
n i c k s t o u G h t o n

update on
 standards:
undue influence?
USENIX Standards Liaison

nick@usenix.org

r e g u l a r r e a d e r s o f t h i s c o l u m n
probably know by now that I am a partici-
pant in a number of committees that run
under the auspices of the ISO/IEC Joint
Technical Committee on Information Tech-
nology, in the programming languages and
their run-time environments area, known
by insiders by the catchy title “ISO/IEC JTC 1/
SC 22.” I sit in the Working Groups for POSIX,
the Linux Standard Base, the C program-
ming language, and the C++ programming
language, as well as the special working
group on language vulnerabilities and the
top-level committee for administering all of
these sub working groups.

Several years ago, that top-level committee gave me
the unenviable task of handling all of the coordina-
tion and liaison required between POSIX and the
programming languages that reference it. For ex-
ample, there’s a big overlap between parts of the C
standard and POSIX. My job is to make sure that
both sides know what the other is thinking when
considering a change to something in that shared
space.

Now, with C it’s easy. We all know where the over-
lap is and how to handle the questions. But C++
is a different kettle of fish. POSIX isn’t written in
terms of C++. Although POSIX and C both specify
the fopen() call, the equivalent isn’t so obvious
in C++.

But C++ is, as I’ve reported before, going through
a revision. There are lots of new features going into
the language. And for some of those features it is
easier to draw parallels with POSIX (for example,
multithreading). POSIX has long had a powerful
set of thread APIs. C++ is adding some. Can we at
least align the two so that C++ threads can be built
on top of POSIX threads?

The POSIX working group saw some serious prob-
lems with implementing the proposals for C++
multithreading. The “Nick Stoughton” robot was
wound up and pointed at the C++ committee with
a message to make sure that its members realized
there was a problem.

I did what I was asked to do.

The C++ working group was convinced that there
was a problem, and its members collectively voted
to change their proposal to remove the conten-
tious thread cancellation wording. I thought about

; LO G I N : J U N E 20 0 8 U pdATE O N sTA N dA Rds : U N dU E I N FLU E N CE ? ��

�� ; LO G I N : vO L . 33, N O. 3

standing on an aircraft carrier deck with a “Mission Accomplished” banner
flying behind me.

At the same time, the POSIX working group decided that it would be a good
idea to study creating a C++ language binding. Just as there is an Ada and a
Fortran binding to POSIX, why relegate C++ to using the C interfaces, for-
saking the strong type checking and object orientation and all that good
stuff? A study group was formed, and a substantial number of people from
the C++ working group (C++, not POSIX!) joined up with enthusiasm. This
was their language, and their platform of choice. What could be better than
such a marriage! The group did the necessary work to prove that there was a
viable body to produce a standard sometime in the future (probably around
2012). They did the paperwork with the IEEE (one of the three participating
bodies in the POSIX world) and formed the 1003.27 working group.

The 1003.27 working group then read through the table of contents of the
current working draft of the C++ language revision document, looking for
places where a POSIX language binding might touch on something that is
already in the C++ draft. If it is already in the draft, and the ink isn’t dry on
the draft, can we influence the draft to make sure it

n	 provides the hooks needed for whatever POSIX extensions might be
needed in the future?

n	 doesn’t contain anything truly problematic with respect to POSIX?

Remember, the vast majority of these people in 1003.27 (the POSIX-C++
binding) are also members of the C++ working group. The draft of C++ they
were reviewing was one that they had helped to write. I was a member of
that group, and we came up with a relatively short list of issues.

Naturally, the messenger picked to walk into the C++ group with this list
was yours truly.

There are only a few people in leadership roles in C++, and in general they
are all deeply committed to doing a good job for the language. However,
they do have their own agendas, and by and large, POSIX isn’t a big part of
that agenda. So being requested by a sizable minority of their working group
to change or, worse, remove some of the wonderful new (untested and unim-
plemented) features of their draft certainly took them by surprise. And they
have worked hard at one by one shooting down all of the requests made by
1003.27. They haven’t succeeded yet, but when you consider that the sim-
plest request (“Please could you reserve the namespaces ::posix and ::std::
posix for our use”) generated about 90 emails in a week, you can see how
hard they are fighting.

Building a standard is all about achieving consensus. But what is consensus?
When do we know we have reached it? When everyone is exhausted talk-
ing about it, does the last voice win? Is it unanimity? In general, in all of the
groups I have worked in, when we realize we have a contentious issue, the
best thing to do is to omit the issue from the standard, however painful that
might be to some. We have done this in POSIX. We have done it in C. We
have done it in the LSB. So why is C++ so different that if one loud voice
says, “I want this feature in my language,” we have to have it, even if 45%
or 50% of the working group don’t feel so strongly and another 45% or 50%
feel more strongly the other way?

Every formal process I have studied has a means for reversing a previously
made decision. Robert’s Rules of Order has a substantial section on it. Voting
something in at one meeting never stops us voting it out at the next! Within
SC 22, this is one of the golden rules: “This is the decision we’ve made until
we decide to change it.”

Saying, in C++, “we voted at the last meeting to add the system_error ob-
ject, so we can’t remove it now” doesn’t fit that model.

When the message to change comes from an officer of your parent commit-
tee, you cannot simply ignore it. And if that officer happens to have a siz-
able contingent of your own working group agreeing with the message, you
cannot ignore it. Complaining that POSIX is having an undue influence on
the purity of the language is specious and pusillanimous. Certainly it is true
that C++ runs on platforms other than POSIX. But POSIX is the only inter-
national standard platform on which the international standard language is
going to be implemented.

And, in my role as POSIX liaison, I’m going to continue to rattle the bars at
the C++ meetings. They can try to silence me, but they can never succeed!
Pray for fewer “features”!

; LO G I N : J U N E 20 0 8 U pdATE O N sTA N dA Rds : U N dU E I N FLU E N CE ? ��

