
HotDep ’06: Second
Workshop on Hot Topics in
System Dependability

Seattle,Washington
November 8, 2006

F INDING THE NEEDLE IN THE

HAYSTACK

Summarized by Yin Wang

Comprehensive Depiction of Configu-
ration-dependent Performance Anom-
alies in Distributed Server Systems

Christopher Stewart, Ming Zhong, Kai
Shen, and Thomas O’Neill, University of
Rochester

Presenter: Chris Stewart

Distributed server systems such
as J2EE application-server sys-
tems have wide-ranging work-
load conditions. The assumption
here is the reasonable perfor-
mance expectation based on
knowledge of the system design
(e.g., Little’s Law). The problem
is performance anomalies, that
is, when performance falls below
expectation. Previous work
shows that anomaly characteri-
zation can aid the debugging
process and guide online avoid-
ance. Chris’s goal is to depict all
anomalous conditions.

A three-step process was taken:
(1) generate performance expec-
tations by a whole-system perfor-
mance model; (2) search for
anomalous run-time conditions;
and (3) extrapolate a compre-
hensive depiction. An example
was shown of a submodel hierar-
chy (a four-level submodel for
J2EE application servers), with
its advantages and limitations.
The next step is to determine the
anomaly error threshold, which
is different for online avoidance
and debugging. Then Chris ex-
plained decision-tree-based de-
pictions, why they chose to use
decision trees, and how they
classify anomaly conditions. For
the case study of JBoss, where

three performance anomalies
were found and fixed, the deci-
sion tree displayed with the three
anomalies described. This ap-
proach cannot detect nondeter-
ministic anomalies, and the
model accuracy requires manual
investigation. Furthermore, de-
bugging remains manual. The
take-away message is that depic-
tion of anomalies can aid debug-
ging and avoidance.

Jay Wylie asked how to interpret
anomalies that are good. Chris
responded, “We don’t consider
that. The anomalies here are out-
of-expectation anomalies.” To
Ken Birman’s question of
whether the magnitude between
anomalies and normal perfor-
mance is similar, Chris said that
it is based on empirical observa-
tion. What about a known
source of anomalies? For exam-
ple, when garbage collection
kicks in, does the performance
degrade? Is this something you
can’t model? Chris agreed that
this was a problem, but he said
that his group hopes “to block
out those known anomalies.”
John Wilkes asked how hard it is
to build models. “The model is
borrowed heavily from the NSDI
’05 paper. Actually, a simple
model is adequate for it, like Lit-
tle’s Law,” was the response. In
reply to a question on how con-
trolled searches must be in order
to detect anomalies, Chris com-
mented that this work involved a
benchmark-controlled environ-
ment. For a long trace of system
execution, the performance vari-
ation may be huge.

Geoff Voelker asked, “In terms of
the size of configurations ex-
plored, they seem to be relatively
small. In a large system you may
have lots of choices, for example,
cache parameters. What do you
do in this case?” Chris replied,
“We hope to investigate a sys-
tematic method to explore sys-
tem configurations. Within this

work, we have eight run-time
conditions and 7 million possi-
ble configurations.” The final
question, “Do you know when to
stop exploration?” elicited a re-
sponse of “It depends on end
use. If you want to do avoidance,
you want to stop when you man-
age to satisfy the performance
goal. For debugging, it depends
on the quality of code you want.”

Static Analysis Meets Distributed
Fault-Tolerance: Enabling State-
Machine Replication with
Nondeterminism

Joseph G. Slember and Priya
Narasimhan, Carnegie Mellon
University

Presenter: Joseph Slember

State-machine replication is a
standard way to add fault toler-
ance, but if replication is not
100% deterministic, it is difficult
to do. The goal here is to target
nondeterminism when it mat-
ters, and programmer intent
must be respected. Joseph
showed a picture of a three-tier
replicated server system and ex-
plained the complexity of the
problem. The approach adopted
is compile-time static analysis
with run-time compensation.

Next Joseph explained the tax-
onomy of nondeterminism (ab-
breviated as ND hereafter). ND–I
includes pure (or first-hand)
ND, for example, random(), get-
time(), and contaminated (or sec-
ond-hand) ND, which is the ND
induced by pure ND. ND–II in-
cludes superficial ND and other
ND types. For static analysis,
they built an ND dictionary of C
and C++. They then added data
structures to store results of ND
actions. Code snippets are gener-
ated and inserted as functions.
For run-time compensation,
there is a tradeoff between
checkpoint-to-compensate (high
bandwidth) and reexecute-to-
compensate (high CPU).

108 ; LOG I N : VO L . 3 2 , NO . 1



Ken and Lorenzo broke in with
“How much is the compensation
overhead?” The answer is that it
depends on the application-level
characteristics. For example,
with Apache there is no compen-
sation at all. To the question
“What is the advantage of your
technique over the backup
method?” Joseph explained that
the backup does not work on
multitier systems. In response
to “If the compensation falls be-
hind, and the replica is ahead,
can the other one catch up or
they will be inconsistent?”
Joseph said that as soon as the
replica is compensated, it is con-
sistent. The concurrency is in-
creased by doing it this way.

Joseph continued with the pre-
liminary evaluation. The tier
number is between 2 and 4, with
clients between 2 and 4. He
showed a graph on experiments
with 5% forward and backward
ND. The graph displayed that
the technique scales well. Anoth-
er graph on 60% forward and
backward ND shows increased
overhead. An insight from these
results is that lower amounts of
ND cause much less overhead.
Thus application characteristics
will determine the overhead.

Jay Wylie asked whether all tiers
get analyzed at the same time or
independently. It turns out that
you can do it independently. The
worst case is that tiers are fully
transparent. Ken and Lorenzo
asked whether there has been
prior work doing replication on
ND programs, writing down
what the program did, then the
backup waiting for the primary
to know what to do. The cost
seems to be not that great.
Joseph added that breaking
down the overhead is a subject of
future work. In reply to “How
does your approach compare
with the method where the mas-
ter decides and the slave asks for
the answer?” Joseph said that the

slave has to ask for everything in
that case, and we don’t need that,
so future work will aim toward
making it more efficient. Miguel
Castro asked whether the project
does compensation at the same
time. It does, and this helps to
increase the concurrency of the
program. Geoff Voelker asked
how to know which ND a func-
tion call is going to depend on.
Joseph replied that they map
calls to different ND.

Correlating Multi-Session Attacks via
Replay

Fareha Shafique, Kenneth Po, and
Ashvin Goel, University of Toronto

Presenter: Ashvin Goel

Typical attack characteristics in-
clude low-level or stealthy be-
havior, small footprint, and mul-
tiple sessions. The idea in this
paper is to replay the attacks.
The basic replay method is to
compare outputs with replay run
and the original run. But if the
replay is nondeterministic, the
output could differ. The solution
is training using nondeterminis-
tic inputs to obtain output statis-
tics. The outlier is classified as
the attack.

Ashvin showed the experiments
of unit tests on different applica-
tions and multisession attacks.
The unit test result is a matrix
showing the sensitivity of the
method to changes in inputs.
The multisession result is a dia-
gram with attack multisession
and user multisession. There is a
great output difference between
the attack and the user. In con-
cluding, Ashvin proposes replay-
ing sessions with changed inputs
to correlate attacks. Future work
includes nondeterministic replay
and the case of long-running ses-
sions.

Chris Stewart asked whether it is
important that legitimate user
outputs are not modified. If you
have a false positive, you roll
back, and the output is modified.

Ashvin explained that false posi-
tives do not matter if it is securi-
ty-critical. For analysis, we are
not concerned about 100% cor-
rectness. You probably need a
human to identify the attack at
the end. George Candea asked
about the cost of acting on false
positives. What if you roll back
actions that are really important?
Ashvin said, “We don’t get too
many false positives. False nega-
tives are more important for the
work. Because we have roll-back
recovery, we can reverse the roll-
back, but the cost is huge. It is
important not to have many false
positives. We still need a
human.” Another question con-
cerned a paper from USENIX on
trying to undo operator mistake
and then traveling back in time,
but it is hard to redo a change
you should not have undone and
the cost is high. Ashvin ex-
plained that the system has to be
offline once you have an intru-
sion. It depends on how long it
takes you to fix it. Jim Thorn-
ton’s question on what to do if a
legitimate change results in a dif-
ferent output was deferred to an
offline discussion.

Automatic On-line Failure Diagnosis
at the End-User Site

Joseph Tucek, Shan Lu, Chengdu Huang,
Spiros Xanthos, and Yuanyuan Zhou,
University of Illinois at Urbana-
Champaign

Joseph Tucek showed the com-
monly seen Windows XP error
message window that asks you to
send an error report, which is
mainly the core dump. It is not
easy to reproduce a bug with just
core dumps. The real insight is
that because there is a well-de-
fined set of steps that are general-
ly taken during debugging, why
not automate it? The proposed
solution is online automated di-
agnosis. First capture the mo-
ment of failure; then run analysis
tools only on the relevant por-
tions of the program; finally, au-

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 109



tomate the debugging process in
a humanlike protocol. For replay
and reexecution, they used their
checkpoint/reexecute framework
in their SOSP ’05 Rx paper. For
analysis, their project begins
with the core dump, which pro-
vides an inexpensive starting
point. For the example of memo-
ry bug detection, it works by
monitoring accesses. The analy-
sis process is too expensive for
production runs. It has to be
modified and inserted during
mid-run. It is feasible only be-
cause they limit it to recent and
relevant execution.

As experimental results, there
are three bugs found with failure
types correctly identified. Joseph
displayed in detail the example
of a TAR bug. The take-away
message is that a dynamic back-
ward slice can tell a concise story
of the problem and that the tool
can perform analysis at the end-
user side.

Solom Heddaya was interested in
the number of times the system
failed but no bugs were found.
For deterministic bugs, Joseph
claimed 100% success rate, but
“occasionally, we have to go back
more checkpoints, and it is pos-
sible that the earliest checkpoint
is after the root cause. For the
case of nondeterministic bugs,
the result is not so good.” George
Candea said that he thought
most bugs are nondeterministic,
but the reproducibility varies.
Joseph conceded that some non-
determinism comes from the en-
vironment, but they are eliminat-
ing this source. Ken Birman
asked how far one must go in
rolling back and checkpoints.
Joseph said that, “according to
statistics, we go back more when
necessary, and give up if you can-
not find it far enough.” In re-
sponse to whether backward
slicing requires source code,
Joseph said it did not and that

they use binary instrumentation
with the tool PIN from Intel.

Kai Shen stated that there are al-
ready many debugging tools out
there. So what are the take-home
points? Joseph replied that their
tools are feasible because of the
low overhead. “Debugging is not
an art. There is a process we can
use.” Chris Stewart wondered
how the logic here can be differ-
ent for different systems. “We try
to be general,” said Joseph. “Java
is different. We do not deal with
that. If you have more specific
knowledge, it would provide
much better results.”

PRAGMATIC CHOICES FOR THE

NEW AGE

Summarized by Avishay Traeger

The Case for Byzantine Fault Detec-
tion

Andreas Haeberlen, Max Planck
Institute for Software Systems and Rice
University; Petr Kouznetsov and Peter
Druschel, Max Planck Institute for
Software Systems

Speaker: Andreas Haeberlen

Byzantine Fault Tolerance (BFT)
is a well-known technique that is
used in distributed systems to
mask a bounded number of
byzantine faults. BFT incurs
large overhead in that it requires
3f+1 replicas, where f is the num-
ber of faults to tolerate, and it
does not scale well. This work
describes Byzantine Fault Detec-
tion (BFD), an alternative ap-
proach that aims at detecting
these faults, rather than masking
them. Whereas detection is not
sufficient for irreversible behav-
ior, it is an efficient and scalable
alternative for recoverable faults.
It can also deter bad behavior.
The detection system uses only
f+1 replicas and requires that
only one replica complete a re-
quest before returning to the
client (rather than requiring that
most replicas complete, as in
BFT).

Each node in this system has a
state machine and a detector.
The detector can inspect all mes-
sages at the local node. When
the detector observes a fault it
informs its local application and
provides evidence to other detec-
tors. Since the detector only
knows about messages on the
local node, only observable
faults can be detected. In the de-
tector, each action is undeniably
associated with the identity of
the node that has performed the
action, allowing the system to
gather irrefutable evidence of
faulty behavior. In addition, the
detector is complete (finds evi-
dence against faulty nodes when-
ever faulty behavior is observed)
and accurate (does not generate
valid evidence against correct
nodes).

Byzantine Fault Detection is a
good choice for systems with re-
coverable state, systems already
using BFT (to ensure that faults
are quickly detected), and sys-
tems that span multiple adminis-
trative domains. Other consider-
ations include the number of
nodes in the system, the delay
the nodes can tolerate, and the
amount of available bandwidth.

Safe at Any Speed: Fast, Safe Paral-
lelism in Servers

John Jannotti and Kiran Pamnany,
Brown University

Speaker: Kiran Pamnany

Many server applications are
multithreaded, with one thread
handling each request. Concur-
rency helps improve perfor-
mance, but the programmer
needs to synchronize access to
shared resources, which is error-
prone. The programming philos-
ophy presented is that one
should start with a serial, correct
application and gradually im-
prove parallelism, as opposed to
starting with a highly concurrent
but buggy program and progres-
sively fixing bugs. In an event-

110 ; LOG I N : VO L . 3 2 , NO . 1



driven program it is possible to
improve parallelism without
adding locking: If two handlers
do not use the same global vari-
ables or contexts, they can run in
parallel. This work uses static
analysis to determine which han-
dlers should be allowed to run
together, and it enforces the con-
straints at run-time.

The solution uses static analysis
to identify aliases, locate event
handlers, determine global vari-
ables that are read or written by
each handler, examine context
usage by each handler, and iden-
tify system calls made by each
handler. When the analysis is
complete, any concurrency is-
sues are reported. In cases where
static analysis cannot determine
if handlers can run concurrently,
conservative behavior is used to
ensure safety. The analyzer pro-
vides detailed feedback to the
programmer so that constraints
can be removed, either by split-
ting the handler or by adding an
explicit lock. Profiling can help a
programmer decide which con-
straints should be removed.

At run-time, a multithreaded
event management library runs
handlers concurrently, subject to
the constraints generated by the
static analysis. Colors and hues
are assigned to event handlers:
Handlers that may run in parallel
are assigned different colors, and
those that may run in parallel if
and only if their contexts differ
are assigned different hues. Two
levels of queues are used to
schedule event handlers; the first
level has one queue for each hue
and the second level has one
queue for each color. This ap-
proach results in a conservative
approximation of the con-
straints, but it enables efficient
scheduling without expensive
locking.

Chunkfs: Using Divide-and-Conquer
to Improve File System Reliability and
Repair

Val Henson and Arjan van de Ven, Intel
Open Source Technology Center; Amit
Gud, Kansas State University; Zach
Brown, Oracle, Inc.

Speaker: Val Henson

Today, it can take several days to
run a file system check (fsck) on
production file systems. As disk
capacity is growing at a much
faster rate than bandwidth and
seek time is remaining fairly con-
stant, the situation will only get
worse. In addition, as capacity
grows, the likelihood of disk er-
rors grows as well. Existing solu-
tions (journaling, copy-on-write,
soft updates, etc.) can reduce the
frequency with which one must
run fsck, but not the duration of
the fsck. Finally, an entire file
system can fail from a small
number of faults. These issues
imply that file systems should be
designed with repair in mind.
Developers can use several tech-
niques to achieve this: They
should use on-disk formats that
are conducive to repair, use sim-
ple on-disk data structures, cre-
ate optimizations for reading
data for repair, allow for fast in-
cremental file system checks,
and add features such as check-
sums, redundancy, and scrub-
bing.

Chunkfs is a proposed repair-dri-
ven filesystem architecture,
where the file system is split into
several chunks that are as self-
contained as possible. Each
chunk has its own block number
space, allocation bitmaps, and
superblock. This allows individ-
ual chunks to be fscked, greatly
reducing fsck time. Other bene-
fits include being able to change
the size of the file system and de-
fragment quickly. Since chunks
do not have much common
metadata, Chunkfs has built-in
multithreaded scalability. It can

also allow for per-chunk filesys-
tem formats.

Chunkfs uses continuation in-
odes to deal with issues such as
files, hard links, and renames
that cross multiple chunks. To
avoid having many of these con-
tinuation inodes, chunkfs uses
smart allocation and sparse files
so that a file has at most one
continuation inode per chunk.
Because these continuation in-
odes contain pointers to other
chunks, some chunks may need
to be checked together. You can
find a project page for Chunkfs
at http://www.nmt.edu/~val/
chunkfs/.

Towards a Dependable Architecture
for Internet-scale Sensing

Rohan Narayana Murty and Matt
Welsh, Harvard University

Speaker: Rohan Narayana Murty

An Internet-scale sensing (ISS)
system consists of a large num-
ber of geographically distributed
data sources tied into a net-
worked framework for collect-
ing, filtering, and processing
potentially large volumes of real-
time data. The infrastructure is
heterogeneous, decentralized,
and volatile: Failures are fre-
quent, and the system must be
reliable in the sense that it con-
tinues to process (possibly in-
complete) data. ISS systems need
a highly scalable solution for de-
pendability. This work argues
that ISS systems should be de-
signed to offer feedback to end
users on the fidelity and cover-
age of the results returned by the
system and should make use of
simple, lightweight replication
techniques.

In many ISS applications, avail-
ability is more important than
correctness. It is very difficult to
guarantee correctness on such a
system, and many applications
are naturally tolerant to dimin-
ished quality of the data. The
goal of this work is to provide

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 111



mechanisms that mitigate the ef-
fects of failures (without dimin-
ishing availability) and provide
feedback on the quality of an-
swers to the end user. Query re-
sults should contain feedback
about the fraction of sources rep-
resented in the answer, as well as
information about the age of the
data.

This work has three basic design
principles to achieve these goals.
First, it uses structured operator
replication, which means that
more resources are devoted to
replications of operators that are
higher in the dependency tree
since they can lead to larger fail-
ures. Second, it uses free-run-
ning operators. Operators do not
need to maintain consistency
with each other, which obviates
the need for expensive protocols.
However, typical operators have
a finite (and often short) causali-
ty window that defines the set of
past input tuples that affect its
internal state, which allows them
to eventually return to a consis-
tent state after a failure. Third, it
uses best-guess reconciliation to
determine the most accurate an-
swer among possible divergent
states of the free-running opera-
tors. To do so, it can use value-
based reconciliation, state-based
reconciliation, or a measure of
replica divergence.

HIDDEN GEMS (EXTENDED

ABSTRACTS)

Summarized by Geoffrey Lefebvre

Making Exception Handling Work

Bruno Cabral and Paulo Marques,
University of Coimbra, Portugal

Presented by Bruno Cabrel

Exceptions are the standard
mechanism for error handling in
modern programming languages.
Unfortunately, dealing with ex-
ceptions is a tedious process.
Programmers often avoid the
issue by writing empty handlers
to save time. Programmers who
take the effort to write proper ex-

ception-handling code see their
productivity impaired. The au-
thors argue that exception han-
dling should not interfere with
normal programming tasks but
instead become a system issue.
In this scenario, the run-time en-
vironment provides a set of
generic exception handlers and
deals with exceptions automati-
cally. The programmer only has
to wrap the code with try blocks
at the appropriate locations. Be-
cause the system may have to try
multiple handlers when an ex-
ception occurs, this approach re-
quires that try blocks be resum-
able and appear atomic.

Speculations: Providing Fault-
tolerance and Recoverability in
Distributed Environments

Cristian Tapus and Jason Hickey,
California Institute of Technology

Presented by Cristian Tapus

Cristian began his talk by noting
that distributed systems are
ubiquitous. It is now mandatory
that we build safe and reliable
systems. Failures are frequent in
highly parallel machines. It is
critical that systems expected to
run for a long time support fault
tolerance. Unfortunately, tradi-
tional checkpoint mechanisms
are application-specific, their im-
plementation is expensive in
terms of man-hours, and they are
also error-prone.

To address these issues, the au-
thors present a new program-
ming model based on speculative
execution. The approach sepa-
rates fault recovery code from
computation. Fault recovery be-
comes transparent and automat-
ed and the design of distributed
systems is simplified. Specula-
tions are implemented as an ex-
tension to the Linux kernel. The
implementation provides system
calls to begin, abort, and commit
speculative executions. Out-
bound messages sent while exe-
cuting speculatively are marked
accordingly. A process automati-

cally switches to speculative exe-
cution when it receives a mes-
sage marked as speculative.

Discrete Control for Dependable IT
Automation

Yin Wang, University of Michigan;
Terence Kelly, Hewlett-Packard
Laboratories; Stéphane Lafortune,
University of Michigan

Presented by Yin Wang

Workflows are programs written
in high-level languages and used
increasingly for IT automation.
These languages can express
concurrency, contingency, com-
position, etc., making workflow
programming difficult and error-
prone. The authors present an
approach based on discrete con-
trol theory which provides safe
execution of possibly flawed
workflows. Their approach uses
finite-state automata to represent
all execution states reachable
from the initial state.

The safety specifications are rep-
resented by forbidden states or
as regular expressions. The goal
is to ensure that the system
reaches satisfactory termination
without entering forbidden
states. A discrete controller is au-
tomatically generated offline.
The controller dynamically dis-
ables controllable transitions
based on the current execution
state, avoiding transitions to for-
bidden states when possible. The
approach presented allows work-
flows to be partially decoupled
from the dependability require-
ments.

SecondSite: Disaster Protection for the
Common Server

Brendan Cully, University of British
Columbia; Andrew Warfield, University
of Cambridge

Presented by Brendan Cully

Brendan began his talk by noting
that disaster can strike at any
time. Whether caused by floods,
severed power lines, or di-
nosaurs, site disasters can and do
happen. The typical solution is

112 ; LOG I N : VO L . 3 2 , NO . 1



to teleport your server to a new
location by restoring a backup
and redirecting traffic using
DNS. The problem is that back-
ups are expensive and do not al-
ways work and DNS updates can
take hours, even days, to propa-
gate.

The solution to this problem is
to think under the box and use
virtualization. The favored ap-
proach is to constantly replicate
a primary site by performing a
continuous live migration of vir-
tual machines. Virtual machines
are never suspended; their mem-
ory is simply marked copy-on-
write when a snapshot is taken.
Brendan stated that one of the
major challenges is dealing with
replication overhead. This issue
can be addressed partially by
using delta compression. Anoth-
er challenge is how to take con-
sistent snapshots of multiple
servers. Snapshots of individual
virtual machines are taken inde-
pendently but coordination is re-
quired to maintain causality
within the global snapshot.

Debate Panel

All presenters took questions from the
audience.

George Candea asked what appli-
cations were most amenable to
the SecondSite approach. He
hinted that databases have large
write sets and deal with disaster
naturally by shipping their log.
Brendan agreed that databases
were probably not the best candi-
date but that there are many exist-
ing server applications without
built-in recovery mechanisms.

Someone asked Cristian whether
programmers would be able to
deal with speculations intuitive-
ly. Cristian stated that people in
other communities, especially in
the scientific computing commu-
nity, are very excited about the
idea of speculations.

Christopher Stewart asked Yin
Wang, “By leaving the choice to

the program, could a program go
down a wrong path?” Yin ex-
plained that their approach guar-
antees that programs do not go
down forbidden paths.

John Wilkes asked Bruno Cabrel
about the metrics used to evalu-
ate his approach. He answered
that exception injection could be
used as an evaluation tool.

Someone asked a joint question
to Bruno and Cristian, since the
work of both deals with remov-
ing the need for programmers to
deal with errors. Are the tech-
niques mutually exclusive?
Bruno answered that their in-
tended targets are different. The
exceptions framework aims to
be a general platform solution,
whereas Speculations targets dis-
tributed applications. Cristian
added that although they differ,
the goal is the same: to have
cleaner code that is easier to rea-
son about.

Someone stated that if a system
magically handles errors, then
you have a system that is slightly
wrong. How do you reason about
this? Cristian answered that this
is a similar problem to compiler-
generated errors. People do not
suspect that their compiler or
their operating system is wrong.
John Wilkes seems to disagree
on the last point. The goal is to
increase the level of confidence
in the application.

George Candea asked Bruno
whether he learned anything sur-
prising from some of the studies
on exception handling he cited.
The major surprise for Bruno
was that the exception-handling
code only accounts for 4 to 8
percent. John Wilkes enquired
about the applications that were
included in these studies. Bruno
answered that the studies looked
at 16 professional applications
such as JBoss.

Petros Maniatis stated that many
generic catch blocks will not be
acceptable for certain applica-

tions. Is there a clean way to
override the generic handlers?
Bruno explained that the set of
recovery blocks can be defined
by the platform or the program.

George Candea enquired about
the differences between Second-
Site and some of the related work
from Stanford, especially the
Collective. Andrew Warfield
jumped into the conversation
and stated that the Collective
was more about the transport
format than the ability to capture
instantaneous snapshots of run-
ning virtual machines.

Christopher Stewart said that
there exists a subculture in the
dependability community that
believes that exceptions should
simply be logged and not han-
dled. He then asked Bruno and
Cristian for their opinion on the
matter. Bruno answered that this
is similar to checked versus
unchecked exceptions. He be-
lieves that all exceptions should
be handled. Cristian said that
not handling exceptions can re-
sult in violation of program cor-
rectness. If you transparently roll
back an application without any
notification, then the same prob-
lem could resurface later and you
could end up in a worse state. He
believes it is important to report
errors to the application. The
best approach is to combine the
two: Provide availability and re-
port the error. But in the end, no
approach will be perfect.

; LOGIN: FEBRUARY 2007 CONFERENCE REPORTS 113


