
VEE ’05: First ACM/USENIX
Conference on Virtual Execution
Environments

June 11–12, 2005

K EY N OTE A D D R E S S

Summarized by Shuo Yang, Long Fei, and
Xing Fang

A Unified View of Virtualization

James E. Smith, University of
Wisconsin

James Smith started his keynote by
discussing why virtualization tech-
niques are interesting: they enable
transcending interfaces, flexible in-
novation, adaptation to other soft-
ware/hardware, networked com-
puting, and enhanced security. He
views virtualization as the fourth
pillar in computer systems besides
hardware, system software and ap-
plication software.

He reviewed the domains and ex-
amples of virtual machines, and
the origins of virtual machine con-
cepts. He said that different interest
groups, such as OS developers,
compiler developers, and applica-
tion programmers have different
perspectives on virtual machines.
System virtual machines provide a
system environment that is con-
structed at the ISA level. Process
virtual machines are constructed at
the ABI level. High-level-language
virtual machines (HLL VMs) pro-
vide APIs, i.e., they raise the level
of abstraction.

He pointed out that many of the ex-
isting VM techniques were invent-
ed on an ad hoc basis, and he asked
whether there might exist some-
thing more fundamental than a col-
lection of techniques. He then dis-
cussed his idea of how to establish
uniform concepts. He also reviewed
the solutions and challenges of VM
techniques. From there, he put
forward the question of how to
enhance virtual machine perfor-
mance. For example, the increase
of system layer complexity leads to
inefficiency. The Intel VT-x solu-

tion is to add another set of layers.
He then presented some perfor-
mance primitives, such as code
cache support, visibility of micro-
ops, and so forth.

Smith reminded the audience that
killer applications motivate virtual-
ization techniques. One of the kill-
er apps for virtualization is security.
HLL VMs, with security features
built in; process VMs, whose code
can be inspected before being exe-
cuted; and system VMs, which pro-
vide isolation with simple VMMs,
can all be used to support secure
networked computing.

Smith also discussed the education
curriculum about VMs. He pro-
posed an outline of what to teach in
a VM course, for example, putting
together virtually all levels of com-
puter system hardware and soft-
ware. He believes it is a challenging
and necessary task.

Smith concluded the talk with the
following points: the common
framework and terms should be
resolved; virtualization needs high-
er concepts, rather than a bag of
terms and techniques; and a unified
conference to exchange ideas from
different communities is needed,
and VEE serves that goal perfectly.

S C A L A B I L IT Y, P E R F O R M A N C E ,
A N D R E A L -TI M E X X X X X X X X X X X

Summarized by Shuo Yang

Friendly Virtual Machines: Leveraging
a Feedback-Control Model for Applica-
tion Adaptation

Yuting Zhang, Azer Bestavros, Mina
Guirguis, Ibrahim Matta, and Richard
West

Azer Bestavros presented a Friendly
Virtual Machines (FVM) frame-
work for efficient and fair resource
allocation when sharing an under-
lying host system. Bestavros first
discussed the background of virtual
machine adaptation: the trend of
VM techniques being increasingly
adapted to support applications
running on third-party hosts, the
need to isolate independent con-

stituents, and the emergence of VM
abstractions. He then said that the
motivation of the research is to en-
sure fairness and efficiency in the
underlying host resource alloca-
tion. He advocated the use of self-
adaptation in the guest VMs them-
selves, based on feedback about
resource usage and availability.

Bestavros defined a virtual machine
that fairly and efficiently adjusts its
demand for system resources as a
Friendly VM (FVM) and proposed
a resource-sharing technique that is
applicable to any application whose
execution is “friendly” to other ap-
plications sharing the same under-
lying resources. The friendliness
feature of FVM applies the classical
end-to-end argument to the prob-
lem of multi-resource allocation
across a set of applications sharing
the same infrastructure.

Bestavros said that the host in FVM
needs to provide unbiased on-de-
mand resource allocation and VMs,
and he mentioned the pricing is-
sues enabled by the FVM frame-
work. Bestavros showed the experi-
mental result of resource utilization
using the FVM system with “made-
up” benchmarks and real Web serv-
er benchmarks. The results showed
that FVM successfully achieves
fairness and efficiency in sharing
common hosting resources.

Diagnosing Performance Overheads in
the Xen Virtual Machine Environment

Aravind Menon, Jose Santos, Yoshio
Turner, G. (John) Janakiraman, and
Willy Zwaenepoel

Yoshio Turner presented Xenoprof,
a systemwide statistical profiling
toolkit for the Xen virtual machine
environment. Turner first discussed
how the increased adaptation of
virtualization techniques can affect
application performance in unex-
pected ways. He then presented an
example of Web server perfor-
mance degradation under the Xen
system, which motivated their
Xenoprof project. An application’s
performance in a virtual machine
environment can differ markedly

86 ; LOG I N : V O L . 3 0 , N O . 5

from its performance in a non-vir-
tualized environment, because of
interactions with the underlying
VMM. Xenoprof is designed to en-
able coordinated profiling of multi-
ple VMs in a system to obtain the
distribution of hardware events. He
introduced the Xenoprof design: a
paravirtualized interface to support
domain-level profilers. OProfile has
been ported to Xen environment as
a domain-specific profiler.

Turner presented an example of
Xenoprof use, showing how they
found a TCP-receive performance
anomaly under XenoLinux. After
that, he presented the work done
with Xenoprof to analyze several
performance problems observed
under different Xen configurations
for receiver, sender, and Web server
applications. Turner concluded that
Xenoprof is a useful tool to identify
major overhead in Xen. Xenoprof
will be included in official Xen and
OProfile releases.

Supporting Per-Processor Local-
Allocation Buffers Using Lightweight
User-Level Preemption Notification

Alex Garthwaite, Dave Dice, and Derek
White

Alex Garthwaite presented a local-
allocation buffers (LAB) manage-
ment technique that supports local
buffer allocation with regard to
processors instead of threads.

Garthwaite first gave a performance
comparison under different LAB-
size policies for the VlanoMark
benchmark. He made the point that
garbage collection is a hard prob-
lem when there are more threads
than processors and high preemp-
tion rates.

He then presented a processor-
local allocation buffers (PLABs)
strategy that associates local alloca-
tion buffers (LABs) with processors
and with buffers for each thread al-
located from its processor’s LAB.
Multi-processor restartable critical
sections (MP-RCS) techniques im-
plement such a buffer allocation
strategy. He then introduced the
challenges of PLABs, such as the

cost of dynamic checks and the
need for expression translation in
C. There is an overhead for using
PLABs over thread-local allocation
buffers (TLABs) when the number
of threads is less than the number
of processors, or when threads are
entirely compute-bound. PLABs are
much better than TLABs when the
number of threads is larger than the
number of processors. He showed
that their mechanism can combine
the PLAB and TLAB adaptively.
Garthwaite said that their mecha-
nism can easily be implemented in
x86 architecture. He then presented
the experimental results of their
techniques and concluded that the
simple MP-RCS mechanism is in-
dependent of the threading/sched-
uling model and is applicable to
many platforms.

A Programmable Microkernel for
Real-Time Systems

Christoph Kirsch, Marco Sanvido, and
Thomas Henzinger

Marco Sanvido presented the mi-
crokernel system architecture for
hard real-time applications. He first
presented the reactive (response to
environment) and the proactive
(task scheduling in platforms) re-
quirement in embedded systems,
and introduced the concept and ar-
chitecture of their solution’s design.
The E (embedded) machine is a
virtual machine that triggers the
execution of software tasks with re-
spect to events. The S (scheduling)
machine is a virtual machine that
orders the execution of software
tasks, and together their E+S ma-
chines equal the microkernel
model. Their model represents the
abstraction of the interaction be-
tween the hardware platform, reac-
tively constrained by the E machine
and proactively constrained by the
S machine.

Sanvido talked about the time-safe-
ty requirement of hard real-time
applications and presented a proof
that the time-safety requirements
were fulfilled with schedule-carry
code in their system. He introduced

the implementation issues of the
E+S machine, which has been im-
plemented using the StrongARM
processor and integrated into
HelyOS. In conclusion, Sanvido
said that their work has adopted
microkernel architecture for the
real-time application domain.

O BJ E C TS A N D TH E I R CO L L E C TI O N

Summarized by Long Fei

The Pauseless GC Algorithm

Cliff Click, Gil Tene, and Michael Wolf

Cliff Click began by pointing out
that garbage collection response
time has become an important
problem for applications that con-
tain response-time-sensitive com-
ponents. He described a system,
including CPU, chip, board, and
OS, built by Azul Systems to run
garbage-collected virtual machines.
The hardware supports fast user-
mode trap handlers. The hardware
TLB supports an additional privi-
lege level, GC mode, which lies be-
tween the usual user and kernel
modes. TLB violations on GC-pro-
tected pages generate fast user-level
traps instead of OS-level excep-
tions. The CPU supports a read
barrier instruction, which resem-
bles a standard load instruction ex-
cept that if it refers to a GC-protect-
ed page a fast user-mode trap
(GC-trap) handler is invoked.

The GC algorithm is highly con-
current, parallel, and compact. The
algorithm is divided into three
phases, Mark, Relocate, and
Remap. The Mark phase is respon-
sible for periodically marking the
live and dead objects. The Relocate
phase finds pages with little live
data, to GC-protect, relocate, and
compact them and to free the back-
ing physical memory. The Remap
phase updates every relocated
pointer in the heap. During the re-
locating phase, if a mutator’s read-
barrier GC-traps, the GC-trap han-
dler looks up the forwarding
pointer and places the correct value
both in the register and in memory.

; LOGIN: O C TO B E R 2 0 0 5 CO N F E R E N C E S UM MA R I E S 87

The authors backed up their design
with experiments using a modified
version of SpecJBB benchmark. The
authors also state that the read bar-
rier behavior can be emulated on
standard hardware at some cost.

Use Page Residency to Balance Trade-
offs in Tracing Garbage Collection

Daniel Spoonhower, Guy Blelloch, and
Robert Harper

Daniel Spoonhower presented this
paper. The key innovation of the
paper is a mechanism that allows
the collector to dynamically bal-
ance the tradeoffs of copying and
non-copying collection for each
page based on page residency, a
measure of the density of reachable
objects on a page. If the residency
of a page is sufficiently high, the
page should be promoted, other-
wise it should be copied.

Measuring the residency of even a
single page requires a traversal of
the entire heap. To avoid this over-
head, the authors devised several
residency-prediction heuristics and
recovery mechanisms to handle
poor predictions. The authors also
identified a continuous range of
tracing collectors and showed that
classic GC algorithms can be con-
sidered special cases of the pro-
posed GC algorithm with extreme
residency assumptions.

Their experiments revealed the im-
pact of heap size and configuration
thresholds on the performance of
GC algorithms. Mark-sweep per-
forms better when the heap size
is small, whereas semi-space per-
forms better when the heap size is
large. In both cases, their algorithm
yields a performance close to the
better of these. Experiments show
that this new algorithm has only
a small variation in performance
under six different configurations.

Exploiting Frequent Field Values in
Java Objects for Reducing Heap
Memory Requirements

Guangyu Chen, Mahmut Kandemir, and
Mary J. Irwin

Guangyu Chen said that the capa-
bilities of applications executing on
embedded and mobile devices are
strongly influenced by memory size
limitations. The authors use object
compression to improve memory
space utilization in an embedded
Java environment. The compres-
sion is based on the observation
that a small set of values appears
frequently in heap-allocated ob-
jects.

Their approach uses profile infor-
mation to categorize the object
fields into three levels: level-0 (the
field does not have a dominant fre-
quent value), level-1 (the field has
a non-zero or non-null frequent
value), level-2 (the field has a fre-
quent value that is zero or null).
They propose two compression
schemes. The first one divides an
object into primary part and sec-
ondary part (containing level-2
fields). The secondary part is elimi-
nated if all the level-2 fields are
zero or null. The second scheme
shares level-1 fields among multi-
ple objects. Experimental results
showed that these compression
schemes can reduce the heap size
significantly with little perfor-
mance impact.

G O I N G N ATI V E

Summarized by Long Fei

An Efficient and Generic Reversible
Debugger using the Virtual Machine
based Approach

Toshihiko Koju, Shingo Takada, and
Norihisa Doi

Toshihiko Koju began with the
statement that reverse execution is
very useful for locating the cause of
software failures. He described a
novel reversible debugger that uses
a virtual machine based approach.
This debugger provides compatibil-
ity and efficiency. In addition, it

provides two execution modes: na-
tive mode, where the debugger is
directly executed on a real CPU,
and the virtual machine mode,
where the debugger is executed on
a virtual machine.

In order to provide compatibility
and efficiency, the debugger uses
native machine code as its target.
The virtual machine translates the
native machine code of the target
program by inserting code to save
states that are changed during exe-
cution. The debugger is capable of
switching between the native and
the VM mode. In the native mode,
users cannot reverse-execute the
target program; in the VM mode,
the users can use reverse execution.
Some basic debugging functionality
(e.g., breakpoint, step) is supported
in both modes. The debugger al-
lows four types of settings, to allow
trade-offs between granularity, ac-
curacy, overhead, and memory re-
quirements of reverse execution.
The user can choose the appropri-
ate setting by designating the prop-
er reverse execution unit (line or
procedure) and optimization flag
(enable or disable).

Module-aware Translation for Real-life
Desktop Applications

Jianhui Li, Peng Zhang, and Orna Et-
zion

Jianhui Li explained that a dynamic
binary translator is a just-in-time
compiler that translates source ar-
chitecture binaries into target ar-
chitecture binaries on the fly. When
hot modules are loaded and un-
loaded repeatedly, traditional dy-
namic translators spend a signifi-
cant amount of time on repeatedly
translating these modules. He pro-
posed a translation reuse engine
that uses a novel verification
method and a module-aware mem-
ory management mechanism.

There are three stages to accom-
plish translation reuse: translation
reservation, source binary verifica-
tion, and translation revivification.
In this framework, when a translat-
ed code block is invalidated, it is

88 ; LOG I N : V O L . 3 0 , N O . 5

preserved by the reuse engine and
saved by the execution engine. In
order to verify that the saved
translation is exactly the expected
translation for a code block, the
translation engine uses a save-and-
comparison scheme. If the reuse
engine decides to reuse the transla-
tion for a piece of the source binary,
it saves a minimum set of source bi-
naries that determine the semantics
of translation. Before the transla-
tion engine translates a piece of the
source binary, it requests the reuse
engine to compare the saved partial
source binaries with their counter-
parts in the current binary image.
The saved translation is used if they
are the same.

The authors propose a module-
aware memory management mech-
anism, which organizes the trans-
lation code blocks of different
modules into different pools (mod-
ule-private page pool and general
page pool). When a hot module is
unloaded, its private code pages are
reserved for future reuse (unless
it’s identified as not reusable). Ex-
periments with real-life desktop
applications show that this new
translation-reuse technique can sig-
nificantly improve the performance
of four real-life desktop applica-
tions.

Planning for Code Buffer Management
in Distributed Virtual Execution
Environments

Shukang Zhou, Bruce R. Childers, and
Mary Lou Soffa

Many devices in a distributed com-
puting environment have tight
memory constraints. One approach
is to download code partitions on
demand from a server and to cache
the partitions in the client. Shu-
kang Zhou and his colleagues ad-
dressed the problem of intelligently
managing the code buffer to mini-
mize the overhead of code buffer
misses. They propose to move the
code buffer management to the
server, where sophisticated
schemes can be employed.

A program is first divided into
code partitions, which are then
stored in a code server connected
to the client. Profiling is used to
capture the hotness of code parti-
tions. The client’s code buffer is
partitioned into multiple sub-
buffers. The sub-buffers are or-
dered by the hotness of partitions
assigned to them. One sub-buffer
holds very hot code, while another
may hold infrequently executed
code. This approach is based on the
fact that most programs spend a
large part of their execution in a
small portion of code.

The authors discuss the overall
strategy of CB memory planning
and then describe two particular
schemes. In the fixed scheme, code
partitions are always housed in the
same sub-buffer during execution.
In the adaptive scheme, partitions
are cached in sub-buffers based on
a program’s run-time behavior. The
authors also introduce a heuristic
called density, which is defined as a
partition’s execution frequency di-
vided by its size, to measure the
priority of code partitions to reside
in CB. Experiments show that these
schemes have fewer CB misses,
which translates to a significant
speedup.

K EY N OTE A D D R E S S

Summarized by Shuo Yang, Xing Fang, and
Long Fei

Application Servers as Virtualization
Environments

Martin Nally, CTO, IBM Rational

Martin Nally first gave a broad
overview of virtualization services.
Virtualization techniques serve as
tools of software development syn-
ergy between software and the exe-
cution environment. According to
IDC data, the worldwide applica-
tion server software platform rev-
enue is increasing dramatically. He
then introduced an example of
writing Web server applications
without knowing the specific target
application servers, and showed the
necessity for the Web server appli-

cation to be compatible with differ-
ent OS and hardware platforms.

He introduced various approaches
to building Web server applica-
tions, such as JVM (J2EE), CGI-
BIN, etc., and discussed the pros
and cons of each approach. Then
he discussed different levels of vir-
tualization—OS, JVM, and Web
server—with respect to their gener-
ality. OS virtualization provides im-
portant and very general concepts
to support application execution.
JVM virtualization provides plat-
form independence. Application
server virtualization targets certain
classes of applications.

He said that application servers are
usually thought of as containers
and pointed out the important role
of virtualization. First, the virtual
environment serves as a logic wrap-
per. He gave a Web server applica-
tion as an example of this view. He
then discussed Web application
containers as a virtual secure envi-
ronment and talked about the scal-
ability and performance challenges
of application servers.

He presented cluster and workload
management and hardware virtual-
ization. One of the key features of
application servers is scaling. There
are a wide variety of configurations
to virtualize hardware. He intro-
duced how Web cluster failover is
handled and recovered. Web clus-
ters allow transparent application
updates and enable continuous
availability of service. WebSphere
XD is the next level of sophistica-
tion of virtualizing hardware. He
discussed the challenges of an on-
demand operating environment for
a large financial company: for ex-
ample, the underutilization of
servers and the inability to share.
He believes virtualization, such as
WebSphere XD’s automatic man-
agement, provides a better solution
than the conventional approaches
in this case.

Nally concluded his talk with the
following points. Application
servers provide a virtual environ-

; LOGIN: O C TO B E R 2 0 0 5 CO N F E R E N C E S UM MA R I E S 89

ment for executing Internet and in-
tranet applications. Application
servers present a simple virtual en-
vironment to application program-
mers. Application servers virtualize
across many physically individual
computers that may be running dif-
ferent OS application servers, even
using some virtualization tech-
niques that are not seen at the OS
level.

He raised some questions at the
end of his talk. J2EE applications
run on JVMs which run on OSes,
and each of these layers is perform-
ing virtualization—is this working?
Could some of the redundancy be
removed? Could these layers work
better together or even be coa-
lesced?

DY N A M I C COM P I L ATI O N
TE C H N I Q U E SX X X X X X X X X X

Summarized by Xing Fang

Escape Analysis in the Context
of Dynamic Compilation and
Deoptimization

Thomas Kotzmann and Hanspeter
Mössenböck

Thomas Kotzmann presented an
intra- and interprocedural escape
analysis for a dynamic compiler.
Escape analysis determines, for
each object, whether it is accessible
from within a single method, or
one thread, or multiple threads.
Method-local objects are eliminat-
ed and replaced with scalar vari-
ables. Thread-local objects are
stack-allocated, and synchroniza-
tion on them is removed.

The analyses and optimizations are
implemented in Sun’s Java HotSpot
Client VM, which has a front end
that operates on an SSA-based
High-level Intermediate Represen-
tation (HIR). Escape analysis and
scalar replacement are performed
in parallel with the construction of
the HIR. A state object containing a
locals array is maintained by the
compiler, to track the values most
recently assigned to local variables.
The state object also has a fields

array which stores the current val-
ues of all fields.

An object is represented by its allo-
cation instruction. The intraproce-
dural analysis parses instructions
that might cause an object to es-
cape, and updates the escape state
of the instruction representing the
object. Effects of various instruc-
tions on escape states were dis-
cussed. With SSA form, control
flow is captured in phi-functions at
the control merge points.

Test results about compilation time
and machine code quality were per-
formed and analyzed. The benefit is
very evident for some benchmarks,
most notably mtrt in SPECjvm98
and Monte Carlo in SciMark.

Inlining Java Native Calls at Runtime

Levon Stepanian, Angela Demke Brown,
Allan Kielstra, Gita Koblents, and Kevin
Stoodley

Levon Stepanian started out by ob-
serving that Java native calls are
pervasive because they allow lega-
cy, high-performance, or architec-
ture-dependent native code to be
integrated with Java applications.
However, cross-language calls usu-
ally incur large time and space
overheads, and this is true with
JNI.

To reduce these overheads, the
authors propose inlining JNI calls
into Java applications with a JIT
compiler. Both callouts (Java
calls to functions implemented in
external languages) and callbacks
(external code accessing and modi-
fying data and services from a run-
ning JVM) can be inlined. Work
was done on the IBM TR JIT com-
piler, and the native functions exist
in the form of W-code, the mature
stack-based bytecode-like represen-
tation generated by IBM compiler
front-ends.

Entire native functions are inlined
at their call sites. For small native
functions, removing the overhead
of callouts can be a significant ben-
efit. The benefit of transforming
callbacks is even higher, with a

minimum achieved speedup of
nearly 12X in the micro-bench-
mark test cases. Inlining also ap-
pears to reduce the need for con-
servative assumptions about the
behavior of native code in the JIT
optimizer.

Optimized Interval Splitting in a
Linear Scan Register Allocator

Christian Wimmer and Hanspeter
Mössenböck

Linear scan register allocation is
very suitable for JIT compilers be-
cause it is much faster than graph
coloring and is nearly as effective.
For each virtual register, lifetime
intervals store the range of instruc-
tions where a value is active. Two
intersecting intervals must not
have the same register assigned.
The algorithm assigns registers to
values in a single linear pass over
all intervals.

Three optimizations are proposed
and implemented. Split positions
are optimized to reduce the num-
ber of spill loads and stores at run-
time. They are moved out of loops
and into block boundaries. When
two intervals are connected only by
a move instruction, the interval of
the move target stores the source of
the move as its register hint. When
possible, the target gets the same
register allocated as the source,
eliminating the register-to-register
move. In two common cases that
cover most of the intervals, moves
inserted for spill stores can be re-
moved.

Christian Wimmer presented the
flow of the algorithm and used de-
tailed examples to illustrate it. The
algorithm is implemented for Sun’s
Java HotSpot Client VM. Results
prove the efficiency of the opti-
mized algorithm: the compilation
time of the algorithm is nearly lin-
ear, and it is even faster than the
original register allocation algo-
rithm in the client compiler.

90 ; LOG I N : V O L . 3 0 , N O . 5

L A N G UAG E R E P R E S E NTATI O N S

Summarized by Xing Fang

An Execution Layer for Aspect-
Oriented Programming Languages

Michael Haupt, Mira Mezini, Christoph
Bockisch, Tom Dinkelaker, Michael
Eichberg, and Michael Krebs

Michael Haupt introduced the key
concepts of the pointcut-and-ad-
vice (PA) flavor of Aspect Oriented
Programming (AOP): join points,
pointcuts, and advice. A join point
is a point in the execution of a pro-
gram, a pointcut is a query that
quantifies over join points, defining
related sets of join points, and an
advice is a piece of functionality
that can be attached to pointcuts,
taking semantic effect when the re-
spective pointcuts match.

According to Haupt, AOP language
mechanisms, like OOP mecha-
nisms, deserve implementation ef-
fort. AOP features have not gained
sufficient support.

Currently, dispatching logic is in-
serted into application logic at
compile or load time. This gap in
semantics confuses debug efforts
and incurs performance drawbacks.
The contribution of the work is the
integration of both the JPRM and
the WM into the VM for supporting
AspectJ’s dynamic point model.
The authors developed Steamloom,
an extension to IBM’s Jikes RVM
that provides AOP functionality at
the VM level, assessable through a
Java API.

Evaluations show that the overhead
incurred by the modification to im-
plement Steamloom is practically
zero, for hot runs. Class loading
and method compilation overhead
is about 7.8%. Other results show
that using an AOP-enabled infra-
structure does not in itself mean
that execution is slowed down. Ap-
plied modifications of the original
VM do not critically interfere with
other subsystems. AOP-related
functionality is more efficiently re-
alizable at VM level.

Virtual Machine Showdown: Stack
Versus Registers

Yunhe Shi, David Gregg, Andrew Beatty,
and M. Anton Ertl,

A long-running question in the de-
sign of Virtual Machines is whether
stack architecture or register archi-
tecture can be implemented more
efficiently with an interpreter.
David Gregg started off by noting
that stack machines were more
popular, because of the small code
size and the ease of building stack
machines. The JVMs and PERL 5
interpreter took this approach. But
PERL 6 used a register machine in-
stead, because register code was
perceived as faster to interpret.

Execution of a VM instruction
could be broken down into instruc-
tion dispatch, operand access, and
actual computation times. Register
code incurs less dispatch time than
stack code, because of its fewer
number of instructions. However,
register code needs to access its
operands explicitly so the code size
is usually larger, resulting in more
memory fetches for the code. Actu-
al computation time is about the
same for register and stack codes.
Instruction dispatch is more costly
than code fetching, so register code
has the potential to be faster.

The authors built a much more so-
phisticated translator from the
stack code to the register code. Re-
sults showed that the register code
has 47% fewer instructions at a cost
of a 25% increase in code size. Op-
timizations on the register code
were very effective. 43.47% of static
VM instructions were eliminated,
as well as 47.21% of the dynamic
VM code. On a Pentium 4, the reg-
ister machine requires 32.3% less
time than stack machine, with a
less than perfect dispatch scheme.
With a better dispatch, the reduc-
tion in execution time was still
26.5%. It is a very strong indication
that the register architecture is su-
perior to the stack architecture for
implementing interpreter-based
VMs.

Instrumenting Annotated Programs

Marina Biberstein, Vugranam C. Sreed-
har, Bilha Mendelson, Daniel Citron,
and Alberto Giammaria

Instrumentation is commonly used
to collect program profile informa-
tion. It is a spectative (i.e., one that
observes the program behavior)
program transformation and must
maintain the program structure and
functionality. Program annotation
enables developers and tools to
pass extra information to later
stages of software development and
execution. It is widely used in the
CLR platform and has been adopt-
ed into the Java 1.5 standard.

Marina Biberstein gave a motivat-
ing example of two annotations
that were both interfered with, al-
though differently, by instrumenta-
tion. To solve the problem, instru-
mentation must handle different
annotations in different ways.
There must be active cooperation
between the two.

The proposed solution takes an in-
strumentation-driven approach.
Annotations are classified accord-
ing to their behavior, and annota-
tion writers would, for each anno-
tation type, provide its description,
in the form of meta-annotations.
The descriptions provide informa-
tion about the stage and lifetime of
the annotation, its scope, sensitivi-
ty to instrumentation, and whether
the annotation can be removed or
healed. This information is passed
on to instrumentation, which then
bases its decisions on the informa-
tion provided.

The authors proposed a taxonomy
of annotations based on their study
of more than two hundred live ex-
amples, which they used to classify
annotations. They demonstrated
their solution on a set of sample an-
notations.

; LOGIN: O C TO B E R 2 0 0 5 CO N F E R E N C E S UM MA R I E S 91

D I STR I B UTE D V E E S

Summarized by Shuo Yang

PDS: A Virtual Execution Environment
for Software Deployment

Bowen Alpern, Joshua Auerbach, Vas-
anth Bala, Thomas Frauenhofer, Todd
Mummert, and Michael Pigott

Joshua Auerbach presented a virtu-
al machine solution, the Progres-
sive Deployment System (PDS), to
manage complex software deploy-
ment. The idea of PDS is to have
software packaged, to provision,
deploy, and execute software on
customer machines, and to share
software updates with many others
(customers).

Auerbach gave an overview of PDS
by introducing a working prototype
under Windows XP: assets to be de-
livered include Eclipse, JBoss, and
WebSphere. Using this example,
he presented the architecture com-
ponents of PDS and showed that
PDS’s virtual environment makes
software look locally installed and
resolves environment conflicts.

He talked about PDS’s virtualizer. A
process VM virtualizes the applica-
tion binary interface (ABI), not
hardware. Processes derived from
the same asset are in the same VM.
PDS uses a selective virtualization
and only virtualizes OS calls that
access the assets’ virtually installed
image. Auerbach concluded his
talk by comparing the related work
and presenting the differences with
PDS and saying that PDS provides a
feasible and convenient approach
to deploying software packages.

The Entropia Virtual Machine for
Desktop Grids

Brad Calder, Andrew Chien, Ju Wang,
and Don Yang

Brad Calder introduced the back-
ground of desktop distributed com-
puting. The customers in this
venue require the following fea-
tures: desktop security, a clean exe-
cution environment, unobtrusive-
ness, application security, ease of
application integration, lightweight

VM installation, and low perfor-
mance overhead.

He gave a system-architecture
overview of the Entropia desktop
computing system, which includes
job management, resource manage-
ment, and physical node manage-
ment. Entropia virtual machines
(EVMs) consist of: (1) a desktop
controller to guarantee unobtru-
siveness; and (2) a sandbox execu-
tion layer to provide security fea-
tures. The sandbox layer takes two
approaches to guarantee security:
device driver mediation (with rela-
tively high overhead) and binary
interception (with low overhead).
The sandboxing execution layer
provides file virtualization (all files
are accessed through a confined
virtual file system located in an En-
tropia directory); file I/O throttling
and automated file encryption; reg-
istry virtualization; GUI virtualiza-
tion; network virtualization; and
network I/O throttling.

Finally, he discussed the perfor-
mance of jobs running on EVM.
The talk concluded with an inter-
esting discussion of market and
customer demands.

HyperSpector: Virtual Distributed
Monitoring Environments for Secure
Intrusion Detection

Kenichi Kourai and Shigeru Chiba

Kenichi Kourai presented a virtual
distributed monitoring environ-
ment called HyperSpector, whose
goal is to achieve secure intrusion
detection in distributed computer
systems.

He introduced the distributed
intrusion detection systems (DIDs)
and threats against DIDs by de-
scribing the behaviors and actions
of active attacks and passive at-
tacks. He then talked about the
traditional approach to solving
these challenges to DIDs—isolated
monitoring—which is secure but
needs additional hardware and sup-
ports only network-based IDSes
(NIDSes).

He discussed the design of Hyper-
Spector: it runs IDSes and server
applications on separate VMs, and
it builds a virtual network across
the IDS VMs. HyperSpector pro-
vides three mechanisms: software
port mirroring (packet capturing),
inter-VM mounting (filesystem
checking), and inter-VM mapping
(process checking).

HyperSpector has been implement-
ed in their Persona operating sys-
tem, which is based on the FreeBSD
4.9 kernel. Their experimental re-
sults showed the effectiveness of
their HyperSpector system design
in terms of both security and over-
head.

Steps to Reducing Unwanted
Traffic on the Internet Workshop
(SRUTI ’05)

July 7, 2005, Cambridge, MA
Summarized by Jayanthkumar Kannan
and Lakshminarayanan Subramanian, and
edited by Balachander Krishnamurthy

SRUTI, a first-time USENIX work-
shop, sponsored by AT&T Labs,
Cisco Systems, and the Department
of Homeland Security, was attended
by 55 people, and 13 peer-reviewed
papers were presented.

D D O S A N D WO R M S

Using Routing and Tunneling to
Combat DoS Attacks

Adam Greenhalgh, Mark Handley, and
Felipe Huici, University College London

The first session of the SRUTI
workshop focused on different
forms of network-level filtering
mechanisms to defend against
DDoS and worm attacks. The first
paper argues that while many exist-
ing DoS defense mechanisms are
hard to deploy, one can use a com-
bination of routing and tunneling
techniques to obtain a deployable
DoS defense. The basic idea is to
tunnel the traffic bound to a server
across a fixed set of control points
(edge routers in ISPs), which act as
IP-level filtering gateways and use

92 ; LOG I N : V O L . 3 0 , N O . 5

