
fect lease timeouts. Sharon an-
swered that someone within
Google who understood hard-
ware came up with a safe time-
out value (which is on the order
of several seconds, as I found out
later). Someone asked about
server replacements. Sharon an-
swered that reboots are okay, as
no state gets lost, but losing a
disk would be a problem.

A Distributed File System for a Wide-
Area High Performance Computing
Infrastructure

Edward Walker, University of Texas at
Austin

Ed Walker works in the Texas
Advanced Computing Lab and
uses NSF TeraGrid, a national
high-performance computing in-
frastructure for performing large-
scale engineering and scientific
problems. TeraGrid currently
uses GPFS crossmounts for sup-
porting remote file sharing. But
because of operating systems is-
sues, not all sites can use IBM’s
GPFS, and in a survey of users in
2005, scp was cited as the most
important data management
tool.

Ed pointed out that many desk-
tops are becoming computation
science–capable and that the ma-
jority of links within TeraGrid
participants have less than 2%
utilization, so that bandwidth
can be used. He then described
XUFS, a userspace overlay that
hooks file system calls by inter-
posing a shared object before libc
to get transparent file system
redirection. XUFS has goals of
location transparency (since lap-
tops and even desktops move
easily), performance, and private
name space, but not file sharing,
as his research has shown that
scientific computing files are
rarely shared (umask of 077).
XUFS aggressively uses local
caches, and it also performs
write-on-close to sync up locally

made changes with the remote
copy.

In performance testing, XUFS
does as well as or better than
GPFS in most cases (the excep-
tion being smaller files). XUFS
has a command-line tool for
flushing the local write cache in
case of a client crash, and auto-
matic recovery in case of host
crashes or network outages.
Gunnar Sirer asked about the
lack of support for file sharing.
Ed answered that out of nearly
2000 GPFS users, only one had
changed the default permissions
to all group read permissions
within directories.

OSDI ’06: 7th USENIX
Symposium on Operating
Systems Design and
Implementation

Sponsored by USENIX in coop-
eration with ACM SIGOPS

Seattle,Washington
November 6–8, 2006

Opening Remarks

Summarized by Rik Farrow

OSDI 2006 began with record
rains in Seattle, but the rain and
local flooding did nothing to
dampen the mood in the confer-
ence. Jeff Mogul started out with
the usual summary of the num-
ber of papers submitted versus
those accepted (149/27), telling
us that each paper was reviewed
multiple times and that shep-
herds helped with each accepted
paper. Papers that did not meet
the format required by the CFP
were rejected without review. As
OSDI, together with SOSP, is the
top venue for publishing refereed
operating-system-related papers,
hopeful authors are strongly mo-
tivated to do much more than
adhere to formatting.

Jeff thanked the program com-
mittee members and the people

and organizations who spon-
sored OSDI. He pointed out
that registration fees do not
begin to cover the cost of the
conference, but through the
work of Robbert van Renesse and
USENIX, enough money was
raised to pay for registration fees
and travel expenses for 72 stu-
dents, as well as two receptions.
Jeff also told us that he had set
up osdi2006.blogspot.com so
that summaries and comments
on papers could be posted in real
time during the conference.

Brian Bershad announced the
winner of the SIGOPS Hall of
Fame award, “Safe Kernel Exten-
sions without Runtime Check-
ing,” by George C. Necula and
Peter Lee. The two Best Paper
awards went to “Rethink the
Sync” and “Bigtable: A Distrib-
uted Storage System for Struc-
tured Data.”

I found most of the papers excit-
ing and was busy emailing links
to abstracts to friends and ac-
quaintances who I thought
would likely be interested (most
were). OSDI certainly has be-
come one of my favorite confer-
ences, being full of great infor-
mation and new ideas.

LOCAL STORAGE

Summarized by Anthony Nicholson

Rethink the Sync

Edmund B. Nightingale, Kaushik
Veeraraghavan, Peter M. Chen, and
Jason Flinn, University of Michigan

Awarded Best Paper

The authors note that asynchro-
nous I/O provides good user-per-
ceptible performance, but it does
not provide reliable and timely
safety of data on disk. Synchro-
nous I/O provides data safety
guarantees but incurs significant
overhead. Ed Nightingale pre-
sented a new model of “external-
ly synchronous” I/O that resolves
this tension by approximating

86 ; LOG I N : VO L . 3 2 , NO . 1



the performance of asynchro-
nous I/O while providing the
data safety of synchronous I/O.
The main reason synchronous
I/O is slow is that applications
must block until data has been
written safely to disk. The au-
thors argue that only the user,
not applications, should be con-
sidered “external” to the system.
Therefore, under their model,
applications need not block on
I/O operations but can perform
other work while writes are
queued. The system only blocks
when some output that depends
on a pending write is about to be
externalized to the screen, disk,
or network—in other words,
when any event occurs that
would make the user think that
the I/O has completed.

External synchrony preserves
the same causal ordering of
writes as synchronous I/O. The
fact that unrelated I/O operations
can be batched and overlapped
without violating causal ordering
is what enables the performance
wins in their system. Their im-
plementation leverages their
prior work (Speculator, SOSP
’05) to track causal dependencies
across multiple applications and
throughout the kernel. “Commit
dependencies” inside the kernel
track all the processes and ob-
jects that are causally dependent
on a given pending write. Com-
mit dependencies are forwarded
to applications that become
tainted by uncommitted data, to
ensure preservation of causal or-
dering. They modified the Linux
ext3 file system to support exter-
nal synchrony, and they com-
pared the performance of their
system to native ext3 in both
asynchronous and synchronous
I/O mode and to ext3 synchro-
nous with write barriers. Their
evaluation results show that
ext3, even using synchronous
I/O, does not guarantee data
durability across crashes or
power failures, but ext3 with

write barriers provides the same
data safety of external synchrony,
although at a severe performance
cost. Their performance on vari-
ous file system benchmarks
shows performance close to that
of asynchronous ext3, while pro-
viding superior security guaran-
tees to that of synchronously
mounted ext3. The performance
of ext3 using synchronous I/O is
also an order of magnitude slow-
er than that of external syn-
chrony. Their performance on
the specweb99 benchmark also
shows that external synchrony
adds minimal latency overhead
as compared to asynchronous
file systems.

David Anderson from Carnegie
Mellon asked whether there was
a corner case where an applica-
tion would do an asynchronous
write, see it failed, and change
behavior based on that. Ed re-
sponded that in their system, by
the time an application discovers
a write has failed it would have
already moved on, complicating
recovery. He argued, however,
that “failure notification” usually
means kernel panic and crashing
owing to hardware failure, so the
user has bigger problems in that
case. George Candea from EPFL
asked about network latency in
the mySql benchmark from their
paper. Ed said that the client and
server were on the same box in
their evaluation, because the
SpecWeb benchmark was more
concerned with network latency.
George explained that he was
more interested in group commit
latency. In that case, Ed said,
their system gets the benefit of
group commit but wouldn’t be
able to commit multiple transac-
tions from the same client be-
cause of the rules of external
synchrony. Micah Brodsky from
MIT asked whether performance
would suffer under external syn-
chrony for high bandwidth, se-
quential I/O operations. Ed said
you would still see improve-

ment, because the OS wouldn’t
be blocking between operations
if they weren’t dependent on
each other. Micah wondered how
their performance would com-
pare to that of asynchronous I/O
for such large sequential opera-
tions. Ed noted that asynchro-
nous I/O is limited by the speed
to write to memory, and external
synchrony would be similarly
limited.

Type-Safe Disks

Gopalan Sivathanu, Swaminathan
Sundararaman, and Erez Zadok, Stony
Brook University

Gopalan Sivathanu began by not-
ing that data on disk consists of
two things: data and pointers.
The structure of pointers on disk
implies how disk blocks are or-
ganized via higher-level abstrac-
tions into files and directories.
Unfortunately, today’s disks are
pointer-oblivious. The file sys-
tem knows all about the seman-
tics of data and the disk knows
about the hardware details. But
because the interface between
OS and disk is so constrained,
little information is exchanged
between the two. Everything is
just reading and writing blocks.
The disk doesn’t know the high-
level reason for a read/write. For
example, it would be nice for a
RAID system to prioritize the
handling of metadata blocks, be-
cause those are more important.
Type-safe disks try to bridge this
semantic gap. The authors pro-
pose an extended interface be-
tween the kernel and disk, to en-
able both type-awareness (disks
tracking pointers) and type-safe-
ty (disks using pointer informa-
tion to enforce constraints).

Because type-safe disks are con-
scious of the relationship be-
tween data and pointers, they
can do such things as automati-
cally garbage-collect data blocks
that are no longer referenced by
any file or directory. Offloading
these tasks to the disk lets the

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 87



file system component of the op-
erating system shrink in size and
complexity. The authors added
additional API calls between file
system and disk, such as “allo-
cate block,” “create pointer,” and
“delete pointer.” They have im-
plemented a prototype in Linux
as a pseudo-device driver and
have ported the ext3 and vfat file
systems to support TSD. The
porting effort was minimal (ap-
proximately two person-weeks).
Their case study is a security ap-
plication (ACCESS: A capability
conscious extended storage sys-
tem), which is disk-enforced ac-
cess control. To access data, an
application must provide the
disk with a valid capability (an
encryption key). Thus the maxi-
mum amount of data that can be
exposed is that which is current-
ly in use or cached at a higher
level. Traditionally, if the OS
were compromised, then all data
on disk would be compromised.
ACCESS establishes a security
perimeter on the disk itself in-
stead.

Michael Scott from the Universi-
ty of Rochester asked how TSD
would work with a file system
that doesn’t use the hierarchical
pointer design, such as a file sys-
tem that stores file data in a
chain of blocks interconnected
by pointers. Gopalan answered
that they can support such file
systems because the pointers
tracked by type-safe disks need
not be the same as those main-
tained by the file system in its
own metadata. Margo Seltzer
from Harvard asked how this
was different from the semanti-
cally smart disk work. Gopalan
responded that semantically
smart disks need to do a lot of
operations at the disk level to
infer the sort of information that
type-safe disks explicitly are
given through the API. Margo
concluded that the two solutions
are basically the same but the

implementation cost is different.
Gopalan disagreed.

Another questioner asked where
private keys for disk blocks can
be stored, if we don’t trust the
operating system that can read
application memory. That dis-
cussion was taken offline. Emin
Gün Sirer from Cornell asked
how they settled on the API be-
tween the kernel and disk. Why
not just move the whole file sys-
tem into the disk? Gopalan an-
swered that because we often
want to run multiple file systems
(or none at all, for certain data-
bases) at once, not all functional-
ity can be pushed into the disk.
He was not confident that their
API was the most minimal inter-
face possible.

Finally, Chad Verbowski from
Microsoft Research asked how
they would properly keep the
parity blocks in a RAID system.
Gopalan answered that if one
wants to use type-safe disks,
then all layers of the file system
software stack must be modified,
including the RAID software.

Stasis: Flexible Transactional Storage

Russell Sears and Eric Brewer,
University of California, Berkeley

Rusty Sears stated that systems
researchers in particular often
abandon off-the-shelf storage so-
lutions because of their poor per-
formance and reinvent the wheel
on every project that juggles a
large amount of data. The goal of
their project was to provide a
transactional storage framework
that provides good performance
off the shelf but is easily extensi-
ble to meet the needs of users
without requiring that applica-
tions be rewritten because they
are too tied into the underlying
plumbing. This saves users from
having to concern themselves
with details of logging, recovery,
etc., unless they really want to.
Stasis has the following three de-
sign principles: (1) Provide sim-
ple, thin APIs to low-level com-

ponents. (2) Ensure high-level
semantics via local invariants.
(3) Make all module interactions
explicit—this lets them place
policy decisions in replaceable
modules.

Russell gave an example of im-
plementing a concurrent hash
table on top of Stasis. They wrap
operations with Stasis calls so
that the underlying layers know
how to undo the operation that
is being wrapped, in case a trans-
action needs to be rolled back.
Russell also discussed their case
study: persistent objects. In
other words, these are systems
that support transactional up-
dates over a series of objects. To
optimize these updates, Stasis
can conserve log bandwidth by
only logging diffs. Also, they
halve memory usage by deferring
page cache updates. Low-level
modules implement log updates
and defer writes to the page
cache in order to save memory.
They implemented group com-
mit in the log manager, and eval-
uation shows good performance
gains. Since the log manager sees
all updates that are produced, it
could be extended to transpar-
ently implement automatic repli-
cation, etc. Stasis can also ensure
temporal ordering of certain
writes (such as external syn-
chrony). Similar to type-safe
disks, the type-system of the disk
could be coupled to a type-sys-
tem of a higher-level application,
since these modules are all ex-
tensible. The authors are inter-
ested in implementing zero-copy
I/O for the page file or replicat-
ing the page file on multiple
servers.

Compared to atop Berkeley DB
and SQL, performance is reason-
able, with the optimizations de-
scribed here doubling through-
put and halving required mem-
ory. There were no questions.
The project Web page is
http://www.cs.berkeley.edu/
~sears/stasis/.

88 ; LOG I N : VO L . 3 2 , NO . 1



RUNTIME REL IAB I L ITY MECHANISMS

Summarized by Geoffrey Lefebvre

SafeDrive: Safe and Recoverable Ex-
tensions Using Language-Based Tech-
niques

Feng Zhou, Jeremy Condit, Zachary
Anderson, and Ilya Bagrak, University
of California, Berkeley; Rob Ennals,
Intel Research Berkeley; Matthew
Harren, George Necula, and Eric
Brewer, University of California,
Berkeley

Feng Zhou began his talk by not-
ing that many operating systems
and applications run loadable
extensions. These extensions are
often buggier than their hosts
and execute in the same protec-
tion domain. To address this
issue, the authors present Safe-
Drive, a language-based ap-
proach to extension safety.
SafeDrive can be decomposed
into two principal components:
the Deputy source-to-source
compiler and the run-time recov-
ery system. Although the princi-
ples presented could be applied
to other systems, the talk and the
paper focused on adding type-
based checking and restart capa-
bility to existing Linux device
drivers. The core idea is to trans-
form code written in C into a
safe variant, addressing issues
such as out-of-bound array ac-
cesses, null terminated strings,
and unions.

Previous approaches to retro-
fitting type safety to C, such as
CCured, required the use of fat
pointers, which contain both the
pointer and bound information.
This approach unfortunately re-
quires changing the memory lay-
out of data structures, making
the modified extensions incom-
patible with their host’s binaries.
Instead of using fat pointers,
Deputy relies on the programmer
adding lightweight annotations
to header files and extension
source code. Since SafeDrive re-
lies on run-time checks, it must

provide mechanisms to deal with
violations. SafeDrive enforces
the invariant that no driver code
will execute after a failure. The
SafeDrive run-time system tracks
all kernel resources used by a de-
vice driver, using wrappers
around kernel API functions.
Each tracked resource is paired
with a compensation operation
that performs an undo when a
fault occurs in a driver. As an ex-
ample, the compensation opera-
tion for a spinlock is to release
the lock.

Compared to approaches using
hardware memory protection
such as Nooks, SafeDrive pro-
vides finer-grained memory pro-
tection. This allows it to catch
more errors at compile time and
exhibit less run-time overhead.

Andrew Baumann from the Uni-
versity of New South Wales stat-
ed that many bugs are concur-
rency-related and asked whether
SafeDrive can detect and recover
from such errors. Feng Zhou an-
swered that SafeDrive does not
currently address this issue. Brad
Karp from University College
London asked whether SafeDrive
handled integer overflow, specifi-
cally the case where a signed in-
teger overflow could result in a
different memory allocation than
the size requested. Feng Zhou
answered that SafeDrive doesn’t
deal with integer overflow but
that, in most cases, memory allo-
cation routines should handle
this issue. Rik Farrow asked
what happens when program-
mers make errors writing the an-
notations. The answer is that the
Deputy type system will catch
some of the errors. Michael Swift
from the University of Wisconsin
asked how easy would it be to in-
tegrate this with Nooks to allow
catching errors that only Nooks
is able to catch. Feng Zhou said
that it should be feasible to do
so. Finally, someone from the
University of California, Santa

Cruz, asked whether SafeDrive
was able to cope with complex
data structures. Feng replied that
by being able to deal directly
with pointers, Deputy is able to
do so.

BrowserShield: Vulnerability-Driven
Filtering of Dynamic HTML

Charles Reis, University of Washington;
John Dunagan, Helen J. Wang, and
Opher Dubrovsky, Microsoft; Saher
Esmeir, Technion

Charles Reis began by pointing
out that vulnerabilities in
browsers are dealt with by patch-
ing, but there will often be a long
delay between the time a patch is
released and its application. This
delay opens a dangerous time
window when attackers can even
use the patch as a blueprint to
create exploits. A previous ap-
proach, Shield, aims to provide
protection equivalent to patch-
ing but with easier deployment
and roll-back. Shield allows fil-
tering of malicious static content
using vulnerability signatures.
BrowserShield’s goal is to provide
similar protection for dynamic
Web content by rewriting em-
bedded scripts into safe equiva-
lents on their way to the brows-
er.

BrowserShield consists of a
JavaScript library and a logic in-
jector, which could be located at
the server, at the firewall, or even
as a proxy on the client. Both
components are configured
using flexible policies that can be
tailored to address specific vul-
nerabilities. The injector per-
forms a first translation which
modifies the HTML to remove
exploits and wraps all embedded
scripts to force them to be in-
voked via the BrowserShield li-
brary. The library performs a
second translation during page
rendering by dynamically rewrit-
ing scripts to access the HTML
document tree via an interposi-
tion layer. The evaluation shows
that, combined with anti-virus

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 89



and HTML filtering, Browser-
Shield provides patch-equivalent
protection for all 19 vulnerabili-
ties in IE for which patches were
released in 2005.

George Candea from EPFL asked
about the guarantees that can be
provided that pages will be ren-
dered correctly. The answer is
that it’s much easier to roll back
a policy than an applied browser
patch when something goes
wrong. BrowserShield policy
only affects pages, not the brows-
er itself. George then asked how
to evaluate the policies. Charles
answered that the two metrics
are how easy it is to write a poli-
cy and how to thoroughly test
policies. Jason Flinn from Uni-
versity of Michigan asked
whether the scripting was part of
the TCB. Charles Reis said it is.
Brad Chen from Google asked
about specific things that the au-
thors would like to see added or
removed from JavaScript.
Charles Reiss answered that a
smaller API would make it easier
to achieve complete interposi-
tion. Benjamin Reed from Yahoo!
inquired how to debug a policy
once deployed. Charles Reis an-
swered that it’s important to first
distinguish whether a problem is
due to BrowserShield or due to
the page or browser. A solution
would be to render the page in
a unprotected browser running
in a virtual machine. Benjamin
further asked what the core
dump should look like. Charles
answered that BrowserShield
could be enhanced with a set of
debugging policies to generate
the appropriate information.

Finally, Diwaker Gupta from
UCSD asked how to prevent infi-
nite loops in the script transla-
tion. Charles answered that if the
script had an infinite loop then
its interpretation would fall into
an infinite loop, but he didn’t
think that it was possible for a

script to force the translation
step into an infinite loop.

XFI: Software Guards for System Ad-
dress Spaces

Úlfar Erlingsson, Microsoft Research,
Silicon Valley; Martín Abadi, Microsoft
Research, Silicon Valley, and University
of California, Santa Cruz; Michael
Vrable, University of California, San
Diego; Mihai Budiu, Microsoft Research,
Silicon Valley; George C. Necula,
University of California, Berkeley

Úlfar Erlingsson began by intro-
ducing XFI, a software-based
protection system that provides
safe system extensions. He pro-
ceeded with a demo of a JPEG
image containing an exploit
being rendered by both an un-
modified JPEG library and an
XFIed version of the same legacy
library. The first case resulted in
an application crash, whereas the
XFIed version properly trapped
and gracefully aborted the ren-
dering.

The XFI implementation creates
safe extensions from existing
Windows x86 Portable Executa-
bles by performing binary rewrit-
ing. The rewriter adds inline
guards or short machine-code se-
quences that perform checks at
run-time. Guards are placed on
computed control-flow transfers
using unique labels as valid tar-
get identifiers. A guard verifies
that the label is present at the
target site before performing a
computed jump or call. This
mechanism ensures that all
transfers remain within the con-
trol-flow graph. The rewriter also
adds memory access guards to
ensure that computed memory
accesses lie within valid memory
regions. The validation uses a
fast path when the address lies
within bounds established at
load time. Memory accesses out-
side of these bounds fall through
a slow path that validates the ad-
dress using data structures simi-
lar to page tables. The binary is
also modified to use two stacks,

a scoped stack and an allocation
stack. The scoped stack contains
return address and variables that
are accessed by name only. The
allocation stack contains data
that can be accessed using com-
puted access. This mechanism
allows the integrity of the scoped
stack to be established through
static verification.

Because rewriting binaries is a
tricky process, XFI doesn’t re-
quire this step to be trusted. In-
stead, XFI relies on a trusted ver-
ifier to parse the binary at load
time, ensuring that binaries have
the appropriate structure and the
appropriate guards. The verifier
is simple, fast, and consists of
only 3000 lines of straightfor-
ward code, mostly x86 decoding
tables, increasing confidence in
its correctness.

Bryan Ford from MIT asked how
XFI ensures that the heap is not
incorrectly seen to contain
matching identifiers. Úlfar an-
swered that a guard checks
whether computed control flows
are to targets within the binary,
in addition to matching identi-
fiers and the verifier ensuring
that identifiers are unique. Jim
Lawson from MSB Associates
asked whether XFI rejects self-
modifying code. Úlfar acknowl-
edged this. Rik Farrow asked
about binary size increase. Úlfar
answered that code size can in-
crease by a factor of two or more
but that most of the additional
code is either in nonexecutable
verification hints or in out-of-
band trampolines, which are not
invoked often. Therefore the in-
crease in code size has a minimal
impact on performance and i-
cache behavior.

90 ; LOG I N : VO L . 3 2 , NO . 1



OS IMPLEMENTATION STRATEGIES

Summarized by Andrew Miklas

Operating System Profiling via Laten-
cy Analysis

Nikolai Joukov, Avishay Traeger, and
Rakesh Iyer, Stony Brook University;
Charles P. Wright, Stony Brook
University and IBM T.J. Watson
Research Center; Erez Zadok, Stony
Brook University

Nikolai presented a new ap-
proach to operating system pro-
filing. He showed that the loga-
rithmic distributions of an OS’s
latencies can reveal most, if not
all, aspects of the OS’s internal
operation. He presented several
methods to analyze these profiles
and provided interesting exam-
ples of the sorts of conclusions
that can be drawn using the pro-
filer data. Among others, the au-
thors were able to diagnose a
locking error in the Linux kernel
without having to examine the
source code. Also, because the
latency can be measured entirely
outside of the kernel, the meth-
od can be used to analyze operat-
ing systems even if the source is
not available.

The basic technique involves re-
peatedly measuring the times re-
quired to complete OS requests.
The latency of each request de-
pends on the path taken through
the code and interactions with
other processes. Therefore, the
distribution of these values can
be used to make inferences about
an operating system’s inner
workings. The latencies are used
to generate histograms that can
be analyzed either visually or by
a provided automatic data-analy-
sis toolset. Various events, such
as being blocked on a lock, show
up as spikes on the histogram.
Correlations between different
requests can reveal their con-
tention on a shared resource. For
example, similar spikes on the
histograms of two different sys-
tem calls that only appear when
the two are run together suggest

that they contend on the same
lock.

Although the profiler can be
used without any kernel changes
whatsoever, it can take advan-
tage of kernel instrumentation
points if they are available. Load-
able drivers can also be used as
vantage points from which to
measure latencies. The authors
created a tool that can patch
Linux file systems to automati-
cally produce latency data. The
presented profiler adds negligi-
ble overheads. The generated
profiles are usually smaller than
1 kilobyte. The profiler adds less
than 200 CPU cycles per profiled
call, whereas existing profilers
add overhead per profiled event.
For example, if a system call is
trying to acquire several sema-
phores and to perform I/O, exist-
ing profilers would add overhead
for each such event. As a result,
the presented profiler is efficient.
As measured with the Postmark
benchmark, the system’s CPU
time was affected by less than
4%.

Marcel Rosu of the IBM T.J. Wat-
son Research Center asked
whether the technique makes
heavy use of CPU cycle counters
in order to cheaply measure in-
tervals of time and if they tested
their system on CPUs that use
variable clocks, such as those
found in notebook computers.
Although they didn’t test on vari-
able-clock CPUs, “it should be
possible,” Nikolai said, “to sim-
ply apply a scaling factor to han-
dle the cases where the CPU isn’t
running at its maximum fre-
quency. Also, remember that our
system doesn’t rely on using
CPU cycle counters. We could
use an off-CPU high-precision
timer if the CPU lacked an ap-
propriate method of measuring
intervals.” Brad Chen of Intel
asked whether the profiler can be
used to analyze anomalous cases,
rather than just bad implementa-

tions of the main case. The paper
describes a “sample profile,”
where instead of folding all the
latencies for a given test togeth-
er, these were separated based on
fixed time intervals. Nikolai’s
group used this method to ana-
lyze ReiserFS’s performance dur-
ing the relatively infrequent peri-
ods of time when the Linux
buffer flushing daemon bdflush
was active.

CRAMM: Virtual Memory Support for
Garbage-Collected Applications

Ting Yang and Emery D. Berger,
University of Massachusetts Amherst;
Scott F. Kaplan, Amherst College; J.
Eliot B. Moss, University of
Massachusetts Amherst

Ting Yang began by saying that
the memory management com-
ponent of an OS and the heap-
management component of a
garbage-collected (GC) run-time
environment must cooperate
with each other to ensure good
performance under all memory
loads. Today’s operating systems
don’t provide enough VM so-
phistication to support GC run-
times effectively when memory
pressures are significant. As a re-
sult, current run-times are reac-
tive; they only resize the heap
once performance has degraded.
In contrast, CRAMM is predic-
tive; it can determine the best
heap size and suggest that the
run-time adjust it before the sys-
tem begins to experience perfor-
mance loss.

CRAMM consists of two compo-
nents: an extension that sits in
the kernel’s VM subsystem, and a
heap-size model that exists in
the run-time environment. The
kernel-mode component tracks
each process’s working-set size
(WSS): the amount of memory
that the process needs so that it
does only a small amount of
swapping. The model compo-
nent computes the heap size that
would cause the process’s WSS to
just fit within the maximum

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 91



amount of memory the operating
system is willing to allocate. If
the current heap size and the
computed optimal heap size dif-
fer, the model asks the run-time
to adjust the size of the heap.
The system can therefore quickly
respond to changes in memory
pressure by reducing the size of
the heap before it is swapped
out, avoiding reclamation-trig-
gered thrashing. CRAMM adds
only about 1–2.5% overhead dur-
ing ordinary test runs where
memory is plentiful. In ex-
change, CRAMM dramatically
improves the performance in sit-
uations where memory pressure
suddenly increases.

Chris Stewart, University of
Rochester, asked whether the au-
thors assumed that when using
copying garbage collectors, the
number of pages used to hold
“copied survivors” does not
change rapidly and wondered
whether their system therefore
would be able to handle flash-
loads when the run-time uses
copying GCs. Ting explained
that they keep track of the CS
value from one invocation of the
GC to the next and apply a
smoothing function. The maxi-
mum value ever seen for the CS
value is weighted more heavily
to ensure that they don’t under-
estimate this parameter.

Flight Data Recorder: Monitoring
Persistent-State Interactions to Im-
prove Systems Management

Chad Verbowski, Emre Kıcıman,
Arunvijay Kumar, and Brad Daniels,
Microsoft Research; Shan Lu, University
of Illinois at Urbana-Champaign; Juhan
Lee, Microsoft MSN; Yi-Min Wang,
Microsoft Research; Roussi Roussev,
Florida Institute of Technology

Chad presented the Flight Data
Recorder (FDR), a new tool
which will ship with Windows
Vista that allows all changes to
the persistent state of a system to
be logged for later analysis. He
explained that various system

management tasks that up until
now have been something of a
black art essentially reduce to
queries over the logs gathered by
the FDR. As a motivating exam-
ple, Chad told of a server at Mi-
crosoft that would exhibit ex-
tremely poor performance every
few weeks. A system administra-
tor eventually determined that
this was because the system’s
page file was being inappropri-
ately shrunk. Unfortunately, he
was unable to determine why
this was happening. The best he
could do was to send out email
to the other admins asking them
to make sure they weren’t resiz-
ing the file. However, after run-
ning the FDR for a few weeks,
the logs were used to quickly
pinpoint the offending script.

Currently, system management
tools break down into roughly
three categories. Some use a sim-
ilar logging approach but, owing
to space constraints, activate
only on demand. These types of
tools are of limited usefulness
when trying to determine why a
particular piece of configuration
data changed. Another class of
tools uses signatures to look for
known-bad configurations.
However, creating signatures
general enough to be useful
across a wide variety of machines
is a time-consuming process. Fi-
nally, manifest-based approaches
require that applications provide
the system with a list of all con-
figuration dependencies. Howev-
er, the authors point out that the
uninstall tools included in many
software packages leave behind
files and configuration data, sug-
gesting that building complete
manifests is impractical.

The proposed approach simply
logs all changes to the system’s
persistent state. The main contri-
bution of the work is its novel
method of encoding the activity
logs. This method requires on
average just 0.5–0.9 bytes per

event. Since typical systems gen-
erate on the order of 10 million
events per day, the resulting logs
are small enough to be practical-
ly sent over the network, ar-
chived, correlated with other
systems, and quickly queried.
The authors report that they are
able to execute common queries
against a day’s worth of stored
data in as little as three seconds.
They also note that it should be
possible to serve as many as
5000 systems running the FDR
with a single archive server.

The authors see the FDR as
being useful not only for system
management but also for ensur-
ing that various security and
management policies are being
followed. For example, the logs
captured by the FDR can be used
to determine how often a locked-
down production server is modi-
fied without proper approval.
The FDR can also be used to as-
sist in locating system “extensi-
bility points”: configuration set-
tings that control the loading of
extra system services or plug-ins.
This has important implications
for detecting and removing mal-
ware. In summary, the FDR has
made it possible to know about
everything that is happening on
a system.

Q: Can the FDR be used to pre-
dict how a system will respond
to a configuration change? A: We
can search for another system
that already has the configura-
tion change but is otherwise sim-
ilar to the machine in question.
If we can find such a machine,
we can use it to approximate
how this system would behave
with the change. Q: What is the
right way to query the logs gen-
erated by the FDR? Should we be
using SQL, or perhaps a cus-
tomized query engine with a pro-
grammatic API, etc.? A: Right
now, we just expose the raw ta-
bles as they are in the log file.
Any special-built query engine

92 ; LOG I N : VO L . 3 2 , NO . 1



should be optimized for queries
of the form “What files have
been changed since time T?”
since the most common requests
seem to be those that look for
modified configuration entries.
Q: Other types of events might
be worth logging. For example,
did you consider logging all
socket activity? A: We did think
about logging IPC activities, but
the system doesn’t currently im-
plement this feature.

WORK- IN-PROGRESS REPORTS (WIPS)

Summarized by Andrew Miklas

Taking the Trust out of Global-Scale
Web Services

Nikolaos Michalakis

If you were to contract out the
hosting of a dynamic Web site to
a number of content delivery
networks, how could you be sure
that every system serving your
customers was running the exact
software you supplied to the
CDNs? This problem becomes
even more severe for content dy-
namically generated by ordinary
Internet users, where contract
law might not be sufficient moti-
vation to ensure that the distrib-
utors don’t behave maliciously.

Nikolaos is researching ways to
certify that dynamic content is
served correctly in an environ-
ment where the delivery systems
are not fully trusted by the con-
tent providers. The basic design
has clients forward a fraction of
the signed responses from one
server to other replicas for verifi-
cation. If the verifying replica
computes a different result, it
publishes the erroneous signed
response so that other hosts can
learn of the misbehaving server.

Information Flow for the Masses

Max Krohn, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie
Kohler, Robert Morris, and Alex Yip

Today’s Web sites are serving an
increasing amount of user-con-
tributed content. They are no
longer places where users go to
passively download information,
but instead they act as meeting
points where people can ex-
change content. For example,
consider Wikipedia, which is
built on content contributed by
its users.

However, sites today do not
allow users to contribute to the
applications running on them.
Wikipedia does not allow anony-
mous users to patch up the Me-
diaWiki software running on the
live servers, as it does with its
content. The main reason why
this can’t be allowed in today’s
hosting environments is security;
a malicious patch could be used
to leak ordinarily inaccessible in-
formation.

Traz is a novel Web-hosting envi-
ronment that applies Asbestos-
like reasoning to Web servers.
User-contributed code may be al-
lowed to manipulate data ordi-
narily inaccessible to the con-
tributing user, but it will not be
allowed to leak this information
back to that user. Traz therefore
allows Web sites to safely exe-
cute user-provided code against
privileged information. Traz runs
on ordinary commodity operat-
ing systems and allows develop-
ers to write their applications
using any programming lan-
guage.

AutoBash: Hammering the Futz Out
of System Management

Ya-Yunn Su and Jason Flinn

We’ve all experienced it: a sys-
tem that isn’t performing quite
the way we’d like. Maybe the
video hardware doesn’t set the
appropriate resolution when

plugging an external monitor
into a notebook. Perhaps the
wireless card doesn’t reassociate
with the nearest access point
correctly on wake-up. No matter
what the problem, we typically
use the same approach to solve
it: Type the symptoms into
Google, find a page that de-
scribes a fix, apply the steps
described in the fix, and check
to see whether the problem is
corrected. If not, back out the
changes, and repeat. This pro-
cess, which Ya-Yunn termed
“futzing,” requires a substantial
amount of manual intervention
and can lead to serious frustra-
tion.

AutoBash is a tool that auto-
mates the futzing process. When
the user notices a configuration
error, he or she describes the
symptoms to the tool. AutoBash
will search its database for sce-
narios where a user started with
the current configuration, ap-
plied some changes, and ended
up with a new configuration that
satisfies the desired description.
Once a record is found, the steps
required to adjust the user’s con-
figuration will be automatically
replayed. If the user is dissatis-
fied with the result, he or she
will be given the opportunity to
have the changes automatically
rolled back and will possibly be
presented with another solution.
Finally, should the tool be unable
to automatically correct the
error, it will watch as the user
does so manually, so that other
users may benefit from the futz-
ing done by this user.

Dynamic Software Updating for the
Linux Kernel

Iulian Neamtiu and Michael Hicks

Software updates are a necessari-
ly evil. In order to apply them, a
service must typically be restart-
ed. For many applications, the
downtime that must be incurred
in order to restart is undesirable.
Worse, updates to system soft-

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 93



ware such as the kernel can ne-
cessitate a full reboot of the ma-
chine, resulting in an even
longer stretch of downtime.

Gingseng, a tool worked on by
the presenter, can apply updates
to running user-mode services. It
does this by determining strate-
gic locations in a service’s execu-
tion where the code can be safely
updated. Patching kernel code,
however, is far more difficult,
owing to its low-level and highly
concurrent nature. Iulian de-
scribed some of his work to
make Ginseng able to update a
live Linux kernel.

iTrustPage: Preventing Users from
Filling Out Phishing Web Forms

Troy Ronda and Stefan Saroiu

The U.S. economy loses billions
of dollars each year to phishing
attacks. Even worse, phishing
erodes the public’s trust in the
Web as a platform for e-com-
merce. Troy claimed that many
forms used to legitimately gather
information originate from well-
established Web sites, whereas
phishing attacks are usually
done from newly created sites.
Fortunately, there are a number
of services that can be used to es-
timate the popularity and thus
the trustworthiness of a site.
Phishing pages must also appear
similar to their targets. Although
it is difficult to design an algo-
rithm to compare two Web
pages, Troy mentioned that a
person can usually determine
with ease if one Web site is mim-
icking another.

These two key observations form
the basis of iTrustPage, a Firefox
extension that helps users avoid
phishing attacks. When a user
tries to fill out a form on a page
that is not well established,
iTrustPage stops the user from
proceeding and asks the user to
describe the task that he or she is
trying to accomplish. Using this
description, iTrustPage makes a

query to Google and shows the
user the Web sites associated
with the first few hits. The user
then indicates which Web site
looks most similar to the page
the user was expecting. Finally,
the tool redirects the user to the
organization’s legitimate Web
page and away from the phishing
attempt. iTrustPage is currently
available for download at
http://www.cs.toronto.edu/
~ronda/itrustpage/.

Failures in the Real World

Bianca Schroeder and Garth A. Gibson

A major challenge in running
large-scale systems is that com-
ponent failure is the norm rather
than the exception. Unfortunate-
ly, most work on dealing with
failures is based on simplistic as-
sumptions rather than real fail-
ure data. Bianca has been collect-
ing and analyzing failure data
from several real-world installa-
tions. The initial results indicate
that many commonly used fail-
ure models are not supported by
real data. For example, the prob-
ability of a RAID failure can be
an order of magnitude larger,
based on actual observation,
than one would expect given the
standard model, which uses ex-
ponentially distributed intervals
between failures.

Motivated by these initial results,
Bianca is continuing to collect
and analyze failure data from a
large variety of real-world instal-
lations. By carefully grounding
new failure models in real data,
researchers will be able to more
accurately model a system’s re-
sponse to component failure.

Dynamically Instrumenting Operating
Systems with JIT Recompilations

Marek Olszewski, Keir Mierle, Adam
Czajkowski, and Angela Demke Brown

Operating systems, like applica-
tions, grow more complicated
each year. Unfortunately, the
techniques and tools used to in-

strument, trace, and debug ker-
nel-level code have not advanced
as quickly as their user-mode
counterparts. For example, tools
such as Valgrind have made it
possible to inject instrumenta-
tion into running user-mode
code using JIT recompilation
techniques. Because these probes
are dynamically compiled direct-
ly into the surrounding code,
they perform much better than
traditional patch-and-redirect
techniques. Unfortunately, JIT
instrumentation tools are cur-
rently unable to instrument ker-
nel code.

Marek plans to create JIT instru-
mentation tools that can be used
with kernel code. Given the
time-sensitive nature of much of
a kernel, this approach may
make it possible to instrument
code that previously could not
be probed for performance rea-
sons. By bringing the proven
benefits of JIT instrumentation
to the kernel, Marek will assist
systems programmers in better
understanding their operating
systems and ultimately will help
them to produce more efficient
and correct kernels.

Pattern Mining Kernel Trace Data to
Detect Systemic Problems

Christopher LaRosa, Li Xiong, and Ken
Mandelberg

Profilers, debuggers, and system
call tracers can all be used to di-
agnose performance issues with-
in a process. However, diagnos-
ing performance problems that
result from the interplay of two
or more processes can be compli-
cated. For example, determining
why an X server is exhibiting
poor performance can involve
gathering and correlating traces
from both the X server and any
active X clients. Unfortunately,
there are few tools to automati-
cally correlate traces, and pro-
grammers must usually resort ei-
ther to poring over the gathered

94 ; LOG I N : VO L . 3 2 , NO . 1



data by hand or writing ad-hoc
scripts.

Christopher plans to apply data-
mining techniques to system-
wide activity traces. Using these
techniques, anomalous condi-
tions that might impact system
performance can be automatical-
ly detected and isolated, even if
they span multiple processes. He
provided an example involving a
stock-ticker toolbar applet that
unnecessarily flooded the X serv-
er with requests. His trace ana-
lyzer was able to automatically
detect the excess of X calls and
pinpoint their origin. He would
appreciate it if DTrace or LTT
users would share their hard-to-
find bugs with him, so that he
can test the effectiveness of his
system’s automatic detection.

Spectrum: Overlay Network Band-
width Provisioning

Dejan Kostić

Overlay networks are currently
used to efficiently disseminate
content. However, because of
their decentralized nature, it can
be difficult to ensure that there is
enough outbound capacity to
support all receivers as well as
prevent other overlays from
“stealing” bandwidth from high-
er-priority services. This presents
a serious problem when overlays
are used to transfer streaming
media, where timely delivery of
content is necessary for the sys-
tem to operate correctly.

Dejan is working on algorithms
to measure and disseminate
bandwidth availability informa-
tion throughout an overlay net-
work. By doing so, the system
can make globally optimal deci-
sions about how much band-
width to dedicate to a media
stream. This is especially useful
when the same overlay is carry-
ing a variety of different content.
For example, a BitTorrent–like
transfer through the overlay
might be permitted as long as it

doesn’t cause anyone’s video
stream to drop below a certain
bit-rate.

An Infrastructure for Characterizing
the Sensitivity of Parallel Applications
to OS Noise

Kurt B. Ferreira, Ron Brightwell, and
Patrick Bridges

Many commodity operating sys-
tems do not scale well to the
number of processors found in
today’s supercomputers. When
running such operating systems,
as much as 50% of the system’s
performance can be used by the
operating system itself. For this
reason, many of today’s largest
supercomputers run stripped-
down operating systems that im-
pose as small an overhead as pos-
sible.

Kurt’s research seeks to under-
stand exactly how this overhead,
termed “OS noise,” affects the
bottom-line performance of vari-
ous scientific computing applica-
tions running on large super-
computers. He is also interested
in finding ways to reduce the
overheads found in ordinary op-
erating systems in order to make
them more suitable for use on
large supercomputers.

Limits of Power and Latency Reduc-
tions by Intelligent Grouping

David Essary

Disk accesses are a very expen-
sive operation; entire classes of
applications are limited by the
I/O capability of their hosts,
rather than its raw processing
power. Improving an I/O subsys-
tem’s ability to quickly respond
to requests can greatly improve
the overall efficiency of such sys-
tems.

David’s research seeks to im-
prove storage access time and
throughput by carefully control-
ling how the data is physically
laid out on disk. Data can even
be stored on multiple drives in
an array to give the reading

process more flexibility when de-
ciding how to optimally read the
data back. These techniques can
result in a 70% reduction in disk-
related latencies and energy con-
sumption. David also discussed
some of his work on predictive
retrieval algorithms and how he
had explored theoretical limits.
Finally, he pointed out that his
work to reduce seek operations
not only improves performance
but also reduces drive power
consumption.

Distributed Filename Look-up Using
DNS

Cristian Tapus, David Noblet, and Jason
Hickey

One of the challenges in building
a distributed file system is find-
ing a way to locate the data and
metadata associated with files.
Usually, this information is repli-
cated to provide reliability and
thus might be distributed across
a wide-area network. A central-
ized directory service is undesir-
able because it provides a single
point of failure and may behave
as a bottleneck for the system.

Cristian noted that many of the
problems faced when serving file
metadata and data are in fact the
same as those solved by DNS.
For example, both DNS and FS
metadata are used to resolve
names in a hierarchical name
space to addresses. For these rea-
sons, Cristian suggested using
DNS itself as a localization ser-
vice for the data and metadata of
files in a distributed FS. Looking
up a file would involve making a
DNS query for a name such as
“passwd.etc.mojavefs.caltech
.edu.” The query would return
the addresses of the replica file
servers that could serve the
named file. Replication of the
metadata is handled automatical-
ly by the caching mechanisms
built into DNS.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 95



Bounded Inconsistency BFT Protocols:
Trading Consistency for Throughput

Atul Singh, Petros Maniatis, Peter
Druschel, and Timothy Roscoe

Many protocols exist for ensur-
ing the high availability of a sys-
tem despite the potential for
byzantine failure of its compo-
nents. However, these protocols
have negative scaling properties:
The more nodes added, the high-
er the performance penalties as-
sociated with keeping all of the
components synchronized.

Atul proposed a solution where
replicas return results that differ
slightly from the correct result.
The key is that the variability of
the response is bounded; a client
can be sure the true value is
within some range of the re-
turned quantity. By allowing the
replicas to run slightly out of
sync, the overall performance of
the system can be improved.
This approach can be useful for
applications that don’t require
precise results. For example, it
might be acceptable for a disk
quota system to allow a user to
consume at most 5% more disk
space than the allotted quota.

EyesOn: A Secure File System That
Supports Intelligent Version Creation
and Management

Yougang Song and Brett D. Fleisch

Versioning file systems are often
used to enhance the security ca-
pabilities of an operating system.
Since they preserve the change
history for each file, they can
help system administrators both
detect intrusions and roll back
unauthorized changes. However,
maintaining a comprehensive
change history can become over-
whelmingly expensive in both
disk space and performance
overhead.

The EyesOn system aims to pre-
serve normal file operations and
existing file structures while
leaving the complexity of recov-

ery operations to the time they
are requested. EyesOn extends
the same strategy used by file
system journaling to record its
in-memory modified data in a
log without significant addition-
al processing. EyesOn uses these
logs to create file versions that
can be used to accelerate the re-
trieval of a file’s change history.
Versions are created based on
user-supplied predicates that can
make use of statistics stored in
the log. For example, predicates
can use the elapsed time since a
file was last modified, the total
size of the change, or whether
the user has explicitly requested
that a snapshot of the file be
taken at this time. Two types of
versions are created in EyesOn.
Normal versions are created for
quickly retrieving recent changes
and will automatically be culled
once they reach a certain age.
Landmark versions are created
for keeping valuable information
for a longer time.

Robust Isolation of Browser-Based Ap-
plications

Charles Reis

First it was online email. Next
came online scheduling, photo
archiving, and journaling. Today,
companies have begun testing
online word processors and
spreadsheet applications. Even-
tually, it’s possible that most ap-
plications will be run on racks of
systems in far-away data centers
and served over the Web.

If the future of applications is the
Web, than in some sense the fu-
ture of operating systems is the
Web browser. Although they
may never directly interact with
hardware, they certainly will ful-
fill other roles traditionally han-
dled by an operating system. For
example, Web browsers should
ensure that a buggy or malicious
script on one site doesn’t ad-
versely affect the scripts of an-
other. Browsers should also pro-
tect the locally stored data

associated with one site from
unauthorized access by scripts
from another site. Charles is cur-
rently looking at ways to build
these types of containment
mechanisms into browsers such
that changes to the server-side
applications are kept to a mini-
mum.

Stealth Attacks on Kernel Data

Arati Baliga

Rootkits use an array of impres-
sive techniques to hide them-
selves from detection. Some go
so far as to rewrite portions of
the in-memory kernel image to
perfect the illusion. New system
calls might be added to render
the rootkit’s processes invisible
to ps. Others carefully manipu-
late the process lists and file sys-
tem handlers to evade detection.

Arati is investigating all of the
ways in which rootkits can tamp-
er with the running kernel image
by solely manipulating kernel
data. She hopes to use her find-
ings to develop monitoring sys-
tems that can’t be easily fooled.
In particular, she is looking at at-
tacks that do not employ con-
ventional hiding techniques yet
are able to cause stealth damage
to the system and evade detec-
tion from state-of-the-art integri-
ty monitoring tools.

PROGRAM ANALYSIS TECHNIQUES

Summarized by Geoffrey Lefebvre

EXPLODE: A Lightweight, General
System for Finding Serious Storage
System Errors

Junfeng Yang, Can Sar, and Dawson
Engler, Stanford University

Junfeng Yang began his talk by
noting that storage systems er-
rors are the worst kind of error
since they can result in corrup-
tion of persistent state, possibly
leading to permanent loss of
data. To address this issue, the
authors presented EXPLODE, a
system to find errors in storage

96 ; LOG I N : VO L . 3 2 , NO . 1



systems. EXPLODE borrows ideas
from model checking by being
comprehensive, but instead of
running the checked system in-
side a model checker, EXPLODE

runs client-defined checkers in-
side the checked system. Run-
ning on a real system allows it to
easily check storage stacks. A file
system checker can be used to
find errors in storage layers ei-
ther above or below the checked
system. Another advantage of
this approach is that checkers are
easy to write. A checker for a
storage system can be written in
less than 200 lines of C++ and
often consists of a simple wrap-
ping layer around existing utili-
ties such as mkfs and fsck. The
authors state that this work com-
pletely subsumes their previous
work (FiSC).

Because bugs are often triggered
by corner cases, EXPLODE’s core
idea is to explore all choices. EX-
PLODE provides choose(N), an N-
way fork that allows checkers to
fork at every decision point dur-
ing testing and explore every
possible operation. Before ex-
ploring a decision point, EX-
PLODE checkpoints the state of
the system. A checkpoint is sim-
ply the recorded sequence of re-
turn values from choose(). To re-
store a checkpoint, EXPLODE

deterministically replays this se-
quence from the initial state.
These two mechanisms allow
EXPLODE to perform an exhaus-
tive state exploration. At any
point during testing, a checker
has the ability to force crashes.
Upon a forced crash, EXPLODE

generates crash disks based on
all possible orderings of dirty
buffers. A checker-supplied rou-
tine then tests all disks for spe-
cific invariants.

A challenge faced by the authors
was dealing with nondetermin-
ism. The choose() primitive
could be called by nonchecking
code such as interrupt handler.

EXPLODE solves this problem by
filtering on thread ID. EXPLODE

must deterministically schedule
all threads involved with the
checked system. This includes
the checker’s thread but also all
threads belonging to the checked
storage system. By playing with
thread’s priorities, EXPLODE is
able to enforce deterministic
scheduling most of the time and
can detect when it fails to do so.

Junfeng then presented an evalu-
ation of EXPLODE. The authors
tested various file and storage
systems such as ext2, ext3, JFS,
the VFS layer, NFS, Berkeley DB,
and VMware with EXPLODE and
found bugs in all of them. Some-
one from UCSD asked about the
option not to replay instrument-
ed kernel functions and if doing
so could lead to nondetermin-
ism. Junfeng answered that short
traces were deterministic, since
calls to these kernel functions
succeed most of the time, but
that long traces had nondeter-
minism. Someone asked whether
it was possible to test subcompo-
nents of file systems. Junfeng an-
swered that normally filesystem
implementations were not struc-
tured that cleanly, so it makes
more sense to check a file system
as a whole. Another person
asked how EXPLODE handled
nondeterminism created by disk
actually performing an operation
out of order internally. Junfeng
answered that EXPLODE uses a
RAM disk, which avoids this
problem.

Securing Software by Enforcing Data-
Flow Integrity

Miguel Castro, Microsoft Research;
Manuel Costa, Microsoft Research
Cambridge; Tim Harris, Microsoft
Research

Manuel Costa began his presen-
tation by noting that most of the
software in use today is written
in C++. This body of software
has a large number of defects and
there exist many ways to exploit

these defects, such as corrupting
control data. He presented some
of the various approaches to se-
curing software. He noted that
removing or avoiding all defects
is hard and that although it is
possible to prevent attacks based
on control-data exploits, certain
attacks can succeed without
compromising control flow. Ap-
proaches based on tainting can
prevent noncontrol-data ex-
ploits, but they may lead to false
positives and have a high over-
head.

To address these issues, the au-
thors present a new approach to
secure software based on enforc-
ing Data-Flow Integrity (DFI).
Their approach uses reaching
definition analysis to compute a
data-flow graph at compile time.
For every load, compute the set
of stores that may produce the
loaded data. An ID is assigned to
every store operation and, for
each load, the set of allowed IDs
is computed. The results of the
analysis is used to add run-time
checks that will enforce data-
flow integrity. Stores are instru-
mented to write their ID into the
run-time definition table (RDT).
The RDT keeps track of the last
store to write to each memory lo-
cation. Loads are instrumented
to check whether the store in the
RDT is in their set of allowed
writes. If a store ID is not in the
set during a check, an exception
is raised. Because the analysis is
conservative, an exception guar-
antees the presence of an error.
There are no false positives.
Manuel also noted that control-
flow attacks are a form of data-
flow attacks. It is possible to use
the same mechanism to protect
control-flow data.

Manuel described a set of opti-
mizations to improve the run-
time performance. The most im-
portant optimization is to
rename store IDs so that they ap-
pear as a continuous range in the

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 97



definition set. The membership
test can be replaced with a sub-
traction and a compare. The
evaluation presented demon-
strates that this optimization is
fundamental to the performance
of DFI. On average, DFI imposes
a space overhead of around 50%,
and the run-time overhead
ranges from 44% to 103%.

Brad Karp from University Col-
lege London asked whether DFI
handles function pointers and
other complex program con-
structs. Manuel answered that
DFI handles function pointers
but has problems with certain
pieces of software written in as-
sembly. These problems can re-
sult in not detecting certain DFI
violations. An alternative would
be to use CFI in this case. It is
important to understand that
these limitations are a property
of the program to instrument,
not the attack. Bill Bolosky from
Microsoft Research asked
whether every store had to be in-
strumented. Manuel acknowl-
edged that this was the case.

From Uncertainty to Belief: Inferring
the Specification Within

Ted Kremenek and Paul Twohey,
Stanford University; Godmar Back,
Virginia Polytechnic Institute and State
University; Andrew Ng and Dawson
Engler, Stanford University

Ted Kremenek began by saying
that all systems have correctness
rules, such as not to leak memo-
ry, or to acquire some lock before
accessing data. We can check
these rules using program analy-
sis, but the problem is that
missed rules lead to missed bugs.
The specification of a system is
the set of these rules and invari-
ants. The problem addressed in
this talk is how to find errors
that violate these rules when we
don’t know what the rules are or,
more precisely, how we can infer
the specification. The talk pre-
sented a general framework to
do so and the technique is de-

scribed using an example: find-
ing resource leaks by inferring
allocators and deallocators.

There are many sources of
knowledge that can be used to
infer system rules, such as be-
havioral tendencies (i.e., pro-
grams are generally correct) and
function names, but there isn’t a
way to bind all of this informa-
tion together. To address this
issue, the authors present an ap-
proach based on the Annotation
Factor Graph (AFG), a form of
probabilistic graphical modeling.
This approach reduces all forms
of knowledge, either from evi-
dence or intuitions, to probabili-
ties. The idea is to express pro-
gram properties to infer as
annotation variables and infer
these annotations by combining
scores obtained from factors.
Factors represent models of do-
main-specific knowledge and are
used to score assignments of val-
ues to annotation variables based
on the belief that an assignment
is relatively more or less likely to
be correct.

The talk focused on how to infer
resource ownership using AFGs.
First, functions return values
and parameters are annotated.
The domain for a return value
annotation variable is to return
or not return ownership, and the
domain for a function parameter
is to claim or not claim owner-
ship. Ted Kremenek then de-
scribed some of the factors used
to infer resource ownership.
Some use static analysis based on
common programming axioms
such as that a resource should
never be claimed twice; others
are based on ad-hoc knowledge
such as function names.

The evaluation was based on in-
ferring annotations on five proj-
ects: SDL, OpenSSH, GIMP,
XNU, and the Linux kernel. The
authors’ technique obtained a
90%+ accuracy on the top 20
ranked annotations. It was also

able to infer allocators unknown
or misclassified by Coverity Pre-
vent. Using their technique, the
authors found memory leaks in
all five projects. Ted Kremenek
described a complex memory
leak they were able to find in the
GIMP library.

Someone from Yahoo! asked
how well the tool performs when
allocators that are simply wrap-
pers around malloc are factored
out. Ted answered that although
many allocators call malloc, the
tool doesn’t use this knowledge.
Brad Chen from Google asked
whether the tool would be con-
fused by realloc. Ted answered
that the tool did infer that realloc
was both an allocator and a deal-
locator. Corner cases, such as
this one, are detected automati-
cally but have to be dealt with
separately. They had a similar
issue with certain functions in
the Linux kernel. Such outliers
have to be modeled explicitly but
are fairly rare. Micah Brodsky
from MIT asked whether AFGs
are an instance of Bayesian Net.
Ted answered that AFGs and
Bayes Nets belong to the same
family of probability modeling.
The authors actually started with
Bayes Net but found the class to
be too rigid. AFGs were much
easier to work with. Someone
asked what other things could be
modeled. Ted answered that
locks are very behavioral, so
their approach would work well.
He stated that the temporal rela-
tionship could be expressed as a
grammar.

98 ; LOG I N : VO L . 3 2 , NO . 1



DISTR IBUTED SYSTEM

INFRASTRUCTURE

Summarized by Anthony Nicholson

HQ Replication: A Hybrid Quorum
Protocol for Byzantine Fault
Tolerance

James Cowling, Daniel Myers, and
Barbara Liskov, MIT CSAIL; Rodrigo
Rodrigues, INESC-ID and Instituto
Superior Técnico; Liuba Shrira,
Brandeis University

The authors address the problem
of building reliable client-server
distributed systems. They note
that the current state of the art
either requires a small number of
replicas (3f+1) but has high
communication overhead or re-
duces communication complexi-
ty by requiring a much larger
number of replicas (5f+1). The
second case still suffers from de-
graded performance in cases of
write contention, however. They
propose a hybrid scheme that
combines the best aspects of
both schemes to achieve a low
number of replicas (3f+1) while
bounding communication over-
head.

Their system uses a two-phase
write protocol. First, a client ob-
tains a timestamp grant from
each replica. This grant is essen-
tially a promise to execute the
given operation at a given se-
quence number, assuming agree-
ment from a quorum of replicas.
In the second phase, the client
forms a certificate from 2f+1
matching grants and sends this
certificate to all the replicas,
which then complete the write
operation. A certificate proves
that a quorum of replicas has
agreed to a given ordering of op-
erations. Importantly, the exis-
tence of a certificate precludes
existence of conflicting certifi-
cate. Replicas are forbidden to
have two outstanding grants in
progress, and they return the
currently outstanding grant to
clients while a grant is in prog-
ress, as proof that it is busy. The

authors have deployed both their
Hybrid Quorum (HQ) and BFT
prototypes on Emulab. Their re-
sults show that HQ performs
better than BFT up until around
25% contention.

Atul Adya from Microsoft Re-
search noted that their protocol
allows clients to commit opera-
tions on behalf of other clients,
and asked whether this was a se-
curity hole. James said that since
certificates are free-standing and
cryptographically signed, any
client can send a certificate to a
replica and it will commit faith-
fully on behalf of the originating
client. Bill Blaskey, also from
MSR, noted that commit could
be painful because potentially
thousands of operations occur
per second. James noted that all
data lives completely in RAM in
their experiments, and a reboot
is considered a failure. Petros
Maniatis from Intel Research
asked why the authors chose to
do a two-phase protocol with
3f+1 replicas, rather than a one-
phase protocol with 5f+1 repli-
cas. James noted that they could
have done so but decided that
5f+1 is just too many. The last
question involved whether col-
luding replicas would just always
tell clients that they had an out-
standing grant, to force the slow
path of the protocol. James re-
sponded yes, in the worst case
this would happen.

BAR Gossip

Harry C. Li, Allen Clement, Edmund L.
Wong, Jeff Napper, Indrajit Roy, Lorenzo
Alvisi, and Michael Dahlin, University
of Texas at Austin

The motivation scenario for talk
is a live, peer-to-peer streaming
media application. Such applica-
tions can fall apart, however, in
the presence of malicious nodes,
if it is not in a node’s self-interest
to forward a data packet on to its
peers. The authors introduce the
concept of BAR Gossip, a gossip
protocol that makes it in the in-

terest of selfish nodes to act for
the benefit of the overall system,
while detecting and punishing
byzantine (malicious) nodes.
BAR Gossip is in fact two proto-
cols: balanced exchange and op-
timistic push.

During balanced exchange, at
each round every node selects
one partner, the partners ex-
change their transaction histo-
ries, and then they trade equal
numbers of data updates. Clients
must commit to their histories
before discovering their partner’s
history; similarly, they must send
the data updates first in encrypt-
ed form before subsequently
sending the key. This makes
bandwidth a “sunk cost,” so it
is illogical for selfish nodes to
withhold the data key from their
partner later on. The authors
also introduce the notion of veri-
fiable partner selection to pre-
vent clients from talking to more
than one client per round (to ac-
cumulate more updates).

The second part of BAR Gossip is
optimistic push, which handles
bootstrapping for new nodes. In
this case, unequal numbers of
updates may be exchanged, but
the lesser peer must sacrifice the
same amount of energy and
bandwidth by sending junk to
even out the exchange. Their
simulation results show that fol-
lowing the protocol was the most
beneficial strategy for clients in
all cases.

Rob Sherwood from Maryland
asked about cases where clients
consider different weights for in-
bound and outbound traffic.
Harry argued that such asymme-
try can be handled by sizing key
requests accordingly. Rob re-
sponded that in cases where one
is downloading illegal content, it
might be overwhelmingly impor-
tant never to upload anything.
Harry countered that in such ex-
treme cases BAR Gossip might
not work. Jim Liang from UIUC

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 99



noted that the authors assume
that all clients know the com-
plete membership list. Harry said
that they are currently looking at
handling cases where clients
have only partial membership in-
formation. Jim further asked
how the BAR Gossip protocol
achieves low latency for stream-
ing media. Harry said their ex-
periments showed an average la-
tency of 20 seconds for a live
video stream. This compares fa-
vorably with existing streaming
media applications (such as the
free NCAA Final Four video
feed). Another questioner asked
how their protocol handles col-
lusion. Harry replied that they
have no explicit mechanism for
this, because handling collusion
in game theory is difficult. Their
results showed, however, that
BAR Gossip is robust for small
colluding groups (with up to
30% nodes colluding). The last
question concerned the scalabili-
ty of BAR Gossip. Harry cited
three limitations in scaling their
system: (1) handling dynamic
membership churn, (2) handling
nodes with only partial member-
ship information, and (3) locali-
ty-aware partner selection. They
are currently looking at all three
issues.

Bigtable: A Distributed Storage Sys-
tem for Structured Data

Fay Chang, Jeffrey Dean, Sanjay
Ghemawat, Wilson C. Hsieh, Deborah
A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E.
Gruber, Google, Inc.

Awarded Best Paper

Mike Burrows described
Bigtable, a storage system de-
signed for in-house use at
Google. Bigtable developed in re-
sponse to a need to store infor-
mation on over 10 billion URLs,
with wide variety in the size of
objects associated with a given
URL, and variety in usage pat-
terns. Commercial databases are
obviously unsuitable owing to

the scale (petabytes of data on
billions of objects, with thou-
sands of clients and servers).
Bigtable stores data in a three-di-
mensional, sparse sorted map.
Data values are located by their
row, column, and timestamp.

Since these tables can be quite
large, Bigtable allows dynamic
partitions by row, called tablets,
which are distributed over many
Bigtable servers. Clients can
manage locality by choosing row
keys in such a way that data that
should be grouped together
achieves spatial locality. A given
tablet is owned by one server,
but load balancing can shift
tablets around. Similarly to
tablets, locality groups are parti-
tions by column instead of row.
These locality groups, however,
segregate data within a tablet. All
data is stored as files in the
Google File System (GFS), with
different locality groups stored as
different files in GFS. One mas-
ter Bigtable server controls the
many tablet servers. Clients ac-
cess a tablet by requesting a han-
dle from the Chubby lock service
(described in another OSDI
talk), then doing read/write di-
rectly with the tablet server that
owns a given tablet. The client
only talks to the master when it
needs to manipulate metadata
(e.g., create a table or manipulate
ACLs). Currently, Bigtable is de-
ployed on over 24,000 machines
in approximately 400 clusters
and is used by over 60 projects at
Google.

The first question concerned the
poor random read performance
described in the paper and noted
that the authors attributed this
to shared network links. The
questioner added that it seems
an easy optimization to move
tablet servers closer to the GFS
storage that the tablets actually
reside on. Mike answered that,
by default, if a GFS server is col-
located with the tablet server, the

tablet’s data will be stored on
that GFS server. Atul Adya from
Microsoft Research asked how
they deal with hierarchical
data—does this generate thou-
sands of columns in their table
paradigm? Mike noted that
Bigtable is not a database, and
such hierarchical data situations
are not suited for Bigtable. He
noted that their clients need to
conform to how Bigtable works,
not the other way around.
George Candea from EPFL asked
whether they had any technical
insights to offer based on their
experiences. Mike said that if
you have the freedom to do so,
build something with a custom
API that matches the needs of
both clients and users.

DISTR IBUTED SYSTEMS OF L ITTLE

TH INGS

Summarized by Anthony Nicholson

EnsemBlue: Integrating Distributed
Storage and Consumer Electronics

Daniel Peek and Jason Flinn, University
of Michigan

Daniel Peek described Ensem-
Blue, a framework for integrating
consumer electronic devices
(CEDs) into commodity distrib-
uted file systems (DFSes). This
has been difficult because of the
closed nature of CEDs and be-
cause such devices cannot sim-
ply run the DFS’s client software
to integrate its storage with all
the user’s other computing de-
vices. Instead, Dan described
how EnsemBlue leverages the
user’s general-purpose comput-
ers (such as desktops and lap-
tops) to act as a bridge between
the DFS and each CED that con-
nects to the computer (e.g.,
when an iPod syncs with a user’s
desktop machine).

A key challenge here involves
namespace conflicts between the
DFS and the proprietary naming
structures found on CEDs. En-
semBlue handles this by tracking

100 ; LOG I N : VO L . 3 2 , NO . 1



mappings between the name of
an object in the DFS and its
name on each given CED. Since
the CEDs comprise a closed sys-
tem, the general-purpose com-
puters in the system must exe-
cute all custom code in the
system. These computers there-
fore need to know when data is
updated in the system, to take
certain actions such as updating
custom indexes on CEDs. The
authors leverage the fact that
every DFS has a distributed noti-
fication protocol already—the
cache consistency mechanism.
Therefore, the authors introduce
the concept of a “persistent
query,” which is an object in the
DFS that indicates what the
query is looking for, such as new
mp3 files added to the DFS. The
authors presented an example of
how a persistent query for all
new m4a files could be used to
implement a transcoder from
m4a to mp3 files. Finally, the au-
thors described how they handle
disconnected devices that cannot
speak with the general file server.
In such situations, several of the
user’s devices might be able to
contact each other but not the
remote file server. One of the de-
vices becomes a “pseudo-file
server,” acting as a file server to
the best of its ability, serving to
the other devices those files that
it happens to have at the time.

One questioner ask how this
work would fit into the universal
Plug-and-Play (uPnP) initiative.
Dan responded that currently,
EnsemBlue requires read and
write access to the device
(through USB, for example).
Their future work will allow
them to work with arbitrary pro-
tocols such as uPnP. Jawwad
Shamsi from Wayne State Uni-
versity asked whether they re-
quire a separate general-purpose
device for each mobile device.
Dan answered that any number
of CEDs can connect to any
number of general-purpose com-

puters. Christopher Stewart from
the University of Rochester
asked whether they had encoun-
tered any performance tradeoffs
in building the protocol that in-
teracts with the dedicated host
machine. Dan responded that
they hadn’t measured the perfor-
mance of integrating data back
to the DFS through the general-
purpose computer, but since
their system is weakly consistent
anyway, such performance
would not be that important.

Persistent Personal Names for Global-
ly Connected Mobile Devices

Bryan Ford, Jacob Strauss, Chris
Lesniewski-Laas, Sean Rhea, Frans
Kaashoek, and Robert Morris,
Massachusetts Institute of Technology

Currently, locating users’ person-
al devices over the Internet is dif-
ficult. Local discovery protocols
such as Bonjour don’t work over
long distances, and requesting
DNS names for all of one’s de-
vices is impractical at best. Bryan
Ford argued that people should
be able to name their devices in a
personal fashion and have global
connectivity with each other’s
devices, without having to keep
changing the way the devices lo-
cate each other. Their proposed
solution is called UIA (Unman-
aged Internet Architecture).

In UIA, users managed their own
personal namespaces. When
they acquire a new device (such
as a phone, laptop, or camera)
they assign a name to the device
and “introduce” it to their exist-
ing devices. Each device has a
unique endpoint identifier
(EID)—just a hash of its public
key. All clients running UIA be-
long to an overlay that lets this
namespace exist atop IP. Users
assign short personal names to
identify their friends. Other
users’ devices can then be named
by the combination of friend
name and device name. Devices
then gossip to propagate their
name records. Friendship is tran-

sitive, so if Alice knows Bob di-
rectly, and Bob knows Charlie,
Alice can name Charlie’s phone
as Phone.Charlie.Bob. The au-
thors have implemented UIA on
Linux, Mac OS X, and the Nokia
770 tablet. A UIA name daemon
and router run atop the TCP/IP
stack in userspace, with some
GUI controls as well. Bryan also
showed an entertaining demo
video that highlighted the ease of
use of the UIA paradigm. Their
code is available for download
(in a rough state!) on their proj-
ect Web page: http://pdos
.csail.mit.edu/uia/.

Mark Aiken from Microsoft Re-
search asked how this system
manages connectivity to devices
that have moved while being
communicated with. Bryan an-
swered that in UIA’s routing pro-
tocol, devices track other devices
in their local social neighbor-
hood and then hope to find a few
devices that are stable enough to
be rendezvous points to dissemi-
nate current IP address informa-
tion. These stationary nodes help
bootstrap what is essentially a
distributed DNS scheme. Anoth-
er questioner asked whether the
authors had conducted any us-
ability studies of their system.
Bryan answered that they hadn’t
had any users outside their re-
search group. Mahur Shah from
HP noted that all the examples in
the talk deal with devices that
are fully owned by one user. He
wondered how this would work
for shared devices—in a family
setting, for example. Bryan noted
that they discuss this in the
paper. Each physical device can
have multiple EIDs and go by
different names.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 101



A Modular Network Layer for
Sensornets

Cheng Tien Ee, Rodrigo Fonseca, Sukun
Kim, Daekyeong Moon, and Arsalan
Tavakoli, University of California,
Berkeley; David Culler, University of
California, Berkeley, and Arch Rock
Corporation; Scott Shenker, University
of California, Berkeley, and
International Computer Science Institute
(ICSI); Ion Stoica, University of
California, Berkeley

Cheng Tien Ee described work at
Berkeley on a modular network
layer for sensor networks. The
authors recognize that sensor
nets software from different or-
ganizations does not interoperate
easily. The specific problem they
address in this work is monolith-
ic, vertically integrated network
stacks. Intuitively, one would ex-
pect that if such network layers
were modularized there would
be a good deal of overlay among
different implementations. Since
the authors argue that we are
probably stuck with multiple
network protocols, they focus on
making it as efficient as possible
to run multiple network proto-
cols at once on one system.

Their solution decomposes the
network layer into modules.
First, they break the network
layers into the data plane and the
control plane. Each of these is
further subdivided into many
components, such as an output
queue and forwarding engine in
the data layer, and a routing en-
gine and routing topology in the
control plane. They show how
diverse protocols can actually
share components, such as out-
put queues, resulting in run-time
benefits and code reuse. Their
evaluation of several common
protocols showed that protocol-
specific code made up a small
fraction of the total code base for
their implemented examples.

Matt Welsh from Harvard was
concerned about the interplay
among different network proto-
cols with regard to such things as
packet scheduling and memory
usage. Cheng responded that
memory management is indeed a
cross-layer issue and that they
are currently looking at dealing
with such effects. Matt also
asked whether the code was
available, and Cheng said they
are currently attempting to inte-
grate their work into TinyOS.
Eddie Kohler from UCLA asked
about the types of protocols that
would fit this model less well
than the examples the authors
chose. Cheng answered that they
can decompose any class of pro-
tocols, but the main difficulty
they have with more complex
protocols is the decomposition
of REs (Routing Engines) and
FEs (Forwarding Engines) into
smaller ones that can be better
reused. An example of such a
protocol is one with multiple
phases during the forwarding of
a packet along its path. For such
protocols, it is not immediately
clear how the further decompo-
sition can be done. An indication
of an improperly decomposed
network protocol would be mul-
tiple similar functions, such as
packet forwarding methods,
being implemented within a type
of component. The last question
noted that there are protocols
they can’t support, but this is due
to SP (Sensornet Protocol); for
example, anything with rate lim-
iting can’t be represented to SP.
To the question of whether there
is anything the authors would
have wanted from the lower-
level abstractions that they don’t
currently supply, Cheng replied
that he didn’t need anything else
from SP and, on the contrary,
found it often provided more
info than necessary.

OPERATING SYSTEM STRUCTURE

Summarized by Leonid Ryzhyk

Making Information Flow Explicit in
HiStar

Nickolai Zeldovich and Silas Boyd-
Wickizer, Stanford University; Eddie
Kohler, University of California, Los
Angeles; David Mazières, Stanford
University

Nickolai Zeldovich stated that
the HiStar operating system aims
to prevent malicious and buggy
software from leaking sensitive
user data by making all informa-
tion flow within the system ex-
plicit. The HiStar kernel imple-
ments six types of objects used
as building blocks for user-level
software: containers, segments,
address spaces, threads, gates,
and devices. Each object is as-
signed a security label that con-
trols how the object can be mod-
ified or observed and can be
thought of as a taint. Data in a
tainted object can only be ac-
cessed by other tainted objects.
Any data that flows outside the
system has to be untainted first.
Untainting can only be per-
formed by a thread that has an
untaint label.

Coming up with the right design
of taint tracking can be difficult,
if one wants to avoid covert
channels. In a naive design, ma-
licious applications could com-
municate by modifying and ob-
serving taint levels of different
objects. HiStar closes this covert
channel by making all nonthread
object labels immutable. To
avoid covert channels arising
from resource allocation, HiStar
provides a specialized IPC ab-
straction where the client do-
nates initial resources to the
server.

Flexibility is achieved by intro-
ducing multiple categories of
taint. For example, UNIX users
can be emulated by assigning a
taint category to each user. A su-

102 ; LOG I N : VO L . 3 2 , NO . 1



peruser can then be implement-
ed as a thread holding untaint
privilege for all user categories.
As a result, root has no special
privileges in the system and is
not fundamentally trusted by the
kernel.

Nickolai illustrated the HiStar ar-
chitecture using two case stud-
ies. First, a running example of a
virus scanner was used to intro-
duce the taint-based access con-
trol model and demonstrate how
HiStar allowed encapsulating ap-
plication-specific security poli-
cies in a separate component.
Second, an implementation of
the UNIX authentication process
based on an untrusted authenti-
cation service was described.

The main group of questions re-
lated to the HiStar resource man-
agement policy and dealing with
different types of covert chan-
nels. Nickolai explained that
static preallocation of resources
is preferred in cases where you
really want tight control over in-
formation flow, but in less-sensi-
tive applications that is likely to
be too restrictive. With regard to
covert channels, someone asked
how HiStar dealt with latency-
based covert channels. Nickolai
replied that although they were
working on some ideas, the cur-
rent implementation did not pre-
vent such channels.

Another question was whether
the authentication service could
leak the password by denying
and allowing login requests. The
answer was that this could not
happen, since every request is es-
sentially handled by a newly
forked instance of the authenti-
cation service, which is not al-
lowed to communicate any data
back to the original instance of
the service. Another interesting
question was whether HiStar
could accommodate legacy ap-
plications requiring communica-
tion with the outside world.
Nickolai said that HiStar could

accommodate most legacy appli-
cations, but it may not be able to
provide any added security if the
application is monolithic and re-
quires frequent network interac-
tion.

Splitting Interfaces: Making Trust Be-
tween Applications and Operating
Systems Configurable

Richard Ta-Min, Lionel Litty, and David
Lie, University of Toronto

In the modern OS, the trusted
computing base of an application
includes not only the kernel but
also all the privileged user-level
services that run under the root
account. By compromising one
of these services, the attacker
gets access to all sensitive data in
the system.

Proxos aims to reduce the TCB
by isolating sensitive applica-
tions inside their own private in-
stances of the OS running under
control of a virtual machine. All
other applications run inside the
public “commodity” OS. The
commodity OS is also used for
communication among secure
applications running inside pri-
vate OSes. This is achieved by se-
lectively routing some system
calls issued by secure applica-
tions to the commodity OS. The
developer specifies which calls
should be routed by using the
Proxos routing language. To ben-
efit from the Proxos architecture,
secure applications need to be
split into components running
inside the commodity OS and
those running inside the private
OS.

The main performance overhead
comes from context switching
between the private and the
commodity OS, which turns out
to be an order of magnitude
slower than Linux kernel call.
However, at least for the proof-
of-concept applications that have
been ported to Proxos (Web
browser, SSH authentication
server, and the Apache Web serv-

er with SSL certificate service),
this did not prove to be a prob-
lem, as the resulting end-to-end
overhead was negligible.

Q: The private OS can become as
complex as Linux itself. So how
does this help reduce the TCB?
A: Yes, security-sensitive applica-
tions still have to trust the entire
Linux kernel, but not the privi-
leged processes running on top.
Q: Is it necessary to write proxy
code for each ioctl to the com-
modity OS? A: Yes, but in our ex-
perience things you want to iso-
late do not require this. Q: So,
are you claiming that context-
switch time is irrelevant? A: This
is the case for applications that
we have ported so far. Of course,
for applications that do more
kernel calls the performance im-
pact would be greater. Q: In your
performance evaluation you
compare overhead of Proxos
against Linux running on top of
Xen. What would be the over-
head compared to Linux running
on hardware? A: We haven’t
done such experiments but the
overhead can be estimated based
on available performance data
for Xen.

Connection Handoff Policies for TCP
Offload Network Interfaces

Hyong-youb Kim and Scott Rixner, Rice
University

Hyong-youb Kim focused on ef-
ficient utilization of TCP offload
capabilities available in some
modern NICs. Whereas offload-
capable NICs can potentially im-
prove the performance of net-
work-intensive applications by
taking over some of the TCP pro-
cessing load, it turns out that if
used without care this feature
can easily saturate the NIC and
degrade the overall system per-
formance.

Three techniques for optimizing
connection handoff policy were
proposed:

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 103



1. Prioritize packet processing
on the NIC by giving pack-
ets handled by the host
processor higher priority
than packets processed by
the NIC.

2. Dynamically adapt the
number of TCP connec-
tions handled by the NIC
based on the length of
packet queues.

3. Compensate for the hand-
off cost by offloading long-
lived connections to the
NIC.

The proposed techniques were
evaluated using a system simula-
tor modeling the NIC as a MIPS
processor with 32 MB of RAM.

Q: If there is a sudden change in
number of received packets,
would there be a lot of overhead
in switching? For example, what
happens if someone wants to
DoS by starting to send lots of
long packets and then stopping?
A: The NIC currently does not
switch connections back to the
host, so there’s no overhead in-
volved in reducing the number
of connections. If the host wants
to hand a connection to the NIC
it has to transfer a small buffer,
but it’s cheap. Q: You simulate
the NIC as a single general-pur-
pose processor; however, actual
network processors are more
complex and have multiple spe-
cialized cores. Are your results
representative of what would be
observed on real hardware? A:
Network processors are not good
at handing NIC workloads, so
they should not be used for
NICs. Network processors are
built for switching packets. NIC
workloads are different, and net-
work processors do not work
well.

DISTR IBUTED STORAGE AND

LOCKING

Summarized by Leonid Ryzhyk

Ceph: A Scalable, High-Performance
Distributed File System

Sage A. Weil, Scott A. Brandt, Ethan L.
Miller, Darrell D.E. Long, and Carlos
Maltzahn, University of California,
Santa Cruz

Sage A. Weil described Ceph as a
high-performance distributed
file system designed to accom-
modate hundreds of petabytes of
data. The main principles under-
lying the Ceph architecture are
separation of data and metadata,
use of intelligent storage devices,
and adaptable dynamic metadata
management.

In his talk, Sage described the
two main components of Ceph,
the metadata store called MDS
and the distributed object store
called RADOS. MDS achieves ex-
cellent scalability by dynamically
partitioning the directory tree
among metadata servers based
on metadata access frequencies.
In addition, MDS simplifies the
metadata structure by replacing
file allocation data with seeds to
a system-wide well-known hash-
ing function called CRUSH,
which is very stable in the face of
storage device failures and other
storage capacity changes.

The RADOS object store pro-
vides scalability and reliability
through replication, failure de-
tection, and recovery. RADOS
achieves scalability by using in-
telligent object store nodes that
take advantage of a very compact
representation of the cluster state
(made possible by CRUSH), en-
abling them to efficiently com-
municate with local peers to
quickly recover from failures or
any other changes to the cluster.
To enable the use of Ceph for ef-
ficient communication, while
guaranteeing data safety, RADOS
implements a two-phase write
acknowledgment protocol. The

first acknowledgment confirms
that the update has been propa-
gated to all replicas, while the
second confirms that the update
has been physically committed
to disk. RADOS uses the EBOFS
object file system for local data
storage. EBOFS implements a
non-POSIX interface that sup-
ports features such as atomic
transactions and asynchronous
commit notifications.

Q: Does Ceph support directory
move/rename? A: Yes. The only
thing that moves is the inode,
not the directory. Q: What is the
effect of network latency on per-
formance numbers? A: One of
the assumptions is that we are
deploying in a data center envi-
ronment. In principle, however,
you could deploy it in a wider
scenario if you have sufficient
bandwidth. Q: In your model,
metadata lookups are done on
the server. What are the charac-
teristics of your workload that
make this more appropriate for
scalability than doing the lookup
on the client? A: High-perfor-
mance workloads with high con-
tention for metadata require con-
sistency to be managed within
the metadata server. Q: What is
the recovery strategy for metada-
ta? A: The short-term log dou-
bles as a journal, so if a metadata
server fails, another node can
rescan its journal.

Distributed Directory Service in the
Farsite File System

John R. Douceur and Jon Howell,
Microsoft Research

Jon Howell described Farsite as a
distributed serverless file system
for networks of workstations.
The focus of the current talk was
on the design and implementa-
tion of a distributed metadata
service for Farsite. The design
goals included support for fully
functional directory move opera-
tions, including moves across
partitions, support for atomic

104 ; LOG I N : VO L . 3 2 , NO . 1



moves, support for load balanc-
ing, and hotspot mitigation.

The authors observe that the
conventional approach to meta-
data partitioning based on path
names precludes load balancing.
Instead they suggest implement-
ing partitioning based on hierar-
chical immutable file identifiers.
Since the identifier hierarchy is
not tied to the path hierarchy,
load balancing and directory
(re)naming become completely
orthogonal. File identifiers are
compactly represented using a
variant of the Elias y coding. Ef-
ficient lookup is achieved by
storing the file map in a data
structure similar to the Lampson
prefix table.

To implement atomic rename op-
erations, the recursive path leas-
es mechanism is introduced. It
enables safe locking of the chain
of file identifiers from the file-
system root to a file, without
putting excessive pressure on the
root server. Finally, the Farsite
metadata service minimizes false
sharing by implementing a fine-
grained locking scheme, where a
client acquires locks for individ-
ual file metadata fields required
for the requested access mode,
rather than for the entire file.

Q: Does the repeated load rebal-
ancing have an impact on the
efficiency? A: Yes, one of the de-
sign decisions we made was
that when we delegate load we
can never coalesce it again. In
practice it seems to work well.
Q: Why aren’t we already all
using Farsite-like things on our
mostly empty disks? Is there
a drawback to this approach?
A: The greatest limitation is that
byzantine fault tolerance de-
pends on assumptions about
how many machines may fail,
but if they are all running homo-
geneous software and have a
similar vulnerability, they can all
fail/misbehave in the same way.
Q: Suppose we adopt a less pure

approach and put some stuff in-
side protected infrastructure.
How does that change things? A:
Without having to care about
byzantine fault tolerance, things
would be much simpler. Howev-
er, metadata load is a huge factor,
which we would like to distrib-
ute among multiple machines.

The Chubby Lock Service for Loosely-
Coupled Distributed Systems

Mike Burrows, Google Inc.

Chubby is a large-scale distrib-
uted lock service used in several
Google products, including
GFS and Bigtable. Mike focused
mainly on introducing the Chub-
by API and the motivation be-
hind it and describing the ways
Chubby has been used, rather
than on how it was implement-
ed.

The main purpose of Chubby is
to provide distributed-systems
developers with a reliable and
scalable implementation of the
distributed consensus protocol.
However, experience has shown
that even if implemented as a li-
brary, the consensus protocol is
still difficult to use for develop-
ers. Therefore, Chubby encapsu-
lates it inside the familiar lock
service API.

In addition to providing lock and
unlock operations, Chubby al-
lows associating small data
records with locks and adopts a
UNIX-like naming scheme for
them, which makes it look and
feel like a file system. However, it
is not well suited for storing
large amounts of data and lacks a
number of filesystem features
such as file renaming, atomic
multifile operations, and partial-
file reads and writes. This lack of
features helps simplify the Chub-
by design and prevents develop-
ers from misusing it as a distrib-
uted file system.

Lock clients can be notified of
certain types of events, including
file content changes, file cre-

ation/deletion, and lock acquisi-
tion. Chubby is designed to sup-
port large numbers of clients per
lock. Although changes of the
lock ownership are typically in-
frequent, clients tend to periodi-
cally poll the lock, creating a lot
of read traffic. To reduce this
traffic, a consistent write-
through client-side cache is
used.

Q: Are there any examples of in-
teractions that you had with the
user community that led to the
file-system abstraction? A: No,
the design decision happened
before the user base. I would put
the main reason down to sharing
an office with Rob Pike and Sean
Quinlan (Plan 9 people), so
everything looked like an FS.
Q: Chubby allows developers to
easily get reliability guarantees
by using a lock server instead of
a state machine. Were there
other projects that had to go off
and implement a state machine?
A: Well, we did. There is a state
machine library that we use; at
present there are no other users
of it. Q: It seems like large-scale
tools are becoming increasingly
more integrated. Have you
thought about bad interactions
where one misbehaving applica-
tion of a tool can cause cascading
failure in other applications?
A: Yes, it happens all the time.
My system has managed to bring
down many others. What you do
is analyze exactly what hap-
pened, fix your programming
steps, and fix your code so that
every single problem can’t hap-
pen again, and of course some-
thing else happens next time.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 105



LARGE DISTR IBUTED SYSTEMS

Summarized by Prashanth
Radhakrishnan

Experiences Building PlanetLab

Larry Peterson, Andy Bavier, Marc E.
Fiuczynski, and Steve Muir, Princeton
University

This talk, given by Larry Peter-
son, was about the authors’ ex-
perience building PlanetLab
(PL). PL is a global platform for
deploying and evaluating plane-
tary-scale network services. PL
has machines spread around the
world, with users’ services run-
ning in a slice of PL’s global re-
sources.

The PL design was a synthesis of
existing ideas to produce a fun-
damentally new system: It was
experience- and conflict-driven.

Larry listed the requirements
identified at the time PL was
conceived and the design chal-
lenges they faced. Given its scale,
PL had to rely on site autonomy
and decentralized control for
sustainability, while also manag-
ing the trust relationships be-
tween the users of PL and the
owners of the machines. Next, it
had to balance the need for re-
source isolation while coping
with support for many users
with minimal resources. Finally,
PL had to be a stable, usable sys-
tem, supporting long-running
services and short experiments,
while continuously evolving
based on feedback.

PL’s management architecture
has the following key features to
address the design challenges.
PlanetLab Control (PLC), a cen-
tralized front-end, acts as the
trusted intermediary between
PL users and node owners. To
support long-lived slices and ac-
commodate scarce resources, PL
decouples slice creation from re-
source allocation. Node-owner
autonomy is achieved by making
sure that only owners generate
resources on their nodes and that

they can directly allocate a frac-
tion of their node’s resources to
virtual machines (VMs) of a spe-
cific slice. To support slice man-
agement through third-party
services, PLC allows delegation
of slice-creation by granting tick-
ets to such services. For scalabil-
ity, PL was designed so that mul-
tiple PL-like systems can coexist
and federate with each other. As
per the principle of least privi-
lege, management functionality
has been factored into self-con-
tained services, isolated into
their own VMs and granted min-
imal privileges. To address the
resource allocation issues, PL
provides fair sharing of CPU and
network bandwidth and simple
mechanisms to protect against
thrashing and overuse. Finally,
keeping PL’s control plane or-
thogonal from the VMM, lever-
aging existing software, and
rolling out upgrades incremen-
tally helped PL evolve while also
being operational.

Larry concluded with lessons
learned from their experience.
Key among them was the obser-
vation that decentralization fol-
lows centralization; that is, a
centralized model is important
for a system to achieve critical
mass, and it is only by federation
that the system can scale.

During the Q&A session, Sean
Rhea of Intel Research Berkeley
asked about Larry’s comments
on the proposal to set aside
physical boxes for measure-
ments. Larry said he was not
convinced about reserving physi-
cal resources, but rather thought
that logical isolation was suffi-
cient. David Anderson of CMU
noted that Larry’s talk presented
a rosy picture of PL, in contrast
to the PL panel in WORLDS ’06
that discussed problems with PL.
David asked about the observed
problems with running latency-
sensitive services, disk thrash-
ing, and scheduling. Larry said

that there was room for improve-
ment in scheduling. He also
noted that since the PL code is
available, the community was
welcome to track down bugs that
hamper their research and report
patches. He said that there was a
known kernel bug that could
cause problems with latency-
sensitive slices and that things
would improve when the next
kernel upgrade is rolled out.

iPlane: An Information Plane for
Distributed Services

Harsha Madhyastha, Tomas Isdal,
Michael Piatek, Colin Dixon, Thomas
Anderson, and Arvind Krishnamurthy,
University of Washington; Arun
Venkataramani, University of
Massachusetts Amherst

Harsha Madhyastha presented
iPlane, a service that provides ac-
curate predictions of end-to-end
Internet path performance. He
started off with the observation
that large-scale distributed serv-
ices, such as BitTorrent, depend
on information about the state of
the network for good perfor-
mance. But most current Inter-
net measurement efforts, such as
GNP and Vivaldi, provide only
latency predictions between a
pair of nodes. In contrast, iPlane
measures a richer set of metrics,
such as latency, loss rate, and
available bandwidth.

iPlane continuously performs
measurements to generate and
maintain an atlas of the Internet
by doing traceroutes from a few
distributed vantage points. For
scalability, targets are clustered
on the basis of BGP atoms and a
representative target from each
atom is used to approximate the
performance of targets in the
atom.

iPlane uses structural informa-
tion such as the router-level
topology and autonomous sys-
tem (AS) topology to predict
paths between arbitrary nodes in
the Internet. This prediction is

106 ; LOG I N : VO L . 3 2 , NO . 1



made by composing partial seg-
ments of known Internet paths
so as to exploit the similarity of
Internet routes. Next, iPlane
measures the link properties in
the Internet core and edge. In the
Internet core, the special vantage
points measure the link attrib-
utes. Link properties at the Inter-
net edges are obtained by partici-
pating in BitTorrent swarms and
measuring the links to the end-
hosts while interacting with
them.

Thus, to measure path properties
between any two hosts, first the
path between them is predicted.
Then, iPlane composes the meas-
ured properties of the con-
stituent path segments to predict
the performance of the compos-
ite path.

iPlane has been demonstrated to
improve the overlay performance
of several representative overlay
services such as content distribu-
tion networks, swarming peer-
to-peer filesharing, and VoIP.

During the Q&A session, Buck
Krasic of the University of
British Columbia observed that
participating in BitTorrent
swarms to measure Internet edge
link properties might result in
conservative estimates; for exam-
ple, BitTorrent clients may have
multiple connections open and
the bandwidth that iPlane ob-
serves might just be a fraction.
He asked whether iPlane had
some technique to compensate
for that. Harsha replied that they
were using BitTorrent to measure
bandwidth capacity, not the
available bandwidth, and that
bandwidth capacity can be meas-
ured using a pair of back-to-back
packets. And since measure-
ments from BitTorrent are based
on passive monitoring of a TCP
connection of several packets, it
is likely that at least one pair of
back-to-back packets will be ob-
served.

Fidelity and Yield in a Volcano
Monitoring Sensor Network

Geoff Werner-Allen and Konrad
Lorincz, Harvard University; Jeff
Johnson, University of New Hampshire;
Jonathan Lees, University of North
Carolina; Matt Welsh, Harvard
University

Geoff Werner-Allen presented
this science-centric evaluation of
a 19-day sensor network deploy-
ment at Reventador, an active
volcano in Ecuador. The data
collected by the sensor network
deployment was evaluated based
on five metrics, namely, robust-
ness, event detection accuracy,
data transfer performance, tim-
ing accuracy, and data fidelity. Of
these, Geoff dealt with robust-
ness, timing accuracy, and data
fidelity in his talk.

The sensor hardware they used
for volcano monitoring was
small and provided real-time
data acquisition, unlike conven-
tional standalone dataloggers,
which are unwieldy, and it
logged data to a local flash drive.
Their sensor network contained
16 sensor nodes, each equipped
with a seismometer, a micro-
phone, and an antenna. These
nodes continuously sample seis-
mic and acoustic signals and log
the data to local flash memory.
They also run an event-detection
algorithm that transmits a time-
stamped report to the base sta-
tion upon detection of a seismic
event. The base station, located
4.6 km away from the sensor de-
ployment, initiates data collec-
tion if it receives triggers from
more than 30% of the sensor
nodes within a certain time.

The overall robustness of the
system was limited by power
outages at the base station and a
single three-day software failure.
Discounting these, the mean
node uptime exceeded 96%, in-
dicating that the sensor nodes
themselves were reliable. Flood-
ing Time Synchronization Proto-

col (FTSP) was used for time
synchronization between sensor
nodes. Although predeployment
results with FTSP were good,
during deployment they ran
into stability issues, leading to
occasional incorrect time-stamp
reports. They developed a time
rectification approach that filters
and remaps recorded time
stamps to accurately recover
timing despite the incorrect
time stamps. They evaluated the
fidelity of the collected data by
performing an analysis of the
seismic and acoustic signals
from a seismological perspective.
Their results indicate that the
collected signal quality and tim-
ing match the expectations of the
infrasonic and seismic activity
produced by the volcano.

Geoff concluded his talk with
the three lessons they learned
from this deployment: Ground
truth and self-validation are criti-
cal, network infrastructure is
more brittle than sensor nodes,
and it’s important to build confi-
dence with domain scientists.

During the Q&A session, Geoff
was asked whether they look at
sensor networks as a tool that
scientists in other domains could
use without requiring the com-
puter scientist’s presence. Geoff
responded by stating that this
was a great observation and that
they wanted sensor networks to
eventually be used like that.
Someone from Stony Brook Uni-
versity asked whether it was pos-
sible to simply broadcast time
from the base station. Geoff
replied that such a broadcast
would work only with single-hop
networks, which isn’t the case
with the Reventador deployment.
Mehul Shah of HP Labs asked
about the fidelity of the measure-
ments with respect to its rele-
vance to the domain scientists.
Geoff said that the scientists are
still working on the results ob-
tained and that their initial obser-
vations are encouraging.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 107


