
; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 107

example, increasing data protection can harm performance
or increase purchase cost. Whereas the existing practice
is to consult an area expert, John Strunk spoke on how
utility functions can convey the cost-benefit structure to an
automated provisioning tool. Users are then able to make
appropriate trade-offs among various system metrics.

Strunk et al. use utility functions, functions from a set of
metrics (e.g., revenue, availability, data value, power usage,
or purchase cost) to a utility value (e.g., dollars), to char-
acterize a particular point in the purchase space. To find
a desirable point in this (large) space they use a genetic
algorithm to refine a configuration population over many
generations. Strunk then illustrated the value of this ap-
proach through three case studies, including scenarios with
a limited budget and where system cost can affect the long-
term solution.

Peter Honeyman asked why linear programming was not
used instead of a genetic algorithm. Strunk answered that
linear programming’s constraints on objective function form
rules out many real-world utility functions. Honeyman
also asked whether one can maximize multiple objectives;
Strunk replied that you would convert these to one utility.
Another audience member asked whether they had looked
at a method for generating good utility functions, noting
that Strunk’s seemed simplistic. Strunk said they have,
that the paper has more examples, and that this is also an
area where they are doing further work. One person asked
whether this approach can determine whether it is better
to upgrade an existing system or migrate to a new system.
Strunk answered that they can do this, but that it is the
second part of his thesis. Two audience members asked
whether Strunk’s approach supported varying input values
as a function of time. Strunk answered that their system fo-
cuses only on static provisioning. The final questioner asked
whether not finding the most optimal solution is a problem.
Strunk replied that in the real world one often only gets in
the ballpark, and that this approach already does at least as
well as today’s ad hoc approaches.

LSF ’08: 2008 Linux Storage & Filesystem
Workshop

San Jose, CA
February 25–26, 2008

stor age tr ack

Summarized by Grant Grundler (grundler@google.com)
Copyright 2008 Google, Inc. (Creative Commons Attribution
License, http://code.google.com/policies.html or http://
creativecommons.org/licenses/by/2.5/)

Several themes came up over the two days:

Theme 1: Solid State Drives
SSDs (Solid State Disks) are coming. There was a good
presentation by Dongjun Shin (Samsung) on SSD internal

operation, including some discussion on which param-
eters were needed for optimal operation (theme #2). The
I/O stack needs both micro-optimizations (performance
within driver layers) and architectural changes (e.g., you
have to parameterize the key attributes so that file systems
can utilize SSDs optimally). Intel presented SCSI RAM
and ATA_RAM drivers to help developers tune the SCSI,
ATA, and block I/O subsystems for these orders-of-magni-
tude-faster (random read) devices. Hybrid drives were a
hot topic at LSF ’07 but were only briefly discussed in the
introduction this year.

Theme 2: Device Parameterization
The device parameters discussion is just beginning on
how to parameterize device characteristics for the block
I/O schedulers and file systems. For instance, SSDs want
all writes to be in units of the erase block size if possible,
and device mapping layers would like better control over
alignment and placement. The key object here is how to
provide enough parameters to be useful but not so many
that “users” (e.g., the file system) get it wrong. The general
consensus was that having more than two or three param-
eters would cause more problems than it solved.

Theme 3: I/O Priorities
I/O priorities and/or bandwidth sharing has lots of folks
interested in I/O schedulers. There was consideration about
splitting the I/O scheduler into two parts: an upper half to
deal with different needs of feeding the Q (limit block I/O
resource consumption) and a lower half to rate-limit what
gets pushed to the storage driver.

Theme 4: Network Storage
Two technologies were previewed for addition to the Linux
kernel: pNFS (parallel NFS) and FCoE (Fiber Channel over
Ethernet). Neither is ready for kernel.org inclusion, but
some constructive guidance was given on what directions
specific implementations needed to take.

The issues facing iSCSI were also presented and discussed.
User- versus kernel-space drivers was a hot topic in Net-
worked Block Storage forums.

n	 Introduction and opening statements: recap of last year
Chris Mason and James Bottomley

This session was primarily a scorecard of how many topics
discussed last year are fixed or implemented this year. The
bright spots were the new filesystem (BTRFS, pronounced
“butter FS,” which incorporates B-trees for directories and
an extent-based filesystem with 264 maximum file size) and
emerging support for OSD (Object-base Storage Device) in
the form of bidirectional command integration (done) and
long CDB commands (pending); it was also mentioned that
Seagate is looking at producing OSD drives.

Error handling was getting better, but there’s still a lot of
work to be done and we have some new tools to help test
error handling. The 4k sector size, which was a big issue

108 ; LO G I N : VO L . 33, N O. 3

last year, has receded in importance because manufacturers
are hiding the problem in firmware.

n	 ssd
Dongjun Shin, Samsung Electronics

Dongjun gave an excellent introduction and details of how
SSDs are organized internally (sort of a two-dimensional
matrix). The intent was to give FS folks an understanding
of how data allocation and read/write requests should be
optimally structured. “Stripes” and “channels” are the two
dimensions to increase the level of parallelization and thus
increase the throughput of the drive. The exact configura-
tions are vendor-specific. The tradeoff is to reduce stripe
size to allow multithreaded apps to have multiple I/Os
pending without incurring the “lock up a channel during
erase operation” penalty for all pending I/Os. Hard disk
drives (HDDs) prefer large sequential I/Os, whereas SSDs
prefer many smaller random I/Os.

Dongjun presented postmark (mail server benchmark)
performance numbers for various file systems. An obvious
performance leader seemed to be nilfs for most cases, and it
was never the worst. Successive slides gave more details on
some of the FSes tested. Some notable issues were that flush
barriers kill XFS performance and that BTRFS performance
was better with 4k blocks than with 16k blocks.

Flush barriers are the only block I/O barriers defined today,
and the flush barriers killed performance on the SSDs since
the flash translation layer could no longer coalesce I/Os and
had to write data out in blocks smaller than the erase block
size. Ideally, the file system would just issue writes using
erase block sizes.

n	 error handling
Ric Wheeler, EMC

Ric Wheeler introduced the perennial error-handling topic
with the comment that bad sector handling had mark-
edly improved over the “total disaster” it was in 2007. He
moved on to silent data corruption, noting that the situation
here was improving with data checksumming now being
built into file systems (most notably BTRFS and XFS) and
emerging support for T10 DIF. The “forced unmount” topic
provoked a lengthy discussion, with James Bottomley claim-
ing that, at least from a block point of view, everything
should just work (surprise ejection of USB storage was cited
as the example). Ric countered that NFS still doesn’t work
and others pointed out that even if block I/O works, the file
system might still not release the inodes. Ted Ts’o closed
the debate by drawing attention to the paper by Gunawi et
al. at FAST ’08 showing over 1,300 cases where errors were
dropped or lost in the block and filesystem layers.

Error injection was the last topic. Everybody agreed that if
errors are forced into the system, it’s possible to consistently
check how errors are handled. The session wrapped up
with Mark Lord demonstrating new hdparm features that

induce an uncorrectable sector failure on a SATA disk with
the WRITE_LONG and WRITE_UNC_EXT commands.
This forces the on-disk CRCs to mismatch, thus allowing
at least medium errors to be injected from the base of the
stack.

n	 power management
Kristen Carlson Accardi, Intel

Arjan van de Ven wrote PowerTOP and it’s been useful
in tracking down processes that cause CPU power con-
sumption but not I/O. Although kjournald and pdflush
are shown as the apps responsible, obviously they are just
surrogates for finishing async I/O. For example, postfix
uses sockets, which triggers inode updates. Suggestions for
preventing this include using lazy update of nonfile inodes
and virtual inodes.

With ALPM (Aggressive Link Power Management, http://
www.lesswatts.org/tips/disks.php), up to 1.5 watts per disk
can be saved on desktop systems. Unlike disk drives, no
hardware issues have been seen with repeated powering up
or down of the physical link, so this is safer to implement.
Performance was of interest since trading off power means
some latency will be associated with coming back up to a
full-power state. The transition (mostly from Async Negotia-
tion (AN) when restoring power to the Phys) from SLUM-
BER to ACTIVE state costs about ~10 ms. Normal bench-
marks show no performance hit, as the drive is always busy.
We need to define a bursty power benchmark that is more
typical of many environments.

Kristen presented three more ideas on where Linux could
help save power. The first was to batch-average group I/O;
5–30 seconds is normal to flush data, so instead wait up to
10 minutes before flushing these. The second suggestion
was a question: Can the block layer provide hints to the
low-level driver? For example, “Soon we are going to see
I/O; wake up.” The third suggestion was making smarter
timers to limit CPU power-up events—that is, coordinate
the timers so they can wake up at the same time, do neces-
sary work, then let the CPU go to a low-power state for a
longer period of time.

Ric Wheeler (EMC) opened the discussion on powering
down disks, since the savings there are typically 6–15 watts
per disk. But powering up disks requires coordination
across the data center.

Eric Reidel (Seagate) mentioned EPA requirements: Should
we idle CPU versus the hard drive? One would be trading
off power consumption for data access. He said that Seagate
can design for higher down/up lifecycles. Currently, it’s not
a high count only because Seagate is not getting data from
OEMs on how high that count needs to be. It was noted
that one version of Ubuntu was killing drives after a few
months by spinning them down or up too often.

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 109

n	 Block Io resources and cgroups
Fernando Luis Vazquez Cao

Cao touched on three related topics: block I/O (BIO) re-
sources and cgroups, which define arbitrary groupings of
processes; I/O group scheduling; and I/O bandwidth alloca-
tion (ioband drivers, which manage I/O bandwidth available
to those groups). The proposals were not accepted as is
but the user-facing issues were agreed upon. The use case
would be Xen, KVM, or VMware.

Currently, the I/O priority is determined by the process that
initiated the I/O. But the I/O priority applies to all devices
that process is using. This changed in the month preced-
ing the conference, and the speaker acknowledged that. A
more complex scheme was proposed that supports hierar-
chical assignment of resource control (e.g., CPU, memory,
I/O priorities). Proposed was page_cgroup to track write
bandwidth. The page would get assigned to a cgroup when
the BIO is allocated. One advantage of the get_context() ap-
proach is that it does not depend on the current process and
thus would also work for kernel threads.

Idea #1 proposed a layer between the I/O scheduler and the
I/O driver. This requires some changes to elevator.c and ad-
ditional infrastructure changes. Jens Axboe pointed out that
one can’t control the incoming queue from below the block
I/O scheduler. The scheduler needs to be informed when
the device is being throttled from below in order to prevent
the I/O scheduler queue from getting excessively long and
consuming excessive memory resources. Jens suggested
they start with #1 since it implements fairness.

Idea #2 was generally not accepted. For idea #3 (group
scheduler above LVM make_request), adding a hook so
cgroup can limit I/O handed to a particular scheduler was
proposed and this idea got some traction. Jens thought #3
would require less infrastructure than #1. Effectively, #3
would lead to a variable-sized Q-depth. And #3 would limit
BIO resource allocation.

n	 ncq emulation
Gwendal Grignou, Google

Gwendal started by explaining what Native Command
Queuing (NCQ) was, his test environment (fio), and which
workloads were expected to benefit. In general, the idea is
to let the device determine (and decide) the optimal order-
ing of I/Os since it knows current head position on the
track and the seek times to any I/Os it has in its queue. Ob-
viously, the more choices the device has, the better choices
it can make and thus the better the overall throughput the
device will achieve. Results he presented bear this out, in
particular for small (<32k), random read workloads (e.g., for
a classic database).

But the problem is that since the device is deciding the
order, it can chose to ignore some I/Os for quite a while too.
And thus latency-sensitive applications will suffer occasion-
ally, with I/Os taking more than 1–2 seconds to complete.

He implemented and showed the results of a queue plug-
ging that starved the drive of new I/O requests until the
oldest request was no longer over a given threshold. Other
methods to achieve the same effect were discussed but each
had its drawbacks (including this one).

He also showed how by pushing more I/O to the drive, we
affect the behavior of block schedulers to coalesce I/O and
anticipate which I/Os to issue next. And although NCQ was
effective on a best-case benchmark, it was debated how ef-
fective it would be in real life (perhaps <5%).

n	 making the Io scheduler aware of the underlying storage
topology
Aaron Carroll and Joshua Root, University of New South Wales

Disclosure: Grant Grundler arranged the grant from Google
to fund this work. HP is also funding a portion of this
work.

Aaron and Joshua have created an infrastructure to mea-
sure the performance of any particular block trace and
were interested in seeing how I/O schedulers behave under
particular workloads. The performance slides are graphs of
how the various schedulers perform as one increases the
number of processes generating the workload. They tested
the following schedulers: AS (Anticipatory Scheduler), CFQ
(Completely Fair Queueing), Deadline, FIFO, and NOOP.

They tested a few different configs: RAID 0 sequential,
async; single-disk random and sequential; and 10-disk
RAID 0 random and sequential. Of the various param-
eters—queue depth, underlying storage device type, and
RAID topology—they wanted to establish which parameters
were relevant and find the right way to determine those
parameters (e.g., by user input, with runtime microbench-
mark measurements, by asking lower layers). Queue depth
is generally not as important nor is it very helpful for any
sort of anticipation. For device type, it would be obvious to
ask the underlying device driver but we need a suitable level
of abstraction. For RAID topology, the key info was “stripe
boundaries.”

Ric Wheeler said that he can see differences in performance
depending on the seek profile if most I/Os are to one disk
at a time and if Array is doing read ahead. Random reads
for RAID 3/5/6 depend on worst case (i.e., the slowest
drive). Jens mentioned that disk type could be exported
easily by plugging (stopping Q to build a bigger I/O) or
through an anticipatory maneuver (starting new I/O, after
the previous one has completed but before the application
has requested the data/metadata). We discussed how to
split fairness/bandwidth sharing/priorities (or whatever you
want to call it) so that a component above the SW RAID
md driver would manage incoming requests. A lower half of
the scheduler would do a time slice. It was also noted that
CFQ can unfairly penalize bursty I/O measurements. One
suggestion was to use Token Bucket to mitigate bursty traf-
fic. Aaron and Joshua introduced two new schedulers that

110 ; LO G I N : VO L . 33, N O. 3

might be useful in the future: FIFO (true fifo, without merg-
ing) and V(R) SSTF. There was no discussion on these.

n	 dma representations: sg_table vs. sg_ring Iommus and
lld’s restrictions
Fujita Tomonori

(LLD stands for Low Level Driver, e.g., a NIC or an HBA
device driver.)

Fujita did an excellent job of summarizing the current mess
that is used inside the Linux kernel to represent DMA capa-
bilities of devices. As Fujita dove straight into the technical
material with no introduction, I’ll attempt to explain what
an IOMMU is and the Kernel DMA API. Historically, I/O
devices that are not capable of generating physical addresses
for all of system RAM have always existed. The solution
without an IOMMU is a “bounce buffer” in which you DMA
to a low address the device can reach and then memcpy to
the target location. I/O Memory Management Units (IOM-
MUs) can virtualize (a.k.a. remap) host physical address
space for a device and thus allow these legacy devices to
directly DMA to any memory address. The bounce buffer is
no longer necessary and we save the CPU cost of the mem-
cpy. IOMMUs can also provide isolation and containment
of I/O devices (preventing any given device from spew-
ing crap over random memory—think Virtual Machines),
merge scatter-gather lists into fewer I/O bus addresses (more
efficient block I/O transfers), and provide DMA cache coher-
ency for virtually indexed/tagged CPUs (e.g., PA-RISC).

The PCI DMA Mapping interface was introduced into the
Linux 2.4 kernel by Dave Miller primarily to support IOM-
MUs. James Bottomley updated this to support noncache
coherent DMA and become bus-agnostic by authoring the
Documentation/DMA-API.txt in Linux 2.6 kernels. The
current DMA API also does not require the IOMMU drivers
to respect the max segment length (i.e., IOMMU support
is coalescing DMA into bigger chunks than the device
can handle). The DMA alignment (i.e., boundaries a DMA
cannot cross) has similar issues (e.g., some PCI devices
can’t DMA across a 4-GB address boundary). Currently,
the drivers that have either length or alignment limitations
have code to split the DMA into smaller chunks again.
The max_seg_boundary_mask in the request queue is not
visible to IOMMU, since only struct device * is passed to
IOMMU code.

The next issue discussed was IOMMU performance and I/O
TLB flushing. The IOMMU driver (and HW) performance
are critical to good system performance. New x86 platforms
support virtualization of I/O; and thus it’s not just a high-
end RISC computer problem. Issues included the following:

1. How does one best manage IOMMU address space?
Through common code? Some IOMMU drivers use bit-
map (most RISC); Intel uses a “Red Black” tree. Fujita tried
converting POWER to use Red/Black tree and lost 20%
performance with netperf. Bottomley and Grundler agree
that the address allocation policy needs to be managed by

the IOMMU or architecture-specific code since I/O TLB
replacement policy dictates the optimal method for allocat-
ing IOMMU address space.

2. When should we flush I/O TLB? One would like to avoid
flushing the I/O TLB since (a) it’s expensive (as measured
in CPU cycles) and (b) it disturbs outstanding DMA (forces
reloading I/O TLB). However, if we flush the entries when
the driver claims the DMA is done, we can prevent DMA
going to a virtual DMA address that might have been freed
and/or reallocated to someone else. The bottom line is that
there is a tradeoff between performance and safety (a.k.a.
robustness).

3. Should we just map everything once? The performance
advantage is that you don’t need to map, unmap, and flush
I/O TLB for individual pages, but the tradeoff is isolation
(since any device can DMA anywhere), which can be use-
ful in some cases (e.g., embedded devices such as an NFS
server).

The last DMA-mapping-related issue was SG (SCSI Generic)
chaining versus SG rings.

n	 IscsI transport class simplification
Mike Christie and Nicholas Bellinger

The main thrust here is that common libs are needed to
share common objects between transport classes. In par-
ticular, Mike called out the issues that the iSCSI maintainer
has faced across different kernel versions where /sys has
evolved. James Bottomley conceded that there were issues
with the original implementation. Mike also mentioned
problems with parsing /sys under iSCSI devices. The goal
is to provide a common starting point for user-space-visible
names.

Mike proposed a scsi_transport_template that contained
new scsi_port and scsi i_t_nexus data structures. iSCSI also
needs an abstraction between SCSI ports—an I_T_nexus.
Other users of I_T_nexus were also discussed.

James Bottomley pointed out that libsas already has an
I_T_nexus abstraction. It provides a host/port/phy/rphy/
target/lun hierarchy for /sys. However, the exported paths
need to be more flexible. Mike floated the idea of a new
library to encapsulate the SCSI naming conventions so that
tools like lsscsi wouldn’t have to struggle.

Development for iSCSI focuses on Linux-iSCSI.org. iSCSI
exposed issues with error recovery. The slides neatly sum-
marize most of the points Nicholas wanted to make. The
lively but inconclusive debate left me thinking that most of
the code will be forced to live in user space until evidence is
presented otherwise. iSCSI, FC, and SAS would be better in
kernel because concurrency control fundamentally resides
in the kernel. And LIO-SE assumes most drivers belong and
are implemented in kernel space because transport APIs
force middle code into kernel. KVM performance suffers
because of movement among virtual kernels.

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 111

n	 request-based multi-pathing
Kiyoshi Ueda and Jun’ichi Nomura, NEC

The key point was proposed multi-path support below the
I/O scheduler; this seems to be the favored design. Prob-
lems are expected with request completion and cleaning up
the block layer. An RFC for a request stacking framework
was posted to linux-scsi and linux-ide mailing lists. See the
last slide (37) for URLs to postings. The big advantage of
request-based DM (Device Mapper) multi-path is that, since
BIOs are already merged, the multi-path driver can do load
balancing since it knows exactly how many I/Os are going
to each available path.

Three issues were raised. The first issue was that blk_
end_request() will deadlock because the queue lock is
held through the completion process. Bottomley suggested
moving completions to tasklet (soft IRQ) since SCSI at one
point had the same issue. There was also some discussion
about migrating drivers to use blk_end_request instead of
__blk_end_request(). The second issue involved busy stack
drivers that won’t know when the lower driver is busy, and
once a request is removed from the scheduler queue, it’s no
longer mergeable. Slides 14–21 have very good graphic rep-
resentations of the problem. Bottomley suggested prep and
unprep functions to indicate whether requests are mergeable
or not. One basic difference between BIO (existing code)
and proposed Request DM is that device locking (queue
lock) will be required for both submission and completion
of the Request DM handler I/Os and is not required by BIO.
The third issue was that req->end_io() is called too late and
is called with a queue lock held. Solutions were offered and
discussed in the remaining slides (29–36).

Regarding issue 1, one should only allow use of nonlock-
ing drivers (i.e., drivers that do not lock in the completion
path). All SCSI drivers, cciss, and i2o already meet this
criterion; Block Layer is using locking completion; a DASD
driver change is needed. There was a discussion about how
much work it was to convert other drivers.

n	 fs and volume managers
Dave Chinner, SGI

Dave covered several major areas: a proposal he called
“BIO hints” (which Val Hansen called “BIO commands”);
DM multi-path; chunk sizes; and I/O barriers. BIO hints
is an attempt to let the FS give the low-level block hints
about how the storage is being used. The definition of “hint”
was something that the storage device could (but was not
required to) implement for correct operation. The function
mkfs could provide the “space is free” hints and would be
good for RAID devices, transparent security (zero released
data blocks), and SSDs, which could put unused blocks in
its garbage collection.

DM multi-path has a basic trust issue. Most folks don’t
trust it because the necessary investment wasn’t made to
make it trustworthy. This is a chicken-and-egg problem. Ric
Wheeler said that EMC does certify DM configs. Other com-

plaints were poor performance, the lack of proper partition-
ing, the poor user interface for management tools, and the
total lack of support for existing devices.

Barriers today are only for cache flushing, both to force data
to media and to enforce ordering of requests. Bottomley
suggested implementing commit on transaction.

n	 osd-based pnfs
Benny Halevy and Boaz Harrosh, Panasas

Benny first described the role of the layout driver for OSD-
 based pNFS. Layouts are a catalog of devices, describing
the byte range and attributes of that device. The main
advantage of the layout driver is that one can dynamically
determine the object storage policy. One suggestion was to
store small files on RAID1 and large files on RAID5. Strip-
ing across devices is also possible. By caching the layouts
(object storage server descriptions), one can defer cataloging
all the OSD servers at boot time and implement on-demand
access to those servers.

Current device implementations include iSCSI, iSER, and
FC. SCSI over USB and FCoE are also possible. Functional
testing has been done and performance was described as
being able to “saturate a GigE link.” Future work will in-
clude OSD 2.0 protocol development, and it’s already clear
there will be changes to the OSD protocol.

Requirements of the Linux kernel to support OSD pNFS
were discussed. Bidirectional SCSI CDB support is in
2.6.25-rcX kernels. There are no objections to patches for
variable-length CDBs, which might go into 2.6.26. Recent
patches to implement “Long Sense Buffers” were rejected; a
better implementation is required.

The discussion ended on DM and ULD (Upper Level Driver;
e.g., sd, tape, CD/DVD). DM contains the desired striping
functionality, but it also takes ownership of the device. Dis-
tributed error handling is not possible unless the DM would
pass errors back up to high layers. Each ULD is expected to
register an OSD type. But the real question is whether we
want to represent objects as block devices (segue to the next
talk) and how to represent those in some namespace.

n	 Block-based pnfs
Andy Adamson, University of Michigan; Jason Glasgow, EMC

Afterward, pNFS was summarized to me as “clustered FS
folks . . . trying to pull coherency into NFS.” The underly-
ing issue is that every clustered filesystem (e.g., Lustre)
requires coherency of metadata across nodes of the cluster.
NFS historically has bottlenecked on the NFS server, since
it was the only entity managing the metadata coherency.

The first part of this talk explained the Volume Topologies
and how pNFS block devices are identified (fsid). Each fsid
can represent arbitrarily complex volume topologies, which
under DM get flattened to a set of DM targets. But they
didn’t want to lose access to the hierarchy of the underlying
storage paths in order to do failover.

112 ; LO G I N : VO L . 33, N O. 3

The proposal for “Failover to NFS” survived Benny’s expla-
nation of how a dirty page would be written out via block
path, and if that failed, then via NFS code path. The main
steps for the first path would be write, commit, and logout
commit and, for the failover path, write to MDS and com-
mit. This provoked sharp criticism from Christoph Hellwig:
this adds complexity without significant benefit. The client
has two paths that are completely different, and the corner
cases will kill us. The complexity he referred to was the
unwinding of work after starting an I/O request down the
block I/O code path and then restarting the I/O request
down a completely different code path. A lively debate
ensued around changes needed to Block I/O and VFS layers.
Christoph was not the only person to object and this idea
right now looks like a nonstarter. The remaining issue cov-
ered block size: 4k is working but is not interoperable with
other implementations.

n	 fs and storage layer scalability problems
Dave Chinner, SGI

Dave offered random thoughts on 3- to 5-year challenges.
The first comment was “Direct I/O is a solved problem and
we are only working on micro-optimizations.”

He resurrected and somewhat summarized previous discus-
sion on exposing the geometry and status of devices. He
wanted to see independent failure domains being made
known to the FS and device mapper so that those could
automate recovery. Load feedback could be used to avoid
hot spots on media I/O paths. Similarly, failure domains
and dynamic online growing could make use of loss-redun-
dancy metrics to automate redistribution of data to match
application or user intent.

Buffered I/O writeback (e.g., using pdflush) raised another
batch of issues. It’s very inefficient within a file system
because the mix of metadata and data in the I/O stream
causes both syncing and ordering problems. pdflush is also
not NUMA aware and should use CPUsets (not Containers)
to make pdflush NUMA aware. James Bottomley noted that
the I/O completion is on the wrong node as well (where
the IRQ is handled). Finally, different FSes will use more
or less CPU capacity and functionality such as checksum-
ming data, and aging FS might saturate a single CPU. He
gave an example where the raw HW can do 8 GB/s but only
sees 1.5 GB/s throughput with the CPU 90% utilized. Dave
also revisited the topic of error handling with the assertion
that given enough disks, errors are common. He endorsed
the use of the existing error injection tools, especially
scsi_debug driver.

His last rant was on the IOPS (I/O per second) challenge
SSDs present. He questioned that Linux drivers and HBAs
are ready for 50k IOPS from a single spindle. Raw IOPS are
limited by poor HBA design with excessive per-transac-
tion CPU overhead. HBA designers need to look at NICs.
Using MSI-X direct interrupts intelligently would help, but
both SW and HW design to evolve. I’d like to point folks

to mmio_test (see gnumonks.org) so they can measure
this for themselves. Disclaimer: I’m one of the contribu-
tors to mmio_test (along with Robert Olsson, Andi Kleen,
and Harald Welte). Jörn Engel added that about 2 years ago
tasklets were added which now do the equivalent of NAPI
(“New API” for NIC drivers). NAPI was added about 5 or 6
years ago to prevent incoming NIC traffic from live-locking
a system. All the CPU cycles could be consumed exclusively
handling interrupts. This interrupt mitigation worked pretty
well even if HW didn’t support interrupt coalescing.

n	 t10 dif
Martin Petersen, Oracle

Martin pointed to the FAST ’08 paper “An Analysis of Data
Corruption in the Storage Stack” by Bairavasundaram et al.
(See the related article in this issue of ;login:.)

His first point was that data can get corrupted in nearly
every stage between host memory and the final storage
media. The typical data-at-rest corruption (a.k.a. “grown
media defects”) is just one form of corruption. Remain-
ing data corruption types are grouped as “while data is in
flight” and applications need to implement the first level
of protection here. He also characterized Oracle’s HARD
as the most extreme implementation and compared others
to “bong hits from outer space.” Given the volume of data
being generated, there was agreement that the trivial CRCs
would not be sufficient.

Although some vendors are pushing file systems with
“logical block cryptographically strong checksumming”
and similar techniques as bullet-proof, they only detect the
problems at read time. This could be months later, when the
original data is long gone. The goal of the TDIF (T10 Data
Integrity Feature) standard was to prevent bad data from
being written to disk in the first place.

HW RAID controllers routinely reformat FC and SCSI
drives to use 520-byte sectors to store additional data in-
tegrity/recovery bits on the drive. The goal of TDIF was to
have end-to-end data integrity checks by standardizing and
transmitting those extra 8 bytes from the application all the
way down to the media. This could be validated at every
stop on its way to media and provide end-to-end integrity
checking of the data.

He pointed out which changes are needed in the SCSI; one
of those (variable-length CDBs) is already in the kernel.
James Bottomley observed that he could no longer get SCSI
specs to implement new features like this one, owing to
recent changes in distribution. He also pointed out that the
FS developers could use some of the tag CRC bits to imple-
ment a reverse-lookup function they were interested in.
The best comment, which closed the discussion, came from
Boaz Harrosh: Integrity checks are great! They catch bugs
during development!

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 113

n	 fcoe
Robert Love and Christopher Leech

Robert and Christopher took turns giving a description of
the project, providing an update on current project status,
and leading a discussion of issues they needed help with.

FCoE is succinctly described as “an encapsulation protocol
to carry Fibre Channel frames over Ethernet” and standard-
ized in T11. The main goal of this is to integrate existing
FC SAN into a 10-GigE network and continue to use the
existing FC SAN management tools. The discovery protocol
is still under development. James Bottomley observed that
VLAN would allow the FC protocol to pretend there is no
other traffic on the Ethernet network, since the on-wire
protocol supports 802.1Q tags.

Open-FCoE.org seems to be making good progress on sev-
eral areas but it’s not ready for production use yet. Current
problems discussed included the complexity of the code,
frustration with the (excessive) number of abstractions, and
wanting to take advantage of current NIC offload capabili-
ties. Current rework is taking direction from James Smart,
making better use of existing Linux SCSI/FC code and then
determining how much code could be shared with existing
FC HBA drivers.

Discussion covered making use of proposed “IT_Nexus”
support. Robert and Christopher agreed that IT_Nexus
would be useful for FCoE as well, since they had the same
issues as others managing the connection state. James Bot-
tomley also pointed out that their current implementation
didn’t properly handle error states; he got a commitment
back that Robert would revisit that code.

n	 linux storage stack performance
Kristen Carlson Accardi and Mathew Wilcox, Intel

Kristen and Mathew “willy” Wilcox provided forward-look-
ing performance tools to address expected performance
issues with the Linux storage stack when used with SSDs
(see http://www.usenix.org/events/lsf08/tech/Carlson_Ac-
cardi_powermgmt.pdf). This follows the “provide data and
the problem will get solved” philosophy. Storage stacks are
tuned for seek avoidance (waste of time for SSDs) and SSDs
are still fairly expensive and uncommon. The underlying
assumption is that lack of SSDs in the hands of developers
means the data won’t get generated and no one will accept
optimizations that help SSDs.

Kristen’s first slides, providing a summary of SSD cost/per-
formance numbers (e.g., Zeus and Mtron), showed that a
single device is now capable of 50,000+ IOPS (I/O per sec-
ond). Current rotational media can only do 150–250 IOPS
per device on a random read workload (3000–4000 if it’s
only talking to the disk cache) and largely depend on I/O
request merging (larger I/O sizes) to get better throughput.
Ric Wheeler pointed out that EMC’s disk array can actually
do much more, but it requires racks of disks. Kristen’s point
was that this level of performance will be in many laptops

soon and it would be great if Linux could support that level
of performance.

n	 sysfs representations
Hannes Reinecke and Kay Sievers, SuSE

Summarized by James Bottomley
(James.Bottomley@HansenPartnership.com)

Hannes Reinecke and Kay Sievers led a discussion on sysfs
in SCSI. They first observed that SCSI represents pure SCSI
objects as devices with upper-layer drivers (except SCSI
Generic) being SCSI bus drivers. However, everything else,
driven by the transport classes, gets stored as class devices.
Kay and Greg want to eliminate class devices from the tree,
and the SCSI transport classes are the biggest obstacle to
this. The next topic was object lifetime. Hannes pointed to
the nasty race SCSI has so far been unable to solve where
a nearly dead device gets re-added to the system and can
currently not be activated (because a dying device is in the
way). Hannes proposed the resurrection patch set (bringing
dead devices back to life). James Bottomley declared that he
didn’t like this. A heated discussion ensued, during which it
was agreed that perhaps simply removing the dying device
from visibility and allowing multiple devices representing
the same SCSI target into the device list but only allowing
one to be visibleå might be the best way to manage this sit-
uation and the references that depend on the dying device.

Noncontroversial topics were reordering target creation at
scan time to try to stem the tide of spurious events they
generate and moving SCSI attributes to default attributes so
that they would all get created at the correct time and solve
a race today where the upward propagation of the device
creation uevent races with the attribute creation and may
result in the root device not being found if udev wins the
race.

The session wound up with Bottomley demanding that Greg
and Kay show exactly what the sysfs people have in store
for SCSI.

for the complete summaries, see http://www.usenix.org/
events/lsf08/lsf08sums.pdf.

