
66 ; LOG I N : VO L . 3 2 , NO . 2

book reviews
E L I Z A B E T H Z W I C K Y ,
M I N G C H OW , A N D
R I K F A R R OW

CODE CRAFT: THE PRACTICE OF WRIT-
ING EXCELLENT CODE

Pete Goodliffe
No Starch Press, 2007. 558 pages.
ISBN 1-59327-119-0

It doesn’t take that much pro-
gramming to discover that
programming is harder than it
seems. It’s not really that hard
to turn out code that works, for
some definition of “works.” For
instance, I once worked for a
programmer who insisted that
her task was done when the code
compiled without error, and any-
thing further was debugging,
which could be undertaken by
somebody else—an attitude I
didn’t discover until she declared
something done when it did not
in fact run at all, even a little bit.
In a happy twist of fate, she later
ended up working for a friend’s
least favorite boss, and in our
more twisted and bitter moments
we take joy in imagining their
working relationship.

If you want to be a good pro-
grammer and not end up on the
wrong side of stories like this,
you need to worry about a lot
more than getting the code to ba-
sically fulfill its intended func-
tion. You have to be able to pass
it on to another programmer.
It has to survive rounds of mod-
ification. It has to grow and

change. You have to work with
other programmers. Code Craft
is meant to help you achieve all
those extra goals, and from my
point of view, it does a pretty
good job. It also has a monkey
cartoon in every chapter, just to
sweeten the pot (and although
the topics are dense, the writing
is clear and vivid enough to keep
you going without the mon-
keys).

This is a great book for some-
body who has basic technical
competence but wants to learn
how to make that fit into the big-
ger picture. I don’t agree with
every detail, but I agree with all
of the author’s main points, and I
think a programmer who ab-
sorbed them would be much
more fun to work with than one
who disagreed with them.

The book does not mention in-
stallation and administration is-
sues, which are close to the top
of my “Ways programmers be-
come loathed” list, but it’s prima-
rily concerned with keeping oth-
er programmers from loathing
you. (It doesn’t suggest firmly
that unless you are unusually tal-
ented or a GUI designer moon-
lighting as a programmer, your
user interfaces will be horrible
unless you get help, either, and
that’s something lots of program-
mers need to hear.) It does men-
tion that security is important
and requires thought, but it
omits the all-important warning
“Don’t design your own crypto.”
Perhaps what it’s really missing is
a big list headed “Things you
might think you know some-
thing about but almost certainly
don’t.”

HEAD FIRST OBJECT-ORIENTED
ANALYSIS AND DESIGN

Brett D. McLaughlin, Gary Pollice,
and DavidWest
O’Reilly, 2007. 589 pages.
ISBN 0-596-00867-8

One of the blurbs for Code Craft
is from a four-year-old (with a
last name suspiciously like the
author’s), who likes the monkeys
best. Let me tell you, she’d love
the Head First series. In fact, I
had to hide while reading it, be-
cause my daughter is currently
passionate about dogs and
speech bubbles (or thought bal-
loons), and there are a lot of ex-
amples that combine the two. It
turns out that she keeps asking
you to read what people are
thinking even after it turns out
to be “Look at all those Strings!
That’s terrible! Shouldn’t we use
objects or constants instead?” or
even less comprehensible stuff,
over and over again. She was en-
tranced. My husband, however,
was instantly suspicious. Dogs
and thought balloons are not a
combination that makes him
think “Serious programming
book.” (I haven’t enquired about
monkey cartoons. I think it is
entirely likely that he finds them
more suitable. The relationship
between monkeys and program-
mers is all too evident to anyone
who deals with programmers
regularly. Don’t throw things! I
program for a living at the mo-
ment.)

Supposedly, all this hullabaloo
that delights the small child
and makes the adults wary is sci-
entifically supported as a way
to keep you from turning off
your brain and doing the sort of
“smile and nod” routine that gets
you through cocktail parties but
leaves you at the end of a techni-
cal book without actually having
learned anything. I’m not sure,
but I didn’t find it unfortunately
distracting, and I was occasion-
ally moved to actually do parts
of the exercises, and I am the
world’s worst person at doing ex-
ercises. Threats and pleading on
the part of the author almost
never move me to pull out a pen-
cil—normally only the hope that



I will discover some terrible er-
ror will move me to even read
exercises. But apparently in the
war between “Don’t do home-
work” and “Do puzzles,” doing
puzzles does sometimes win.

Along the way, I did absorb some
of the principles and terminolo-
gy of object oriented design and
analysis; I probably would have
gotten more if I’d stuck with the
exercises and I weren’t currently
programming in an in-house lan-
guage whose eccentricities pre-
clude the use of many lovely de-
sign principles. This would make
a particularly nice introduction
for somebody who doesn’t see
the point. It does a good job of
showing why design matters and
how design issues relate to real-
world programming.

ESSENTIAL CVS, 2ND EDITION:
VERSION CONTROL AND SOURCE-
CODE MANAGEMENT

Jennifer Vesperman
O’Reilly, 2007. 395 pages.
ISBN 0-596-52703-9

I admit to a certain sense of relief
that this is a very straightforward
book. No monkeys. No dogs. Ei-
ther you have a burning need for
it (e.g., you are trying to figure
out which end is up while using
CVS) or you don’t. If you need to
know more about CVS, this is a
good, explanatory reference that
will keep you from the sort of
hazy hand-waving incantations
that go on all the time at my
place of work. (I blush to admit
that I’d been using the contradic-
tory option combination “-d -P”
for quite some time because,
well, that’s what somebody told
me to do and nothing bad hap-
pened. Also it was keeping the
tigers away from my desk, appar-
ently.) The book does a nice job
of explaining differences be-
tween releases (which is impor-
tant in a heterogeneous environ-
ment, where my CVS has all the
latest flashy features, the servers

have almost all of them, and alas,
half my colleagues are in the
dark ages).

If you aren’t deeply interested in
CVS, go read something else.

THE ART OF SOFTWARE SECURITY
TESTING: IDENTI FYING SOFTWARE
SECURITY FLAWS

Chris Wysopal, Lucas Nelson,
Dino Dai Zovi, and Elfriede
Dustin
Symantec Press, 2007. 250 pages.
ISBN 0-321-30486-1

It’s nice to see a book that talks
about software security testing in
a sane and sober way. This book
is intended for people testing
their own software, and it dis-
cusses attack tools in the testing
context, with a brief discussion
of how software security and its
testing fit into the development
model. Oddly, it doesn’t talk
much about what I’ve always
found to be the hardest part,
convincing developers to care,
although it does address it indi-
rectly by talking about the cost
of fixing security flaws at various
points in the process (e.g., it’s a
lot cheaper to notice you need
encryption before you ship a mil-
lion copies and end up on the
front page of a newspaper).

On the whole, I found the book
unsatisfying. It’s got a bunch of
good information, but I’m not
sure who the audience is. It
seems to be meant for testers
who don’t have a security back-
ground, but there’s really not
enough information about secu-
rity to let them test things effec-
tively and know what’s an impor-
tant vulnerability and what’s not.

There’s a completely gratuitous
ad for a Symantec product
thrown in; I’m sure that Syman-
tec’s vulnerability database is a
lovely thing, but what exactly
has it got to do with patch man-
agement for your product, where
you’re trying to release patches,

not figure out what patches you
need to install?

HOW TO BREAK WEB SOFTWARE:
FUNCTIONAL AND SECURITY
TESTING OF WEB APPL ICATIONS
AND WEB SERVICES
Mike Andrews and James A.
Whittaker
Addison-Wesley Professional, 2006.
240 pages. ISBN 0321369440

R E V I E W E D B Y M I N G
C H OW

As the number of Web applica-
tions increases, so do the risks of
exposing the most critical busi-
ness and personal data. Despite
the growing acceptance of appli-
cation security, security testing
in the QA process is still largely
lax. Glancing at this title, one
would have the impression that
it resembles one of the “Hacking
Exposed” books. However, An-
drews and Whittaker did a very
good job in not doing exactly
that.

This book covers all the most
current attacks and issues per-
taining to Web applications and
services. The attacks are well or-
ganized into specific categories:
client-based, state-based, user-
specific input, language-based,
server-based, and authentication.
Attacks such as SQL injection,
cross-site scripting, buffer-over-
flows, and even fake cryptogra-
phy are discussed. For each at-
tack, the “when to apply attack,”
“how to conduct attack,” and
“how to protect against attack”
are described with very good il-
lustrations using code or screen-
shots. The book is largely inde-
pendent of language choice.
However, the book delves into
using a plethora of tools (e.g.,
Witko, NitkoParos, SSLDigger)
for security testing. Finally, the
book concludes with a discus-
sion of privacy issues and threats
in Web services.

The primary focus of this book is
on testing. This is not a book on

; LOGIN: APR I L 2007 BOOK REVIEWS 67



68 ; LOG I N : VO L . 3 2 , NO . 2

how to exploit servers or appli-
cations in gory detail. This is
also not a book on how to write
secure code, or how to design se-
cure software. However, it gives a
concise overview of all the cur-
rent problems in Web applica-
tions and services. This book is
handy for anyone working in
software QA. It also serves as a
good introduction to Web appli-
cation security for new develop-
ers.

INS IDE THE MACHINE: AN
I LLUSTRATED INTRODUCTION
TO MICROPROCESSORS AND
COMPUTER ARCH ITECTURE

Jon Stokes
No Starch Press, 2006. 320 pages.
ISBN 1-59327-104-2

R E V I E W E D B Y R I K
F A R R OW

Have you ever wondered just
what Intel has been doing to
make its processors run faster
and cooler? Stokes provides an
illustrated view into key areas of
processor technology that ex-
plains the big issues in processor
design. I had a good idea of what
pipelining and superscalar meant

before I started reading this
book; I had actually learned
about pipelining in a hardware
design course in the late 1970s.
But Stokes makes it easy to un-
derstand what these terms mean,
and what effect they are sup-
posed to have on processor per-
formance.

Much of this book is based on ar-
ticles published previously by
Stokes at arstechnica.com, and if
you have been following his arti-
cles, some of this material will be
familiar. Chapters have been
added to the beginning to fill in
some basics and terminology, for
example, as well as providing
some explanation of the purpose
of cache. The writing is clear,
and the four color diagrams
make a difference in coming to
grips with a complex topic.

Stokes focuses on just two
processor families, Intel x86 and
IBM Power RISC (used in earlier
Apple Macs). AMD barely gets
mentioned during a discussion
of 64-bit features. But that expla-
nation did make it clear why you
must have a 64-bit operating sys-
tem to use these features and

that you can still run 32-bit pro-
grams, that is, you are not locked
into 64-bit-wide datapaths, in
x86-64.

By the end of the book, I under-
stood a primary difference be-
tween Core Duo and Core 2 Duo
(the latter have wider internal
data paths for doubles, which
were missing in previous Intel
desktop-targeted processors), as
well as what MMX, SSE, and
SSE2 are supposed to do. Read-
ing this book should help you
choose the right processor, as
manufacturers, such as Intel, tar-
get their designs for particular
workloads, and buying the right
processor, with the right amount
of cache, can really make a differ-
ence.

As Stokes himself writes, this is
not a college textbook on com-
puter architecture and related
software (compilers and APIs).
For that, you want Patterson and
Hennessy’s Computer Organiza-
tion and Design: Third Edition
(Morgan-Kaufman, 2004).




