
How to Ask Questions the Right Way

Cat Okita

Cat promoted asking better ques-
tions of those seeking technical
help, including: What do you want
to do? What have you tried to do?
What happened? A little more
detail please . . Got any ideas?

Portable Cluster Computers and
Infiniband Clusters

Mitch Williams, Sandia National Labs

Mitch described his work with
clustered computers from the
extremely small (one foot tall and
6x6 inches wide) to the Thunder-
bird system, which is #5 in the
supercomputer list. For more
information, see eri.ca.sandia.gov
/clustermatic.org.

WORLDS ’05: Second
Workshop on Real, Large
Distributed Systems

San Francisco, CA
December 13, 2005

I N F R A STR U C T U R E

Summarized by Rik Farrow

Experience with Some Principles for
Building an Internet-Scale Reliable
System

Mike Afergan, Akamai and MIT; Joel
Wein, Akamai and Polytechnic
University; Amy LaMeyer, Akamai

Joel Wein described Akamai’s Con-
tent Distribution Network (CDN)
as having 15,000 servers in 1,100
third-party networks, with a
NOCC managed by a day crew
of eight and a night crew of three.
The focus of this paper is not on
CDN but on Akamai’s experience
in its seven-year experiment: in
particular, keeping its distributed
system running using Recovery
Oriented Computing. In a single
day, it is not unusual to lose
servers, racks of servers, and
even several data centers. The
base assumption is that there will

be a significant and constantly
changing number of component or
other failures occurring at all times
in the network. The development
philosophy is that their software
must continue to work seamlessly
despite numerous failures.

Wein outlined six design princi-
ples, organized in two sets of
three. The first three principles are
to ensure significant redundancy,
use software logic instead of dedi-
cated pipes for message reliability,
and use distributed control coordi-
nation. Wein then gave examples
of how these principles aid in
operation during failures. The
next three principles have to do
with software design: fail cleanly
and restart, zoning (their term for
their brand of phased rollout), and
notice and quarantine faults. No
software is perfect, and these prin-
ciples have helped to catch faults
in software or configurations.
Sometimes faults do not show up
until a change has been rolled out
to many systems. While most
aborted rollouts occurred during
phase one (36), the next most
commonly aborted rollout
occurred at the world level (23).

During the Q&A, Armando Fox
asked why, if Akamai stages roll-
outs, there were ever any world
aborts. Wein answered that some-
times that was when the problem
showed up, and it could be caused
by hardware, order of events, or
corner cases. Fox followed up by
asking if this was the only way to
tickle the bug? Wein answered
that stupid mistakes caused many
of the world aborts, followed by
needing to run on 50,000 servers
before the problem shows up. Paul
Lu asked how much of the system
is homebrewed? Wein answered
that a lot of this is custom code,
but they are open to using other
people’s ideas and try not to be
religious about these things. Jeff
Mogul commented that most com-
panies try to get down to one per-
son per server, while the Akamai
approach is different. Wein

answered that their design notices
a problem in an automated way,
detects it right away, and removes
it automatically. They have large
brute force redundancy.

Deploying Virtual Machines as
Sandboxes for the Grid

Sriya Santhanam, Pradheep Elango,
Andrea Arpaci-Dusseau, and Miron
Livny, University of Wisconsin, Madison

Sriya Santhanam presented this
research into the use of VMs in
distributed computing. As most
research Grid computing projects
will run code that cannot be
trusted, this code poses a security
challenge. VMs provide security
and isolation, environment inde-
pendence, finer resource alloca-
tion, support for a wider variety of
jobs, and a flexible, generic solu-
tion. They used Xen for their proj-
ect, as Xen adds very little over-
head when running applications
on Linux. The target environment
was Condor, software that watches
for idle workstations so they can
be used in Grid computing.

Santhanam described four differ-
ent sandbox configurations, start-
ing with the least restrictive and
going to a very restricted environ-
ment. Even the least restrictive
version has Condor alone installed
within the VM, but arbitrary pro-
grams can be executed, and Con-
dor itself is still exposed to net-
work attacks. In the next version,
VM gets launched on demand, and
eager whole file caching is used,
so no network access is required.
In the next version, system calls
get executed on the submitting
machine rather than on the local
system, and the final sandbox con-
figuration includes lazy whole file
caching and remote system calls
on the submitting machine. San-
thanam then presented graphs
comparing the performance of the
difference sandboxes.

Sean Rhea asked why sandbox 1
showed such low overhead com-
pared to the other versions. San-
thanam answered that only in this

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 99

100 ; L O G I N : V O L . 3 1 , N O . 2

version is the VM already running.
All other sandboxes include the
time to start the VM in their over-
head. Armando Fox asked, which
sandbox would you choose for
your friends? For people you trust
to run code, sandbox 1 is easiest,
whereas sandbox 4 adds additional
components and complexity. Rhea
asked if only one job is run at a
time, and Santhanam answered
yes, because the goal was limited
and focused on defense. Rhea
asked if the VM gets flushed after
running each job. Santhanam
answered that these are student
workstations, running in labs, so
the focus is on protecting these
machines.

MON: On-Demand Overlays for
Distributed System Management

Jin Liang, Steven Y. Ko, Indranil Gupta,
and Klara Nahrstedt, University of
Illinois at Urbana-Champaign

Jin Liang described the problems
that can occur when running
applications on the PlanetLab
Grid: monitoring and control
require connections from the
many remote systems each to a
separate process. Monitoring the
status of remote applications—
noticing if they have crashed, if
they need to be restarted, or if all
applications need to be stopped
and a new version uploaded—has
been difficult with the existing
tools. The goal also includes soft-
ware distribution to all nodes.

MON is a management overlay
network that uses an equivalent of
a spanning tree to aggregate the
results of all commands and to dis-
tribute commands to all the nodes.
The overlay network is built on
demand when needed, and is sim-
ple, lightweight, and suited to
management, irregular/occasional
usage, and short/medium-term
command execution. When execu-
tion completes, the overlay goes
away. Each remote host runs one
daemon process that not only exe-
cutes commands, but also partici-
pates in the construction of the

tree. The construction of the tree
must itself be lightweight and sat-
isfy the requirements of both sta-
tus query and software distribu-
tion. Liang described research into
the best method of tree construc-
tion, a combination of random tree
construction followed by local
selection of neighbors. The paper
provides more details of tree con-
struction.

The Q&A focused more on what
MON can and can’t do than on tree
construction. Someone asked, how
can you be sure that a response
from a node is calculated exactly
once? Liang answered that this
is not a problem, as each parent
aggregates responses from children
and sends just one response to its
parent. Someone else asked, how
can you find nodes that aren’t
working properly? Jiang said that
MON is not designed for this pur-
pose, but is focused on reliable,
occasional monitoring.

C H O O S I N G W I S E LY

Summarized by Jin Liang

Supporting Network Coordinates on
PlanetLab

Peter Pietzuch, Jonathan Ledlie, and
Margo Seltzer, Harvard University

Jonathan Ledlie first briefly
reviewed what network coordi-
nates are. Network coordinates
such as Vivaldi try to approximate
delay between two nodes using a
geometric space. Thus, they are a
powerful abstraction for distrib-
uted systems. However, the delay
between nodes is not static. There
could be gradual changes as well
as unpredictable, unusually large
deviations. The authors used a
moving minimum filter to deal
with this problem. Specifically,
at any time, the next delay is pre-
dicted as the minimum of the pre-
vious four measurements. The
second problem with network
coordinates is that the changes in
network coordinates might cause
expensive application-level adjust-

ments. For this, some update filter
is used. Specifically, the centroid of
the starting coordinate window is
computed. The application is noti-
fied about the change only when
the current centroid of the coordi-
nate window is significantly differ-
ent from the starting centroid.

Ledlie also showed a movie that
illustrates how the coordinates
would change, with and without
the link (moving minimum) and
update filters. Their evaluation
results are based on the delay
measurement on about 270
machines on PlanetLab.

One audience member com-
mented that the filters are similar
to network time protocol (NTP),
including the update filter
(whether a node is trustable in
NTP). Ledlie said he will look at
the differences. Another audience
member asked if it is possible to
report distribution as well as coor-
dinates to the application, so that
the application is aware of how
much variance there is. Ledlie said
this is currently not in the system
but can be added. Someone else
asked if delay is correlated with
load, and Ledlie answered that
there is a correlation.

Fixing the Embarrassing Slowness of
OpenDHT on PlanetLab

Sean Rhea, Byung-Gon Chun, John
Kubiatowicz, and Scott Shenker,
University of California, Berkeley

Awarded Best Paper!

There is a lot of hype about DHTs
(Distributed Hash Tables). How-
ever, many previous results were
obtained in benign environments
(i.e., in lab). The authors of this
paper wanted to improve the per-
formance of DHT “in the wild,”
and by considering 99th-percentile
performance numbers. Real-world
applications may not have dedi-
cated machines, and the authors
want to provide an OpenDHT
service. There are two flavors of
slowness in nodes. The first is
unexpected, which is discovered

only when a request is routed to
the node. The second is consistent
slowness, which can be avoided by
maintaining a history. The authors
provided two solutions to node
slowness: (1) Delay-aware routing,
in which the delay to the next hop
and the distance in the key space
between hops are considered when
selecting the route.This is in con-
trast to traditional DHT, where
routing is purely greedy in the key
space. (2) Parallelism. Using itera-
tive routing, the requester can
keep multiple outgoing RPC
requests. Thus, even if some slow
nodes are encountered, other
requests can quickly get results.
The user can also send the initial
request to two different gateways.

Their results, obtained from Plan-
etLab using concurrent execution
methods (i.e., a particular ap-
proach is randomly selected for
lookup each time) show that
delay-aware routing is clearly best,
reducing the 99th-percentile
latency by 30% to 60% without
increasing overhead. Other tech-
niques can also reduce the delay,
but will increase overhead.

(Re)Design Considerations for Scal-
able Large-File Content Distribution

Brian Biskeborn, Michael Golightly,
KyoungSoo Park, and Vivek S. Pai,
Princeton University

Well-designed systems may not
work efficiently in a real environ-
ment. In redesigning the Coblitz
file transfer service, the authors
achieved a 300% faster download
and a 5x load reduction on the ori-
gin server. Coblitz uses a content
distribution network for file trans-
fer. A smart agent will divide the
request for one file into multiple
requests for file chunks. The
requests are sent to different CDN
nodes that have the chunks
cached. There are several tech-
niques that are used to improve
the downloading. For example,
some nodes are consistently slow,
and these are removed. Also, when
a node is slow, instead of waiting

for time-out and retry, the new
design keeps several connections
to compete with each other. Also,
before a node requests the file
from the origin server, it looks at
other nodes to see if they are more
suitable for making the request.
Using these techniques, the new
Coblitz system’s performance is
much improved.

One audience member asked if the
set of slow nodes is stable, because
they have found it (in terms of
delay instead of bandwidth) unsta-
ble. KyoungSoo said they have
done a lot of bandwidth measure-
ment and the set is stable. Another
questioner asked where the bottle-
neck is for downloading, and
KyoungSoo answered, the band-
width cap. Another audience
member asked whether they have
run comparisons with SHARK,
and KyoungSoo answered, yes,
and with BulletPrime.

F ROM TH E TR E N C H E S

Summarized by KyoungSoo Park

Non-Transitive Connectivity and
DHTs

Michael J. Freedman, New York
University; Karthik Lakshmi-
narayanan, Sean Rhea, and Ion Stoica,
University of California, Berkeley

Michael Freedman started by
pointing out the difficulty of run-
ning DHT applications due to the
non-transitive connectivity prob-
lem. Non-transitive connectivity is
A not being able to communicate
with B, while A and C and also C
and B can communicate. Because
the conceptual DHT design
assumes full connectivity, people
must often resort to their own
hacks to get around this problem.
Non-transitive connectivity occurs
for various reasons, such as link
failures, BGP routing updates, and
ISP peering disputes, and 9% of
PlanetLab nodes are reported to
show such phenomena, according
to Stribling.

For DHTs, Michael classified the
problems as “invisible nodes,”
“inconsistent roots,” “broken
return paths,” and “routing loops.”
Node B is said to be A’s invisible
node if A can communicate with B
via C, but not directly with B. A
simple fix for this would be to let
A add (or remove) B only when A
directly communicates (cannot
communicate) with B. In order to
get over the performance impact of
invisible nodes, Michael proposes
(1) timeout estimates via network
coordinates, (2) parallel lookups,
and (3) caching of unreachable
nodes. Another problem is “incon-
sistent roots,” possibly caused by
network partition. Two distictive
nodes, say R and R', which cannot
communicate with each other,
may each act as if it were the root.
An expensive consensus algorithm
is one way of solving this; another
is to use link-state routing among
the leaf set with FreePastry 1.4.1.
“Broken return paths” means that
a direct return path between the
destination node and the entry
node may not exist, while a for-
warding path in the DHT lookup
does exist. One solution is to route
backward along the lines of the
forward path, and the other is one-
node source routing via a leaf node
randomly chosen by the destina-
tion node.

Justin Cappos asked whether such
non-connectivity is mostly unidi-
rectional or bidirectional, and
Michael responded that he did not
measure it, but he thinks it is
mostly asymmetrical. Indranil
Gupta mentioned that the problem
is being solved by RON, and asked
if the problem is the fundamental
limit of DHT. Michael and Sean
Rhea responded that it is a prob-
lem of whether to store more
states in the routing table. Rick
McGeer added that Tapestry has a
backup path, and Sean confirmed
that.

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 101

Why It Is Hard to Build a Long-
Running Service on PlanetLab

Justin Cappos and John Hartman,
University of Arizona

Justin Cappos began by asking
why we do not see many long-
running services on PlanetLab,
even though PlanetLab was
mainly created to support them.
He divided the types of services
that researchers are interested in
into three categories. The first cat-
egory consists of highly novel
services that are publishable but
unstable and that usually end up
perishing right after publication
(e.g., Bullet and Shark). Another
category includes services such as
AppManager and Sirius, which
have high stability but are not
novel enough to be made into
papers.The last category, com-
prised of services that combine the
two features, includes Stork, Bella-
gio, and CoDeeN. Justin explained
that the reason why we do not see
many research services on Planet-
Lab is because there is not much
incentive to provide long-running
services, which would take non-
trivial maintenance time that can-
not be rewarded with publication,
and he emphasized the need to
give more credit to long-running
services.

He described the process by
which Stork was shaped into a
reliable, long-running service
and the lessons to be drawn from
Stork’s example: the need to have
a reasonable fall-back scheme for
unreliable services, to build on
other research services, to be
aware of corner cases, and to use
other research systems and pro-
vide the feedback essential to
improving their quality and usabil-
ity.

Jeff Mogul commented that it is
not the novelty of the idea but the
novelty of the results that draws
the attention of paper reviewers,
and conferences like OSDI mainly
focus on such results. Sean Rhea
commented that in the past, good

projects all started with a simple
scheme but evolved into a novel
system by fixing problems in the
middle.

Using PlanetLab for Network
Research: Myths, Realities, and Best
Practices

Neil Spring, University of Maryland;
Larry Peterson, Andy Bevier, and Vivek
Pai, Princeton University

Years of operation of PlanetLab
have created various myths that
used to be true. Still, some re-
search folks believe PlanetLab
is too flaky or too overloaded for
some experiments. Neil Spring
talked about what is and what is
not true about PlanetLab, based on
his careful observation.

He started with what’s true. First,
the experimental results are not
reproducible on PlanetLab, be-
cause it is designed to provide a
real-world Internet environment
rather than a controlled testbed.
Even so, short experiments can be
measured more carefully by avoid-
ing what CoMon has determined
to be heavily loaded nodes. For
reproducible results, Emulab and
Modelnet can be alternatives to
PlanetLab. Also, PlanetLab is not
representative of the Internet or
peer-to-peer network nodes,
because PlanetLab cannot cover
the entire Internet and its nodes
are not desktop machines as in
P2P systems. However, more and
more traffic on PlanetLab includes
lots of commercial sites and is not
PlanetLab-exclusive. Although
PlanetLab does not use P2P nodes,
its nodes can be used as managed
core nodes in P2P systems, as in
End System Multicast (ESM).

Neil also enumerated myths that
are no longer true. First, PlanetLab
is no longer overloaded. Measure-
ment shows that 20 to 30% of
available CPU cycles are available
at any given time, even right be-
fore major conference deadlines.
The current per-slice scheduling
prevents any single slice from hog-
ging all the CPU cycles. Another

myth is about PlanetLab’s sup-
posed inability to guarantee
resources, but resources are avail-
able because they are managed by
a brokerage service, especially in
running short-term experiments.

Best practices also help in demys-
tifing some myths and in improv-
ing the reliability of the experi-
ments on PlanetLab. By using
kernel timestamps and instru-
menting traceroute one can time
the packets on PlanetLab with
great accuracy, and measuring
bandwidth via precise packet
trains is still possible with the use
of an appropriate system call such
as nanosleep(). Random site meas-
urement restriction imposed by
PlanetLab AUP can be implicitly
lifted by soliciting outside traffic,
and observation of such rules is
easily achieved by using a service
like Scriptroute. Finally, it is bene-
ficial to know that surviving exces-
sive churns is essential in making
long-running experiments.

Mic Bowman asked if PlanetLab
suffers from memory pressure due
to the large memory footprint of
some Java programs. In response,
Vivek mentioned that a recent
memory pressure test shows that
80% of all PlanetLab nodes have
at least 100MB available. Besides,
pl_mom is effective in maintaining
a good level of memory status by
killing the highest memory con-
sumer when memory pressure
arises.

Sean Rhea commented that one
problem is that people tend to try
a random tool that works on a
stock Linux, but get frustrated to
see it not working on PlanetLab.
He also mentioned that it would
be useful to make the packet trains
into a tool like KyoungSoo and
Vivek’s CoTop. Neil responded
that using Scriptroute will provide
accurate timing without carefully
implementing it individually.

102 ; L O G I N : V O L . 3 1 , N O . 2

