
N I C H O L A S M . S T O U G H T O N

an update on
standards

Nick is the USENIX Standards
Liaison and represesnts the
Association in the POSIX, ISO,
C, and LSB working groups. He
is the ISO organizational rep-
resentative to the Austin
group, a member of INCITS
committees J11 and CT22, and
the Specification Authority
subgroup leader for the LSB.

nick@usenix.org

As you know if you’ve been fol-
lowing this column, the POSIX
standard is undergoing a revi-
sion. This is the third official full
revision since it first became a
standard in 1988. In this article,
we’ll take a more detailed look at
some of the new interfaces that
are planned for inclusion in the
revised standard. There are four
separate sets of new interfaces,
each of which is currently an offi-
cial Open Group specification.

SET 1 : GENERAL INTERFACES

There are several extremely use-
ful interfaces in the GNU C
library, glibc, many of which are
also found in other vendors’
libraries. These interfaces can be
broadly grouped into the follow-
ing categories:

� Directory handling: alphasort(),
dirfd(), and scandir().

� Signal handling: psignal() and
psiginfo().

� Standard I/O extensions:
dprintf(), fmemopen(),
getdelim(), getline(),
open_memstream(), and
open_wmemstream().

� Temporary files: mkdtemp().
� String handling: stpcpy(),
stpncpy(), strndup(), strnlen(),
strsignal(), mbsnrtowcs(),
wcpcpy(), wcpncpy(),
wcscasecmp(), wcsdup(),
wcsnlen(), and wcsnrtombs().

I don’t plan to describe each and
every one of these interfaces in
detail, but there are some inter-
esting points to note. First and
foremost is the relationship
between this project and the
Technical Report the ISO C com-
mittee is preparing on “bounds
checking interfaces.” Although
the ISO C document contains
newly invented functions to sup-
plement the standard I/O and
string handling functions of the
ISO C standard, it will only be a
Technical Report. This is not the
same as a Standard; it is a way of

testing the water, providing a
trial-use period to see whether
industry is interested in going
that way. At this point, a few
companies have indicated an
interest in that approach, includ-
ing both Microsoft and Cisco.

However, the interfaces listed
above will be going into the
POSIX standard and will have
the full weight of an Interna-
tional Standard to them. They
are not invention, and they have
been implemented (quite proba-
bly on the system you are using).
Many of them solve the same
problem, buffer overflow, that
the ISO C Technical Report tries
to, but in a very different way.
There is a second part to the ISO
C technical report planned,
which will reference many of
these new POSIX interfaces as
better alternatives if you are
designing new programs. On the
other hand, if you are retrofitting
large, established code bases to
fix potential buffer overflows,
then the ISO C inventions may
be useful.

Two interfaces fmemopen()
and open_memstream(), are par-
ticularly interesting, in that they
provide a way of performing
standard I/O to dynamically allo-
cated memory buffers. Consider
the following:

char *
itos (int i)
{
FILE *f;
size_t len;
char *buf;

if((f = open_memstream(&buf,
&len)) == NULL)

return NULL;
fprintf(f, “%d”, i);
fclose(f);
return buf;

}

Although this is a rather trivial
use of the new functionality, it
serves to illustrate the point. The
function converts an integer to a

84 ; LOG I N : VO L . 3 1 , NO . 6



string, allocating space for the
string as required. A more con-
ventional program might have
chosen to use a static buffer and
assumed that the size of an inte-
ger was n bits, and therefore the
maximum length that the string
could ever be was m bytes. And
the program would have over-
flowed its buffer when ported to
a system with a larger size of
integer.

SET 2 : PATHNAMES RELATIVE TO

OPEN DIRECTORIES

Solaris 10 introduced a handful
of file system interfaces to work
on files with extended attributes.
These interfaces were all named
with an ...at() suffix, and they
took a file descriptor of an open
directory as the first argument.
Relative pathnames are relative
to the open directory, and not
(necessarily) relative to the cur-
rent working directory. For
example, openat() behaves as
ordinary open(), except that it
takes an additional argument,
the file descriptor for relative
pathnames. In the Solaris case,
openat() accepts an additional
value, O_XATTR, for the file
mode.

In the glibc case, the extended
attributes part of these interfaces
was dropped, but the concept of
handling pathnames relative to
an open directory proved a pow-
erful mechanism for addressing
a number of security and other
related issues, and so the concept
was extended to all system inter-
faces that took a pathname. One
other interface in this set is
fexecve(), which is similar to
execve() except that it executes
the file on an open file descrip-
tor. This allows, for example, a
program to open the file it is
about to execute, lock it, check-
sum it, and only execute it if it
matches the expected checksum.
Without fexecve(), an applica-
tion that attempted to do this

would suffer a vulnerability that
the file could be replaced
between successfully checksum-
ming it and executing it.

One other useful feature of this
set is the ability to avoid (or at
least postpone) buffer overflow
with pathnames that exceed
PATH_MAX bytes.

The complete list of interfaces in
this set is as follows: faccessat(),
fchmodat(), fchownat(),
fdopendir(), fexecve(), fstatat(),
futimesat(), linkat(), mkdirat(),
mkfifoat(), mknodat(), openat(),
readlinkat(), renameat(), sym-
linkat(), and unlinkat().

One other noteworthy point
must be made here: futimesat()
may yet change its name and
functionality slightly. There is
an intention in this revision of
POSIX to include file timestamps
with nanosecond granularity.
Until now POSIX has specified
only one-second granularity on
files. However, almost all OS
vendors now have support for a
finer-grain resolution, typically
at the nanosecond level. As pro-
cessors get faster and faster, the
ability for tools to be able port-
ably to distinguish between a
source file and a file generated
from that source becomes more
and more important. Since
futimesat() is a new function,
both in glibc (as far as I am
aware, it has not been imple-
mented anywhere else) and
POSIX, this may be the best
place to add support for setting
file time stamps at this fine a
granularity. This aspect is still
under discussion in the commit-
tee.

SET 3 : ROBUST MUTEXES

Developers of multi-threaded
applications are probably well
aware of the problems that can
arise when a process terminates
while one of its threads holds a
mutex lock. While it is some-

times possible for another thread
to unlock the mutex and recover
its state, this is at best an unreli-
able and unportable mechanism.

Robust mutexes are introduced
in this set of new interfaces. A
robust mutex is simply a mutex
with a special “robust” bit set in
its attributes. Whenever a thread
that owns a robust mutex termi-
nates, current or future waiters
on that mutex will be notified
that the owner is dead. Another
thread then has the opportunity
to take over and clean up the
state that was protected by the
mutex and to make the mutex
once again consistent.

One important feature of this
proposal is that it is only in-
tended to deal with abnormal
termination of the process own-
ing the mutex (e.g., if the pro-
cess was subject to a signal). It is
not intended to be a way to
encourage bad programming and
have applications simply not
bother to clean up properly at
exit, and so on; therefore, if a
thread is terminated by cancella-
tion or if it calls pthread_exit(),
it is expected that that thread
will handle its own cleanup
properly (e.g., by registering
appropriate cleanup handlers).

This set of interfaces includes
pthread_mutex_consistent(),
pthread_mutexattr_getrobust(),
and pthread_mutexattr_setro-
bust(). It also alters the behavior
of several other existing mutex
APIs, essentially by adding the
EOWNERDEAD error return.

SET 4 : THREAD-AWARE LOCALES

The concept of locales to allow
processes to have different natu-
ral-language interfaces has
always been a part of POSIX.
Until now, the process has been
the object that is associated with
a locale. This set of new APIs
permits individual threads to be
in different locales.

; LOGIN: DECEMBER 2006 AN UPDATE ON STANDARDS 85



The major new concept in this
set of interfaces is the locale_t
object. Applications can create as
many locale objects as they
require, each one associated with
a different locale. Each thread
can then choose to use one of
these locales, and in doing so
does not affect the behavior of
any other thread. Compare this
with the old concept of the
process as a whole being in a
given locale; if one thread
changed the locale, then all the
threads in that process would be
changed.

The fundamental interfaces
in this set are newlocale(),

duplocale(), freelocale(), and
uselocale().

In addition to these, all of the
ctype.h character categorization
functions gain a new locale
object counterpart. For example,
as well as isalnum(int c), there is
an isalnum_l(int c, locale_t l)
interface. The former returns
true if the character represented
by c is alphanumeric. The new
interface returns true if the char-
acter is alphanumeric in the
locale represented by l.

THE TIMETABLE

The revision project has been
working up to full steam over

the past couple of years, but it is
now in full-scale development
mode. The first committee drafts
appeared in July (as I write this
article). The second draft, which
will probably be the first one to
be publicly balloted, is sched-
uled for November 2006. The
document will probably take
until April 2008 before it is com-
pletely approved. As always, the
Austin Group welcomes any
interested party to join the
process. For details, see
www.opengroup.org/austin.

86 ; LOG I N : VO L . 3 1 , NO . 6


