes with reasonable security
defaults.

Other members of the audience were concerned with the
Big Brother aspect of provenance and the (in)ability to post
anonymously on the Internet. The speaker agreed that
provenance has the potential for misuse, but this risk can
be made minimal if the security settings are correctly con-
figured. However, there would always be new ways to find
exploits. Other issues raised by the audience included topics
such as pre-existing unannotated data, false positives, and
implicit information flows.

first afternoon session

Summarized by Peter Macko (pmacko@fas.harvard.edu)

n	 A Framework for Fine-grained Data Integration and
 Curation, with Provenance, in a Dataspace
David W. Archer, Lois M.L. Delcambre, and David Maier,
 Portland State University

Some tasks require fine-grained data integration from a
large variety of sources, which is done manually by experts
in the particular field. This process usually involves copying
and pasting data from database tables, emails, documents,
and Web pages, followed by manual editing and cleaning.
The talk presented the research in capturing the provenance
of such process. The collected information can be used
to answer questions such as: where does the data in this
column come from? if there are multiple conflicting data
sources, which of them was preferred by the user?

The research group developed a provenance-aware editor
of tabular data, which logs all user actions. When data is
copied and pasted from an external application, the editor
annotates it with information about where the data came
from. This information is currently provided by Micro-
soft applications via an Office add-in, or it can be entered
manually. The editor explicitly supports entity resolution,
in which the user merges two rows that correspond to the
same entity (event) and resolves any conflicting values.
Similarly, the user can resolve two columns that correspond
to the same attribute.

The system can parse the edit log and produce a provenance
graph for any given data value. The graph shows where the
value came from, when it was entered, and, if the user per-
formed any form of resolution, what the conflicting values
were. The log can also be queried to learn a wide variety of
information about both individual values and sets of values,

such as the names of all data sources, the age of the oldest
source, or the total number of resolutions.

n	 The Case for Browser Provenance
Daniel W. Margo and Margo Seltzer, Harvard University

Web browsers keep track of a large amount of information,
which causes “a little big data management problem.” The
amount of data is tractable for a computer but not for users.
The traditional solution is bookmarks. More advanced solu-
tions include auto-complete, history search, and the smart
location bar. These features are based on history and usage
statistics, which is, in fact, provenance. In this talk, Dan-
iel Margo explored how this provenance, which is already
collected by the browser, can be used to provide additional
sophisticated features.

One of the possible use cases is determining the lineage
of downloaded files, because in many cases the URL alone
is not sufficient. For example, learning that a picture was
downloaded from ImageShack is usually not good enough.
Instead, browsing history can be used to determine the
exact sequence of user actions to obtain the given down-
loaded file. Provenance can also be used to improve history
search and personalize Web search. For example, the
browser can use it to learn that when a user searches for
“rosebud,” she is interested in gardening, but not in Citizen
Kane. The browser can use this extra information to refine
Web search results or clarify the search query by adding the
word “flower” to the query.

This talk was followed by a long discussion—almost as long
as the talk itself. Some members of the audience were con-
cerned about security: what if someone steals the collected
provenance? what if someone modifies it? The speaker
pointed out that browsers already collect all the data (they
are just not using it), so if this is the concern, we should al-
ready have it now. He also explained that we do not need to
worry about users faking their provenance, because, in the
end, it would only hurt them. When asked about how much
history is necessary for these features, the speaker admit-
ted that he did not study this issue. He mentioned that his
personal browsing history was sufficient to get reasonable
results.

Other audience members were concerned about the irrel-
evant parts of the history, such as clicking on an uninter-
esting link or the possibility of including irrelevant steps
in a lineage of a downloaded file. The speaker explained
that uninteresting links are being handled gracefully by the
applied graph algorithms. When tracing back through the
download lineage, most users can identify parts that they
recognize before reaching the earlier irrelevant actions.

n	 Provenance as Data Mining: Combining File System
 Metadata with Content Analysis
Vinay Deolalikar and Hernan Laffitte, Hewlett Packard Labs

A large amount of information is stored in an unstructured
setting as (text) documents without provenance. This talk

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rt s	 89

presented a method of discovering the provenance of a
document by combining file system metadata with data
mining techniques. The advantage of this approach is that it
does not assume any modification of the file system; conse-
quently, it can also operate on legacy documents.

The algorithm is based on the following two observations:
two documents that are one link apart in a provenance
chain tend to be similar, and the direction of the informa-
tion flow can be inferred from the file creation and modi-
fication times. The algorithm starts by coarsely clustering
documents by their feature vectors, such as TF-IDF (term
frequency-inverse document frequency). It then identifies
the cluster that contains the document of interest, reclusters
it finely, and adds other related documents (such as those
in the same directory) to the working set. Then, starting at
the document of interest, the algorithm works backward by
finding files with similar feature vectors until some stopping
criterion is met.

The experimental results presented by the speaker showed
that this approach is indeed effective and produces few false
positives, but many members of the audience were skepti-
cal. The speaker clarified that this algorithm works even if
you do not keep old versions of your documents, although
many users do indeed keep some. Other concerns raised by
the audience included scalability, reproducibility of results,
and application of this technique to other domains, such as
images or media.

final session

Summarized by Richard P. Spillane (necro351@gmail.com)

n	 Story Book: An Efficient Extensible Provenance Framework
R. Spillane, Stony Brook University; R. Sears, University of Cali-
fornia, Berkeley; C. Yalamanchili, S. Gaikwad, M. Chinni, and
E. Zadok, Stony Brook University

Richard Spillane argued that provenance-aware systems
should make it easier to support application-specific prov-
enance tracking and should at the same time utilize a sim-
pler design. Simply logging provenance is a straightforward
design that leads to a more stable and reliable implementa-
tion, but it consumes too much disk space. Spillane intro-
duced Story Book, a system that utilizes a write-optimized
database and a FUSE-based file system to log provenance
records and general compression algorithms to reduce disk
consumption. Rather than maintain a provenance graph in
memory while capturing provenance events, these events
are instead logged and compressed. Later, during queries,
a provenance graph is constructed from the indexed log
records. To support application-specific modifications, Story
Book allows developers to record different provenance for
different file types upon file system access. Story Book also
has an API to allow applications to manually insert applica-
tion-specific provenance.

To evaluate the performance of Story Book, Spillane com-
pared Story Book to Waldo, the log indexing tool imple-
mented in PASS (Muniswamy-Reddy et al., 2006 USENIX
Annual Technical Conference), and also implemented an
alternative version of Story Book that stores provenance log
records in a traditional read-optimized database (Berkeley
DB). Spillane noted that Story Book performs as expected:
its write-optimized version is 2.8 times faster than its read-
optimized version when processing provenance log records.
In comparison, Waldo performs 3.5 times faster than Story
Book’s write-optimized version. Waldo, however, was in-
serting pre-compressed data while Story Book was inserting
uncompressed data; Waldo is a subset of PASS, which per-
forms its compression before log indexing. Spillane noted
that read performance for write-optimized Story Book is 3
times slower than for read-optimized Story Book, but argues
that this is an unimportant workload for provenance track-
ing, which he asserts is generally a logging workload.

One audience member asked whether the authors had con-
sidered providing multiple alternative provenance graphs
to users on queries. Spillane replied that they had not but
that Story Book’s design did not preclude such a feature.
Another member asked whether Story Book provided prov-
enance graphs on queries. Spillane asserted that a full and
complete provenance graph is provided on queries.

n	 Making a Cloud Provenance-Aware
Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo
Seltzer, Harvard University

Kiran-Kumar Muniswamy-Reddy outlined the motivation
for a provenance-aware storage system (PASS) which used a
remote database (Web service) as a backing store. He argued
that storage sizes for large scientific data sets are becom-
ing unwieldy and that using a shared storage back end is
a practical way to share storage costs among multiple labs.
If, however, some lab still wants to track the provenance
of files accessed by all labs, a PASS built on top of the Web
service is required. Muniswamy-Reddy clarified, however,
that creating a PASS on top of a Web service is complicated
by the differing semantics of different Web service provid-
ers. He argued that a practical PASS should satisfy: (1) a
Read Correctness constraint, which dictates that reads on
data should be accompanied with up-to-date provenance;
(2) Causal Ordering, which dictates that the provenance
of a file-update or process action is always complete as of
the time that operation occurred; and (3) Efficient Query,
which specifies that provenance queries should be feasible.
Muniswamy-Reddy outlined the evolution of a PASS built
on top of a Web service that eventually satisfies all these
constraints.

Muniswamy-Reddy described three systems: (1) S3, an ob-
ject store that allows the insertion and removal of key and
value pairs; (2) SimpleDB, which supports at least insertion
into and query on a basic table with 256 attributes; and
(3) SQS, which acts as a basic queuing service for clients
to pass messages through. He first described a system that

90	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	3

uses only S3 to store both data and the provenance of this
data but is limited in query performance, violating the Ef-
ficient Query constraint. He improves query performance
by storing provenance data in SimpleDB and data in S3;
however, this violates the Read Correctness constraint. Mu-
niswamy-Reddy’s final design utilizes the work of Branthner
et al. and uses SQS as write-ahead logging order to ensure
Read Correctness. The final design incurs an estimated
32.2% overhead on top of simply copying the data (without
storing provenance) to a remote Web service. Muniswamy-
Reddy estimates that roughly 71,000 operations on the
remote Web service would be required to recover the prov-
enance of a file in his benchmark data set, which he asserts
is reasonable.

One audience member asked what kinds of modifications
Muniswamy-Reddy would make to one of the Web services
he utilized in order to better support provenance capture.
He replied that he would modify the service to capture and
store the provenance internally, without involving the client.

n	 Transparently Gathering Provenance with Provenance
Aware Condor
Christine F. Reilly and Jeffrey F. Naughton, University of Wis-
consin, Madison

Christine F. Reilly described the modifications she made to
Condor, a distributed job executing environment, to track
the provenance of files modified by jobs. Condor by itself
does not do this, but Reilly utilizes two new extensions to
extend Condor to track provenance: Quill, a tool to scan
and insert Condor logs into an SQL database, and FileTrace,

a tool to track interactions between jobs and a shared file
system. This extended system is called Provenance-Aware
Condor, or PAC. The primary advantage of PAC is that it
requires no modification to the source code of any job that
could run in Condor.

To evaluate PAC, Reilly extrapolated the size of a prove-
nance table for jobs that ran for a year from shorter-running
jobs. She estimated that the largest provenance table would
be 1.15TiB (tebibyte) after a year of running, and the second
largest table would be 0.9TiB. Reilly evaluated four syn-
thetic applications in PAC and in an unmodified Condor
system (no Quill or FileTrace extensions). The paper shows
the overheads for these synthetic workloads as negligible.
Finally, Reilly looked at the application of PAC to tracking
the provenance of a Web site called DBLife, which is an
online community designed to manage information about
the database research community. Limitations of PAC were
illustrated in this section of the talk—namely, the lack
of application-specific knowledge needed for answering
DBLife-specific provenance queries.

One questioner asked about the overhead of the FileTrace
tool itself on top of an untracked process. Reilly had not
yet investigated this. Some audience members commented
that despite the small amount of file data modified by a job,
the estimated size of the provenance table after a year was
indeed large, contrary to Reilly’s claim. When asked about
how PAC tracks processes that are being waited upon by
parents or are already being tracked, Reilly responded that
such applications weren’t typically run on a Condor system.

