
52 ; LOG I N : VO L . 3 2 , NO . 4

N I C K S T O U G H TO N

an update on
standards

R EV I S I ON F EV E R

USENIX Standards Liaison

nick@usenix.org

I T S E EM S A S I F, S U DD EN LY, S E V E R A L
of the big IT standards we care about are si-
multaneously being revised. POSIX started
its revision two years ago and is nearly com-
plete. C++ started (officially) this year. And
now C is also talking about a revision.

All ISO standards go through a periodic mainte-
nance requirement, in which, every five years, a
standard must be re-affirmed, revised, or with-
drawn. Of the three standards I mentioned, all are
close to such a decision point.

I’ve written about the POSIX revision recently, so
I’ll simply mention that the Austin Group, the
working group that maintains POSIX, is on track
to complete its revision early in 2008. The third
draft of the revised standard has just been pub-
lished and is currently in ballot.

I’ll devote a separate article to the C++ revision lat-
er in the year. The newest project is the revision of
the C language, expected to be complete sometime
in 2010 or later, and hence has been dubbed “C1x.”

The C language hasn’t changed all that much since
its inception. Most programs written in the 1970s
to Dennis Ritchie’s original specification will still
compile and run under a modern C compiler con-
forming to the ISO-C 1999 standard. True, there
have been a few new keywords and concepts added
to the language, but by and large it still holds true
to its original intent. The most significant overhaul
of the language came with that 1999 revision.

At the time, the committee put together a charter
for the work they were about to undertake. This
same charter is currently being reexamined to see
whether it needs any changes in guiding us
through the “C1x” revision. Since I wasn’t on the
committee for the 1999 revision, I found this docu-
ment very insightful, and I believe the core princi-
ples are worthy of repetition here.

C’s Principles (from the C9X Charter [1])

Before embarking on a revision of the C Standard,
it is useful to reflect on the charter of the original
drafting committee. According to the original Ra-
tionale Document in the section entitled “Purpose”:

The work of the Committee was in large part
a balancing act. The Committee has tried to
improve portability while retaining the defi-
nition of certain features of C as machine-de-
pendent. It attempted to incorporate valuable
new ideas without disrupting the basic struc-



ture and fabric of the language. It tried to develop a clear and consis-
tent language without invalidating existing programs. All of the goals
were important and each decision was weighed in the light of some-
times contradictory requirements in an attempt to reach a workable
compromise.

In specifying a standard language, the Committee used several guiding prin-
ciples, the most important of which are:

1. Existing code is important; existing implementations are not. A large
body of C code exists of considerable commercial value. Every at-
tempt has been made to ensure that the bulk of this code will be ac-
ceptable to any implementation conforming to the Standard. The
Committee did not want to force most programmers to modify their
C programs just to have them accepted by a conforming translator.

On the other hand, no one implementation was held up as the exemplar by
which to define C: It is assumed that all existing implementations must
change somewhat to conform to the Standard.

2. C code can be portable. Although the C language was originally born
with the UNIX operating system on the DEC PDP-11, it has since
been implemented on a wide variety of computers and operating sys-
tems. It has also seen considerable use in cross-compilation of code
for embedded systems to be executed in a free-standing environment.
The Committee has attempted to specify the language and the library
to be as widely implementable as possible, while recognizing that a
system must meet certain minimum criteria to be considered a viable
host or target for the language.

3. C code can be nonportable. Although the Committee strove to give
programmers the opportunity to write truly portable programs, it did
not want to force programmers into writing portably, to preclude the
use of C as a “high-level assembler”; the ability to write machine-spe-
cific code is one of the strengths of C. It is this principle that largely
motivates drawing the distinction between a strictly conforming pro-
gram and a conforming program.

4. Avoid “quiet changes.” Any change to widespread practice altering
the meaning of existing code causes problems. Changes that cause
code to be so ill-formed as to require diagnostic messages are at least
easy to detect. As much as seemed possible, consistent with its other
goals, the Committee has avoided changes that quietly alter one valid
program to another with different semantics that cause a working
program to work differently without notice. In important places
where this principle is violated, the Rationale points out a quiet
change.

5. A standard is a treaty between implementer and programmer. Some
numerical limits have been added to the Standard to give both imple-
menters and programmers a better understanding of what must be
provided by an implementation and of what can be expected and de-
pended upon to exist. These limits are presented as minimum maxi-
ma (i.e., lower limits placed on the values of upper limits specified by
an implementation) with the understanding that any implementer is
at liberty to provide higher limits than the Standard mandates. Any
program that takes advantage of these more tolerant limits is not
strictly conforming, however, since other implementations are at lib-
erty to enforce the mandated limits.

6. Keep the spirit of C. The Committee kept as a major goal to preserve
the traditional spirit of C. There are many facets of the spirit of C, but

; LOGIN: AUGUST 2007 AN UPDATE ON STANDARDS 53



the essence is a community sentiment of the underlying principles
upon which the C language is based. Some of the facets of the spirit
of C can be summarized in phrases like

(a) Trust the programmer.
(b) Don’t prevent the programmer from doing what needs to be done.
(c) Keep the language small and simple.
(d) Provide only one way to do an operation.
(e) Make it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code
generation is one of the most important strengths of C. To help ensure that
no code explosion occurs for what appears to be a very simple operation,
many operations are defined by how the target machine’s hardware does it
rather than by a general abstract rule. An example of this willingness to live
with what the machine does can be seen in the rules that govern the widen-
ing of char objects for use in expressions: Whether the values of char objects
widen to signed or unsigned quantities typically depends on which byte op-
eration is more efficient on the target machine.

One of the goals of the Committee was to avoid interfering with the ability
of translators to generate compact, efficient code. In several cases the Com-
mittee has introduced features to improve the possible efficiency of the gen-
erated code; for instance, floating point operations may be performed in sin-
gle-precision if both operands are float rather than double.

Goals for C1x

But why change C at all? Isn’t it good enough as it stands? And wasn’t the
last revision somewhat of a failure? Most compilers still aren’t fully conform-
ing.

The short answer is that the current standard is not quite good enough for
today’s hardware and is just bad enough to need tinkering with. As hardware
gets more and more complex and as multicore processors become the nor-
mal minimum, applications need additional promises from the language as
to what is happening at the hardware level to be sure that they run correctly.
Most modern compilers have added their own extensions to the C language
to give programmers control over things such as alignment, atomic memory
access, and the like. One of the new principles will be based on existing
practice: There will be a high bar to get a new feature into the language if
something like it is not already in a commercially shipping implementation
(not some experimental system released yesterday to some of my close
friends).

The Committee also agreed that mistakes were made in the 1999 revision,
and we should learn from them. One of the bigger mistakes was thinking
that Fortran was the competition, and trying to add the kitchen sink with
respect to things such as complex arithmetic. The Committee needs to learn
from the mistakes of the past. The major goals for this revision are in the ar-
eas of security, parallelism, dynamic libraries, vendor-specific additions, ex-
tended character sets, and embedded systems.

Concurrency or parallelism is one of the main motivators. With multicore
processors and widespread use of the POSIX pthread model in general ac-
ceptance (not to mention some other threading models that are also popu-
lar), the language needs to describe a more comprehensive memory model.
There was some discussion of this in the C++ revision context in the Febru-
ary 2007 edition of ;login:.

54 ; LOG I N : VO L . 3 2 , NO . 4



At the April 2007 meeting, the ISO-C committee looked at a number of the
extensions provided by gcc and has agreed so far that papers seeking to stan-
dardize any of the following will be looked on favorably:

� Statements and declarations in expressions
� Locally declared labels
� Referring to a type with typeof
� Inquiring on alignment of types or variables
� Thread local storage
� Specifying attributes of functions
� Specifying attributes of variables
� Specifying attributes of types

This list does not preclude other items from being considered; it simply de-
scribes the “we really want these features” list so far.

Security was generally regarded as another important aspect. Bad program-
mers can easily write applications that contain vulnerabilities, although
good programmers can write very secure code in C. This isn’t a problem
with the language as such, but the Committee feels that there should be an
increased focus on the security aspects of the language. Among other things,
this will mean that the infamous gets() function will finally be removed
from the standard!

When considering security, there is an interesting distinction between, as
one Committee member described it, “Murphy and Machiavelli.” There are
at least two distinct classes of C user: those who are writing low-level code,
such as an operating system kernel or system library, and those who are
writing higher-level applications. The low-level programmers want to get
every ounce of performance out of the system; they need to write defensive
code but have little need for new “security” features that may result in slow-
er code. They may need Machiavellian techniques to achieve their goals. In
contrast, the second class of developer wants every bit of help the system
can give! There are concerns about both Murphy and Machiavelli for these
people, and although the principle of “trust the programmer” still holds,
there is also the possibility of the programmer saying, “I don’t trust myself;
please check me!”

It’s still early days in this process, and no specific proposals for security en-
hancements have surfaced. If you think you may have something to con-
tribute to this revision, please feel free to contact me to discuss how to make
a proposal.

REFERENCE

[1] http://www.open-std.org/jtc1/sc22/wg14/www/charter.

; LOGIN: AUGUST 2007 AN UPDATE ON STANDARDS 55




