
Our thanks to the
summarizers:
Ashwin Bharambe
Christopher Clark
Priya Mahadevan
Tipp Moseley
Mohan Rajagopalan
Marianne Shaw
Alan Shieh
Craig Soules
Andrew Warfield
Charles Weddle

conference
reports

OSDI ’04:
6th Symposium on
Operating Systems Design
and Implementation
San Francisco, California
December 6–8, 2004

D E P E N DA B I L IT Y A N D
R E L I A B I L IT Y

Summarized by
Christopher Clark

Recovering Device Drivers

Michael M. Swift, Muthukarup-
pan Annamalai, Brian N. Ber-
shad, and Henry M. Levy, Uni-
versity of Washington

Awarded Best Paper!

Michael Swift presented the
first paper of the session on a
technique for accommodat-
ing device driver failure.

Building on the previous
Nooks work on protecting
the operating system when
driver failures occur, the
next challenge addressed is
how to keep applications
running when devices fail.
This is achieved by introduc-
ing shadow drivers tasked
with masking failures by act-
ing as a “spare tire” in the
event of an emergency.

A single shadow driver is
written for each device class,
implementing the same
interface to the operating
system that a driver for a real
device does. A shadow runs
silently alongside each real
driver, observing requests,
until failure is detected by
the OS. This triggers a restart
of the real driver, while the
shadow temporarily assumes
responsibility for spoofing it
and handling application re-
quests until the restart com-
pletes. The shadow assists in
reinitialization of the restart-
ed driver by replaying previ-
ously observed configuration
commands to the driver

before handing back responsibility
for requests.

This scheme was implemented in
the Linux 2.4.18 kernel for sound
cards, network cards, and an IDE
disk driver. Evaluation used both
artificial fault injection of common
programmer errors and deliberate
porting of real bugs into the test
kernel. Results showed that 98%
of errors examined were recover-
able using shadow drivers.

George Dunlap (University of
Michigan) inquired whether this
work would reduce the inclination
of companies producing drivers to
bother removing bugs; Swift
advised not to tell them we are
doing this. Val Henson (IBM
Research) offered praise and asked
if there were plans to port the
work into the mainstream Linux
2.6 kernel; Swift indicated not,
given the current “grad student
quality” of the code. A delegate
from HP Labs likened the work to
a dangerous condition for humans,
where sufferers are unable to feel
pain. Swift argued he would rather
not experience the immediate con-
sequences of driver faults, prefer-
ring instead to receive failure fre-
quency statistics.

Unmodified Device Driver Reuse and
Improved System Dependability via
Virtual Machines

Joshua LeVasseur, Volkmar Uhlig, Jan
Stoess, and Stefan Götz, University of
Karlsruhe, Germany

Motivated by the desire to reuse
existing device drivers written for
commodity operating systems
with the L4 research operating sys-
tem, Joshua LeVasseur presented a
method of using virtual machines
to achieve this. The benefits are
clear: they comprise a very large
body of code and have undergone
testing that would have to be
repeated were they to be rewritten,
if it were even possible to do so.

The classic technique for driver
reuse is to write “glue code,”
implementing the device driver
API of the OS the driver was writ-
ten for and performing translation

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 57

to the primitives of the new OS.
The difficulty is that the driver API
is often loosely defined, very wide,
and messy, entailing manipulation
of arbitrary data structures within
the original OS, which conse-
quently must be simulated by the
glue code. The alternative
approach proposed is to use the
original OS itself as the glue code
by running it atop a virtual
machine monitor and exporting
access to the device to other
hosted virtual machines. Client
VMs run a stub driver that com-
municates with the driver VM to
achieve the desired use of a device.
Memory protection hardware
ensures that DMA initiated by
device drivers is intercepted by the
VMM and translated to indicate
the correct physical addresses as
necessary; with a paravirtualized
VM, this step may be elided. A sin-
gle machine arbitrates access to
the PCI bus, with other machines
communicating with this to imple-
ment higher-layered drivers.

A performance evaluation of the
reuse of paravirtualized Linux
drivers demonstrates single-digit
percentage decrease for network
and disk throughput, with a cost
of approximately double the CPU
consumption of the native driver.

Bin Ren (University of Cambridge)
asked how the CPU scheduler
selects which VM to run. Le-
Vasseur responded that scheduling
needed tuning to match the driv-
ers in question. Val Henson noted
that running multiple OSes to sup-
port the drivers increases the
amount of code that needs to be
correct for the system to function.
LeVasseur countered that reuse of
existing drivers increases confi-
dence that the drivers are correct.

Microreboot—A Technique for
Cheap Recovery

George Candea, Shinichi Kawamoto,
Yuichi Fujiki, Greg Friedman, and
Armando Fox, Stanford University

George Candea gave a talk on
micro-rebooting, or restarting
components within a system to

purge any damaged state. The aim
is to make reboot-based recovery
fast in enterprise systems.

Candea’s thesis is that improved
availability can be achieved if it is
possible to restart only the faulty
parts of the system. This is an
argument for making component
restart possible and fast; to enable
this, one must refactor code to
move session state in a separate
lump, distinct from the ephemeral
state within the component. The
session state alone may then per-
sist between component restarts,
and the micro-reboot can address
the symptoms of software failure,
such as transient exceptions, dead-
locks, and memory leaks.

To evaluate the approach, a proto-
type auction Web service was con-
structed from J2EE components
running on the JBoss platform.
Since rebooting individual compo-
nents is significantly faster than
rebooting the entire JVM and has
little discernible impact on avail-
ability, the fault detector need not
be very accurate, because false
positives are not expensive. This
encourages a strategy of micro-
rebooting aggressively, or periodic
“micro-rejuvenation” to keep the
system healthy.

A delegate from Georgia Tech
noted that in real applications
there may be significant depen-
dencies between components, and
so the restarting of a single compo-
nent may require the restarting of
almost the entire system. Candea
replied that the common design
patterns encouraged by the use of
EJBs make such tight coupling
infrequent. A delegate from Rice
University asked about the com-
plexity of the prototype and
whether it was entirely in Java or
included modifications to the run-
time. Candea responded that the
JVM was not modified, 200 lines
of code were added to JBoss, and
the remaining implementation was
composed of managed EJBs.

AUTOM ATE D M A N AG E M E NT I

Summarized by Andrew Warfield

Automated Worm Fingerprinting

Sumeet Singh, Christian Estan, George
Varghese, and Stephan Savage, Univer-
sity of California, San Diego

This work addresses the problem
of identifying worm outbreaks as
quickly as possible. Sumeet began
by identifying the design space
and clarifying the three main
requirements of their approach:
response time, granularity of con-
tainment, and deployment. Their
system, dubbed “EarlyBird,” aims
for a response time on the order of
seconds, contains worms at a pre-
cise content signature granularity,
and is network (rather than end-
host) based. The key challenges in
developing such a system are pro-
cessing and storage: at gigabit line
rates, packets must be processed in
12 microseconds or less, and log
data accumulates very quickly.

EarlyBird capitalizes on two prop-
erties of worms for fast identifica-
tion: content prevalence, which
involves the frequency of the sub-
string, assuming that there is an
invariant substring across all
instances of a particular worm,
and address dispersion, the prop-
erty that such substrings will
travel between a large set of hosts.
Their approach uses fixed-length
substring hashes to find common
signatures. Hashing has the addi-
tional benefit of allowing value
sampling, through only examining
packets in a specified range of
hashes. EarlyBird has been de-
ployed for eight months in sepa-
rate academic and ISP environ-
ments, and has found all known
worms as well as several new ones.

Petros Maniatis from Intel
Research asked about how Early-
Bird would fare against polymor-
phic worms. Sumeet answered that
most encrypted worms were easy
to classify because embedded
decryptor code is invariant. Con-
cerning SSH tunneling, he pro-
posed that encryption be made

58 ; L O G I N : V O L . 3 0 , N O . 2

gateway-to-gateway rather than
end-to-end. Regarding harder
polymorphism, for instance
NOOP insertion, he said that more
investigation was required. Brad
Karp (Intel Research) asked how
many hosts would be exploited
before prevalence thresholds were
crossed, and mentioned the 30/30
rule (the address dispersion
threshold of 30 sources and 30
destinations) described in the
paper. Sumeet agreed that this
issue needed more consideration
but said that they had moved on to
better methods than 30/30 since
the paper was written. Someone
from Microsoft Research asked
whether worms could circumvent
EarlyBird’s detection mechanisms.
Sumeet explained that value sam-
pling was difficult to outguess.
Someone from Rice University
asked about worms over P2P.
Sumeet answered that in general
these were not a problem, but that
in some specific cases, such as Bit-
Torrent, there is a risk of generat-
ing false positives.

Understanding and Dealing with
Operator Mistakes in Internet
Services

Kiran Nagaraja, Fabio Oliveira,
Ricardo Bianchini, Richard P. Martin,
and Thu D. Nguen, Rutgers University

Operator-caused outages are a
major problem in Internet serv-
ices. The authors explored ways to
provide “realistic virtual environ-
ment”-based support to help pre-
vent such mistakes. The talk was
divided into three parts: under-
standing operator mistakes, deal-
ing with the problem, and valida-
tion of their results.

In order to better understand oper-
ator error, the authors conducted a
study involving 43 experiments
and 21 operators of varying levels
of experience. Operators were
asked to perform a variety of both
proactive and reactive tasks on a
model three-tier Web service envi-
ronment, and the experiments
resulted in a total of 42 operator
mistakes. The highest categories of

mistakes were those resulting in
degraded throughput or inaccessi-
ble service, most frequently as a
result of configuration problems.
In order to prevent operator mis-
takes from happening, the authors
developed a virtual environment
in which system changes could be
tested before they were applied.
Their system could be run online,
by “shunting” the request stream,
or offline using traces. Finally,
Kiran presented a validation of
their prototype. In a set of live
operator experiments using their
environment, six of nine mistakes
were caught before being applied
to the production system. The
authors also emulated the opera-
tors from the initial experiments
and were able to catch 28 of the 42
mistakes that were observed there.
The most frequently corrected
mistakes were those of global con-
figuration and starting the wrong
version of a service.

Andrew Whitaker (University of
Washington) asked if mistakes had
been symptomatic of operator
unfamiliarity with the model
three-tiered service. Kiran
acknowledged that this was worth
considering in future work but
that this was the best initial
approach to the study. Jonathan
Appavu (IBM Research) asked
what other tools might be devel-
oped to help operators avoid mis-
takes. Kiran pointed out that the
biggest problem is that many tools,
such as configuration checkers,
are very application-specific.
While these tools are useful, he
pointed out that the approach
described in the paper worked
with all applications and tested the
actual results of operator actions.

Configuration Debugging as Search:
Finding the Needle in the Haystack

Andrew Whitaker, Richard S. Cox,
and Steven D. Gribble, University of
Washington

Andrew began by describing his
work as a different sort of debug-
ger, one targeted at configuration
errors. As an initial example he

presented the issue of Mozilla
crashing sometime after a set of
extensions had been installed and
observed that current approaches
to the problem might involve
googling for “mozilla crash” or
reading help menus. Unfortu-
nately, in many cases these will not
provide a solution, and even rein-
stalling the broken application will
not fix the problem. Their work
aims to provide tool support to
systematically identify the causes
of this class of “worked yesterday,
not today” (WYNOT) configura-
tion errors.

Chronus is a tool that the authors
have developed to isolate WYNOT
errors. In Chronus, the operating
system runs in a lightweight vir-
tual machine above Denali, a vir-
tual machine monitor that the
group developed previously.
Denali allows block devices used
by the operating system to be
made into “time travel” disks, log-
ging a history of all past states of
the disk. To diagnose a configura-
tion error, the user provides a
probe script that tests for the exis-
tence of the error. Chronus will
then do a binary search across a
specified region in the history of
the disk, booting the OS and run-
ning the probe, finally returning a
pair of disk images in which the
probe results transition from suc-
cess to failure. By examining the
differences between these images,
Chronus will provide the user with
the specific block update that
resulted in configuration error.
Returning to his Mozilla example,
Andrew observed that the search
process finished while he got cof-
fee, and it isolated the error to the
specific extension that was crash-
ing Mozilla.

Chi Zhang (Princeton University)
asked whether Chronus would be
able to identify problems that
resulted from large logical disk
transactions, for instance the
installation of new software pack-
ages. Andrew answered that extra
tools would be required to identify
larger-granularity causes. Shinji

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 59

Suzuki (University of Tokyo)
asked a follow-up question regard-
ing the effects of buffer caches,
which Andrew agreed were also a
problem. A third question
regarded issues such as spyware,
in which failure might occur after
a disk is changed. Andrew pointed
out that this was discussed in
more detail in the paper, but that
spyware was a problem in general.
Finally, David Oppenheimer (Uni-
versity of California, Berkeley)
asked Andrew to comment on the
difficulty of probe writing, espe-
cially for difficult-to-test issues—
for instance, changing Mozilla’s
text from English to Japanese.
Andrew pointed out that Chro-
nus’s contribution was to change a
very time-consuming class of con-
figuration debugging problems
into software testing problems. He
agreed that while probes could be
difficult to write, he felt that they
could be developed by experts and
reused in many situations.

F I L E A N D STO R AG E SYSTE M S I

Summarized by Craig Soules

Chain Replication for Supporting
High Throughput and Availability

Robbert van Renesse and Fred B.
Schneider, Cornell University

This talk, given by Robbert van
Renesse, described chain replica-
tion, a system for high-throughput
replication. Their system services
two types of requests: updates and
queries. The storage nodes are
formed into a chain, and then
updates are sent to the head of the
chain and queries are sent to the
tail. When a storage node sees an
update it processes and then for-
wards it to the next server in the
chain. Once the request has been
processed by the tail, it is guaran-
teed to have executed on all of the
storage nodes, and an acknowl-
edgment is sent to the client. This
same guarantee means that any
queries processed at the tail will
return data seen by all storage
nodes.

In this system, a master maintains
the chain membership. Node fail-
ure is handled by the master and
the previous node in the chain
coordinating to remove the failed
node. Nodes may only be added to
the tail of the chain, and their con-
tent must first must be synchro-
nized with the existing tail. Once
synchronized, the master and the
tail coordinate to move the node
into the tail. All new queries are
then sent to the new node. Any
lost requests must be resubmitted
by clients (consistency is main-
tained via the requirement that all
updates be idempotent).

The results of this work indicate
that chain replication can provide
higher throughput than most pri-
mary/backup systems. David
Shultz (MIT) asked how the sys-
tem handled network partitions to
coordinate chain formation. He
was told that the configuration of
chains among masters is done
using Paxos, which automatically
handles such failures. Jay Lorch
(Microsoft Research) asked if they
had examined weak-consistency
chain replication. He was told that
weak-consistency chain replica-
tion performs identically to weak-
consistency primary/backup.

Boxwood: Abstractions as the
Foundation for Storage Infrastructure

John MacCormick, Nick Murphy, Marc
Najork, Chandramohan A. Thekkath,
and Lidong Zhou, Microsoft Research
Silicon Valley

This talk, given by Lidong Zhou,
described Boxwood, a toolkit for
developing distributed storage
abstractions. Today, distributed
storage systems make use of reads
and writes of blocks (or objects)
and strict interface primitives that
sometimes make it difficult to
layer more complex abstractions
(e.g., b-trees, hash tables) on top
of them while still maintaining the
same guarantees of consistency
and scalability.

Boxwood provides several tools
needed to create more complex
data abstractions: a lock service, a

logging service, a consensus serv-
ice, and a replicated chunk store.
The first three of these can be used
by the application to provide con-
sistency to the new algorithm. The
chunk store provides a replicated
virtualized address space to store
data across a large set of machines,
thus providing reliability and scal-
ability of data storage.

Lidong then described an example
distributed algorithm they built by
taking an existing non-distributed
b-link tree algorithm and hooking
it into the Boxwood abstractions
to provide a distributed version of
the algorithm. With this new dis-
tributed b-link tree in place, they
were then able to layer an entire
distributed file system, labeled
BoxFS, over the abstraction. Per-
formance analysis of BoxFS indi-
cates excellent scaling from two to
eight servers, and better perform-
ance than a system running NFS
over NTFS.

Erik Reidel (Seagate) asked about
their performance graph that indi-
cated they were getting 0.5 MB/s
throughput using 5 to 40 disks.
Lidong answered that the graph
was supposed to show the effect of
lock contention on concurrency
rather than actual throughput.
Erik then asked how many clients
were used in these experiments.
Lidong responded that they used
two to eight mount points with
one client per mount point.

Secure Untrusted Data Repository
(SUNDR)

Jinyuan Li, Maxwell Krohn, David
Mazières, and Dennis Shasha, New
York University

This talk, given by Jinyuan Li,
described SUNDR, a system for
ensuring tamper detection of files
stored on untrusted data reposito-
ries. They began by describing a
new kind of consistency: “fork
consistency.” Fork consistency
guarantees that if a server provides
two clients with different copies of
the same file, that it can never
again provide those clients with
the same copies of that file. Also,

60 ; L O G I N : V O L . 3 0 , N O . 2

the server is unable to tell the
client that their change has not
been applied once it has agreed to
the change.

To achieve this, SUNDR stores a
version vector with each file. This
vector contains a version number
for each client of the file. When a
client makes a change to the file, it
obtains the file and the file’s ver-
sion vector. The client can then
compare the provided version vec-
tor with its current vector from its
last access of the file. If its stored
vector is not an exact subset of the
provided vector (i.e., its version
numbers are all less than or equal
to the provided ones, and the ver-
sion number for that client is iden-
tical), then it can detect that the
server has broken fork consistency.
Undetected modification of the
version vector is prevented using
signatures.

Emin Gun Sirer (Cornell Univer-
sity) asked about the possibility of
a malicious client using replay
attacks to make the server appear
faulty. Jinyuan indicated that even
a colluding server and client could
not break the fork consistency.
Algis Rudys (Rice University)
asked at what data abstraction
level this would be most useful.
Should it be coupled with each
NFS operation? Each block?
Jinyuan responded that SUNDR
currently works at the block level,
but that the techniques could be
applied to any of these levels.

D I STR I B UTE D SYSTE M S

Summarized by
Priya Mahadevan

MapReduce: Simplified Data
Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat,
Google, Inc.

MapReduce is a programming
model with an associated imple-
mentation for processing extreme-
ly large input data sets. Along with
the programming model, MapRe-
duce also automatically handles

fault tolerance, I/O scheduling,
load balancing of input data set
among various machines, and
inter-machine communication.

The programming model is
designed such that the input and
output is a set of key/value pairs;
the computation is expressed as
two functions, map and reduce,
both of which are user specified.
On supplying the input key/value
pair, the map function produces a
set of intermediate key/value pairs.
The intermediate key/value sets
are then used by the reduce func-
tion to produce the output. An
example of this type of program-
ming model is counting the occur-
rences of a specific word in an
input data file or files.

There are two kinds of programs,
master and worker. The master
program is special, in that it dele-
gates tasks to the workers. Map
Reduce also handles the following
functionality:

Parallel execution: Input data is
split into tasks, and each task is
executed on different sets of
machines. Users can also specify a
partitioning function for this
purpose.

Fault tolerance: Failures are
detected using periodic heartbeats,
and in-progress tasks are then exe-
cuted on other machines.

Dynamic load balancing: The mas-
ter takes proximity of the workers
into consideration (with respect to
location of the input data) while
assigning tasks to the workers.

In addition several refinements—
skipping bad records, generating
sorted output files, providing sta-
tus pages that indicate tasks in
progress, etc.—are provided by
MapReduce. The performance was
tested for two benchmarks, grep
and sort, on a cluster comprising
1800 machines. In conclusion,
MapReduce simplifies large-scale
computations, and since it handles
most of the parallelization and dis-
tributed systems internals, users
without experience in parallel and

distributed systems can use it
effectively.

A member of the audience wanted
to know of any task that could not
be handled using MapReduce. The
answer was join operations could
not be performed with the current
model. Someone else wondered
how MapReduce differs from par-
allel databases. MapReduce data is
stored across a large number of
machines as compared to parallel
databases, the abstractions are
fairly simple to use in MapReduce,
and MapReduce also benefits
greatly from locality optimiza-
tions.

FUSE: Lightweight Guaranteed
Distributed Failure Notification

John Dunagan, Michael B. Jones,
Marvin Theimer and Alec Wolman,
Microsoft Research; Nicholas J. A.
Harvey, Massachusetts Institute of
Technology; Dejan Kostić , Duke
University

Managing failures in a distributed
application is a challenging task:
one needs to maintain a lot of
state, and handling cascading fail-
ures require handling many differ-
ent cases. FUSE is a failure notifi-
cation mechanism that addresses
the above issues. FUSE is not a
failure detection service; it
requires the participation of appli-
cations to guarantee failure notifi-
cation. Examples of applications
that could benefit from FUSE
include peer-to-peer storage, mul-
ticast trees, and content distribu-
tion networks. The advantages of
using FUSE include guaranteed
failure notification, convenient
handling of all corner failure cases,
and reduction in distributed appli-
cation complexity.

Applications create a FUSE group
by specifying the participating
nodes, and FUSE guarantees that
every member in this group will be
notified whenever a failure condi-
tion affects this group. By creating
a spanning tree among the group
members, FUSE can guarantee
failure notification; it does not

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 61

need to monitor all the paths
between all the nodes.

FUSE can tolerate arbitrary net-
work failures and node crashes,
but it cannot handle byzantine
failures. Applications need to han-
dle such failures explicitly. The
FUSE API comprises three meth-
ods: CreateGroup, RegisterFailure-
Handler, and SignalFailure. The
authors implemented FUSE over
the SkipNet overlay, so that they
could take advantage of the DHT’s
liveness checking properties.
Using a DHT also assures low
network costs even when there are
many groups.

FUSE was evaluated on the Model-
Net testbed. Evaluation metrics
included group creation latency
time, failure notification latency,
performance under churn, and
false positive rates. During Q&A,
someone asked whether FUSE
could pinpoint which node in the
group failed rather than simply
notifying group members about a
failure. It turns out that FUSE can-
not notify the exact node where
the failure occurred. Someone was
concerned about how FUSE could
handle transient network failures
such as a certain node failing and
recovering before all the group
members could be notified of the
news of the failure. The speaker
said there is no good way to
handle such a situation.

PlanetSeer: Internet Path Failure
Monitoring and Characterization in
Wide-Area Services

Ming Zhang, Chi Zhang, Vivek Pai,
Larry Peterson, and Randy Wang,
Princeton University

Anomalies in Internet routing are
common, and detecting them is a
nontrivial task. The irregularities
could reside in either the forward
or reverse paths and are hard to
isolate. The contributions of this
paper include large-scale study
and classification of routing anom-
alies and techniques for anomaly
detection and isolation.

PlanetSeer combines passive mon-
itoring with active probing. Probes
are sent only during the period of
anomaly, so there is low network
overhead. Both modules use TTL
change and n consecutive timeouts
in TCP flows for the detection
mechanism. The probing module
is made up of baseline probes
(when a new IP appears), forward
probes (when a possible anomaly
is detected), and reprobes (to find
duration of an anomaly). By clus-
tering nodes based on their geo-
graphic location and choosing a
node in each group for probing
purposes, the probing overhead is
reduced. The authors also use
traceroute from multiple vantage
points to narrow down anomaly
location.

Some of their results:

The authors found approximately
two anomalies per minute over a
period of three months.

Tier-1 autonomous systems (ASes)
account for the least number of
persistent and temporary loops,
path changes, and outages, while
tier-3 ASes account for the largest.

Temporary loops have much
longer hop lengths than persistent
loops. Persistent loops either get
resolved very quickly or stay for
a very long period of time
(> 7 hours).

Outages occur closer to network
edge, while path changes have a
much wider impact.

One of the more interesting ques-
tions posed was whether any cor-
relation was observed between the
anomalies observed at the rate of
two per minute. The speaker
replied that while they did not
explicitly look at anomalies corre-
lation, his guess was that they
were correlated.

N E T WO R K A RC H ITE C T U R E

Summarized by
Ashwin Bharambe

Improving the Reliability of Internet
Paths with One-Hop Source Routing

Krishna P. Gummadi, Harsha V.
Madhyastha, Steven D. Gribble,
Henry M. Levy, and David Wetherall,
University of Washington

Krishna Gummadi began by stat-
ing that recently proposed overlay
designs (RON, Detour) for
improving Internet path reliability
were overly complex. This obser-
vation was supported by a detailed
study using a Planetlab testbed to
measure Internet path-failures.
About 3000 different types of des-
tinations (including commercial
servers and broadband home
users) were probed from Planetlab
nodes. A failure was defined as
three consecutive TCP RST losses
in response to TCP ACKs com-
bined with a traceroute failure to
the destination. The observed
path-failure rates were four per
week for servers and seven per
week for broadband hosts. Most
paths witnessed at least one failure
every week. Furthermore, last-hop
failures for servers were infre-
quent, implying that unavailability
of servers could very well be due
to path failures in the network.
The conclusion is that while fail-
ures definitely exist, they are
uncommon and short, and mecha-
nisms to overcome these should
themselves be lightweight.

Gummadi went on to propose a
new scheme called Simple One-
hop Source Routing (SOSR),
which achieves the above objec-
tives. The idea is simple: Instead
of using complex multiple-hop
overlay routes, end nodes just uti-
lize one intermediary node for
“routing around” in case of a fail-
ure. Several measurements were
performed to understand the util-
ity of such an approach. It was
found that in most cases, the fail-
ure could be avoided by using any
one of a large set of intermediaries.

62 ; L O G I N : V O L . 3 0 , N O . 2

The authors showed that the
random-4 strategy (picking four
random intermediaries) provides
most of the possible benefits. No-
tice that this scheme does not re-
quire any a priori probing either
by end nodes or by the intermedi-
aries, and hence is stateless. Gum-
madi concluded by stating that in
spite of these positive results, it is
unclear whether end users will be
able to perceive performance im-
provements due to SOSR, since
multiple orthogonal factors con-
tribute to overall end-user percep-
tion.

CoDNS: Improving DNS Performance
and Reliability via Cooperative
Lookups

KyoungSoo Park, Vivek S. Pai,
Larry Peterson, and Zhe Wang,
Princeton University

Most of the previous studies of the
DNS infrastructure have ignored
the impact of local DNS name
servers (LDNS) on performance.
In this talk, KyoungSoo Park,
using a comprehensive set of
measurements, showed that client-
side DNS (LDNS) failures are
widespread and frequent and
reduce overall performance and
availability. LDNS servers belong-
ing to several Planetlab sites (these
servers are site-specific and not
tied to Planetlab) were monitored
for an extended period by issuing
trivial local name lookups. While
most of the lookups took minimal
time to complete (as expected), a
surprisingly heavy tail was
observed for the lookup times.
Furthermore, such delays were
widespread, across several sites,
and were frequent. The authors
cited two principal causes for this
effect: overloading of local name-
servers due to heavy memory pres-
sure, and lack of maintenance.

The authors propose an incremen-
tally deployable cooperative DNS
lookup scheme (CoDNS) with an
aggressive adaptive timeout to
overcome LDNS problems. The
basic idea is to forward a name
lookup to one or more DNS

servers at other sites when LDNS
is suspected of failing. The choice
of which servers to contact is
determined by their proximity to
the querying server as well as
availability. The authors showed
that CoDNS is able to remove the
heavy tail of lookup times and add
an extra “9” to the availability of
the local DNS infrastructure.

A few issues were raised during
the Q&A session: Andrew Myers
(Cornell University) worried that
CoDNS reduced the security of an
already insecure and critical infra-
structure. David Oppenheimer
stated that a simple tweak to exist-
ing DNS implementations (viz.,
adding remote secondary nam
servers in configuration files, and
reducing the default timeout val-
ues) would essentially provide the
benefits of CoDNS.

Middleboxes No Longer
Considered Harmful

Michael Walfish, Jeremy Stribling,
Maxwell Krohn, Hari Balakrishnan,
and Robert Morris, MIT Computer
Science and Artificial Intelligence
Laboratory; Scott Shenker, University
of California, Berkeley, and ICSI

Middleboxes are defined as entities
interposed between end hosts
(over the Internet) that perform
more tasks than plain IP forward-
ing. Several such middleboxes
(e.g., NATs, firewalls, caches) are
in common use. However, because
they violate the end-to-end princi-
ple, middleboxes are not in har-
mony with the existing Internet
architecture, despite their clear
practical benefit. In this talk,
Michael Walfish presented an
architectural extension to the
Internet (Delegation-Oriented
Architecture, or DOA) to accom-
modate such middleboxes.

DOA is composed of two funda-
mental primitives: First, each end-
point (middleboxes are also con-
sidered endpoints) has a globally
unique topology-independent
identifier called an EID; second,
receivers and/or senders can in-
voke one or more endpoints as dele-

gates for routing messages. By
treating NATs and firewalls as such
delegates, DOA can elegantly in-
corporate middleboxes into the
overall design. Furthermore, the
DOA permits the existence of new
functionality, such as off-path fire-
walls where entities external to an
organization can offer firewall
services.

In order to implement these primi-
tives, an infrastructure for resolv-
ing flat EIDs to physically routable
identifiers (IP addresses) is essen-
tial. The authors present a global
DHT as a promising candidate for
such a resolution infrastructure.
While security and performance of
the resolution infrastructure have
been addressed to some extent by
the authors in the paper, Steve
Gribble (University of Washing-
ton) argued in the Q&A session
that the next critical challenge for
DOA is investigating suitable
mechanisms for maintenance and
troubleshooting.

AUTOM ATE D M A N AG E M E NT I I

Summarized by Marianne Shaw

Correlating Instrumentation Data to
System States: A Building Block for
Automated Diagnosis and Control

Ira Cohen, Moises Goldszmidt, Terence
Kelly, and Julie Symons, Hewlett-
Packard Laboratories; Jeffrey S. Chase,
Duke University

Ira Cohen presented an approach
for automatically inducing models
of system performance; the tech-
nique requires little or no domain-
specific knowledge, and therefore
can be applied to a wide variety of
systems.

The motivation behind this work
is that we, as a community, have
figured out how to build complex,
large-scale network services; we’ve
instrumented those services to
capture a large number of diverse
performance metrics. However, for
any particular failure or event,
how do we know which metric or
set of metrics we should be look-
ing at? Which metrics will not

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 63

help in determining the root cause
of the problem?

This work automates the analysis
of this large collection of instru-
mentation data using Tree-Aug-
mented Naïve Bayesian networks,
or TANs. By capturing traces of
both normal and anomalous
events from an instrumented
three-tier Web server, and combin-
ing that with instances of Service
Level Objectives (SLO) failures,
TANs are used to produce per-
formance models. These models
can be used to select the set of
gathered metrics that correlates
strongly with higher-level Web
server performance.

In evaluating their approach, sev-
eral key observations were made.
Small sets of metrics are much bet-
ter than a single metric at predict-
ing system behavior; for the Web
server workload, it was typically
three to eight metrics. Because
each metric in the set is associated
with a particular system compo-
nent, the set can provide assis-
tance identifying the root cause of
anomalous behavior.

Questions focused on how to use
the approach. If you are interested
in the dynamics of the system
rather than a binary observation,
could you still use this technique?
Yes, if you could convert those
dynamics into a binary classifica-
tion. Is it possible to use this tech-
nique for prediction of input? The
authors do not yet have sufficient
experience to know what the gen-
erated models will look like.

Automatic Misconfiguration
Troubleshooting with PeerPressure

Helen J. Wang, John C. Platt, Yu Chen,
Ruyun Zhang, and Yi-Min Wang,
Microsoft Research

Helen Wang presented PeerPres-
sure, a mechanism for trouble-
shooting misconfigurations in
modern, complex operating sys-
tems and applications. PeerPres-
sure uses Bayesian statistics to
compare the Windows registry of a
misconfigured machine with a col-

lection of Windows registries from
other machines; the statistics can
then be used to find the misconfig-
uration and fix it.

PeerPressure embraces the con-
formity of computer systems and
their configurations, and the belief
that most applications work cor-
rectly on most machines. When an
application is deemed to be work-
ing incorrectly, its associated Win-
dows registry entries (“suspects”)
are captured by the user and fed
into PeerPressure. Suspects are
canonicalized and statistically com-
pared with the collection of sample
Window registries to generate a
ranking based on the probability
that a suspect is misconfigured.
PeerPressure uses this ranking to
modify entries in the Windows reg-
istry one by one until the configu-
ration problem is resolved.

Twenty real-world “troubleshoot-
ing” problems and a database of 87
machines’ Windows registries
were used to evaluate PeerPres-
sure. The system was able to diag-
nose the misconfiguration prob-
lem in 12 of these 20 cases, and to
significantly narrow down the set
of possible misconfigured entries
for the remaining eight.

To demonstrate the obscurity of
various misconfigurations, Helen
introduced and showed the conse-
quences of a misconfiguration
error in the Windows registry dur-
ing her talk.

Using Magpie for Request Extraction
and Workload Modeling

Paul Barham, Austin Donnelly, Rebecca
Isaacs, and Richard Mortier, Microsoft
Research, Cambridge, U.K.

Rebecca Isaacs presented the use
of the Magpie toolchain for auto-
matically generating models of a
system’s workload that can be used
for performance debugging, anom-
aly detection, and capacity plan-
ning.

Magpie is designed as an online
mechanism, so it must handle
intermingled requests, unrelated
operating system and application

events, cross-machine interac-
tions, and monitoring of resource
consumption in a lightweight,
non-obtrusive manner. Therefore,
rather than tagging each request
flowing through the system, Mag-
pie uses an application-specific
schema to correlate system events
corresponding to the same
request. A request parser uses this
schema while processing an event
log to correlate events. These
events are then associated with a
particular request using a tech-
nique called “temporal joins,”
which attributes events to the
same request if they could have
occurred during the same valid
interval.

Magpie was validated against
traces of synthetic workloads and
shown to be feasible for a two-tier
Web server and the TPC-C Bench-
mark Kit. Someone asked whether
they had looked into its applicabil-
ity to real-world systems yet.
While they would like to look at
large distributed systems, cur-
rently they have only looked at
two- or three-machine systems;
they need to scale out to larger sys-
tems. Magpie does require applica-
tion instrumentation, so it will
require effort to apply to existing
systems; they have been evangeliz-
ing to try to get instrumentation
added to products.

B U G S

Summarized by
Mohan Rajagopalan

Using Model Checking to Find Serious
File System Errors

Junfeng Yang, Paul Twohey, and
Dawson Engler, Stanford University;
Madanlal Musuvathi, Microsoft
Research

Awarded Best Paper!

This paper, presented by Junfeng
Yang, was about identifying file
system bugs by using model
checking techniques. These bugs
are potentially destructive, but tra-
ditional testing techniques have

64 ; L O G I N : V O L . 3 0 , N O . 2

been ineffective due to the expo-
nential possibilities that one needs
to consider. The talk described a
file system model checker called
FiSC, based on the CMC frame-
work, which was effective in find-
ing bugs that would otherwise
have been very difficult to detect
using static analysis techniques.

Of the several interesting compo-
nents that make up the system, the
talk dealt primarily with state
reduction for the model checker.
The checking process starts with
some state and sees whether the
state was encountered previously.
Instead of a randomized approach
for a state-space search, they advo-
cate a guided search for their test-
ing. Consistency checks are per-
formed through an abstract file
system that models the file system
(e.g., for tracking topology), and
this can be compared with the
model to check for errors. To han-
dle journaling file systems they
resort to logging. This description
concluded with the observation
that checking could be made more
thorough by downscaling and via
canonicalization.

George Candea (Stanford Univer-
sity) asked about the modifica-
tions required to apply this system
to identify bugs in databases. Jun-
feng noted that this may be easy to
incorporate.

CP-Miner: A Tool for Finding Copy-
Paste and Related Bugs in Operating
System Code

Zhenmin Li, Shan Lu, Suvda Myagmar,
and Yuanyuan Zhou, University of
Illinois, Urbana-Champaign

Zhenmin Li described a technique
to identify “copy-paste” bugs in
operating systems by adopting a
programmer’s perspective rather
than software analysis. Zhenmin
noted that in principle this work
was similar to, and was in fact
motivated by, plagiarism detection
tools such as MOSS and JPlag.
While the software engineering
community has taken a recent
interest in identifying copy-pasted
code, existing tools have several

shortcomings, such as high cost,
inaccuracies, etc.

The basic idea is to apply subse-
quence matching to identify code
that has appeared at least twice, an
idea frequently used in data min-
ing. The algorithm is based on
identifying frequent sequences,
building a sequence database, and
composing (joining) sequences
within the database. This process
is repeated several times. The talk
also described an example where
their technique was able to iden-
tify a “forget to change” bug—
where the programmer forgets to
replace variable names in a copy-
pasted segment of code.

The first question was whether
their tool was suitable for other
large systems and if they had tried
it out elsewhere. Zhenmin replied
that while they had only tried it on
small software benchmarks, it
could be suitable. Another inter-
esting remark was that comments
can be very useful in identifying
copy-pasted code. Finally, some-
one asked whether their system
could mine CVS code repositories.
Zhenmin replied that this was
something they were currently
looking at.

Enhancing Server Availability and
Security Through Failure-Oblivious
Computing

Martin Rinard, Cristian Cadar, Daniel
Dumitran, Daniel M. Roy, Tudor Leu,
and William S. Beebee, Jr., Massachu-
setts Institute of Technology

Martin Rinard presented a very
interesting and entertaining paper
on a controversial new concept,
“failure-oblivious computing,”
which differs from the traditional
fail-stop philosophy used to build
computer systems. The driving
principle here is that programs are
complex and should be able to tol-
erate localized memory errors. The
talk began with a discussion of
bounds violations in the standard
C model. An empirical evaluation
of five “failure-oblivious” pro-
grams was then presented by com-
paring these programs to their reg-

ular counterparts in the context of
security, initialization, correct con-
tinuation, and ability to handle
attack input. While failure-oblivi-
ous programs had some limita-
tions, the results of this evaluation
looked promising.

During Q&A, someone asked
whether this meant that bugs
should not be fixed and we should
not bother about them. Martin’s
reply was that with failure-oblivi-
ous computing they are no longer
bugs, so the program should do
what it’s doing. Zin Dong (Prince-
ton University) pointed out that
while this idea would be useful for
some things, it may not be able to
handle linked structures. Rob Pike
(Google) mentioned that he did
something similar with data min-
ing, and it would be more comfort-
ing to know that all the failures
were stored in a log. Margo Seltzer
(Harvard University) asked Martin
to compare this to sandboxing sys-
tems; Martin replied that this was
much simpler. Dawson Engler
(Stanford University) noted that it
may not be possible to track race
conditions this way. Another inter-
esting question was what if an
attacker knew that the application
being targeted was failure oblivi-
ous. Someone pointed out that this
approach could be very frustrat-
ing, especially in pinpointing
bugs, since a program would con-
tinue even when you want it to
fail. Jay Lepreau from Utah men-
tioned that this would be analo-
gous to testing when optimiza-
tions are turned on.

WO R K- I N - P RO G R E S S R E P O RTS

Summarized by Tipp Moseley

pDNS: Parallelizing DNS Lookups to
Improve Performance

Ben Leong and Barbara Liskov, MIT

Up to 10% of DNS queries exceed
2s of latency. To hide this latency,
overlay networks of resolving
nameservers are cached and
queried in parallel. This results in
a latency being the maximum

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 65

latency of N queries instead of the
sum of the latencies of N queries.

Trickles: A Stateless Transport
Protocol

Alan Shieh, Andrew Myers, Emin Gun
Sirer, Cornell University

Typical protocol stacks require
resources, limit scalability, are vul-
nerable to DoS, and are barriers to
migration. Trickles proposes to
move all state to the client, via
continuations, which are self-
describing and encapsulate server
state. This enables transparent
failover, load balancing, and any-
cast services.

Surviving Internet Catastrophes

Flavio Junqueira, Ranjita Bhagwan,
Alejandro Hevia, Keith Marzullo, and
Geoffery M. Voelker, University of Cali-
fornia, San Diego

In order to improve server uptime
and protect important data from
attacks from worms, data must be
duplicated across different operat-
ing systems and configurations.
This approach will differentiate
exploitable flaws in software, and
is successful in surviving past and
even more aggressive worms at
low cost.

Honeycomb: Enabling Structured
DHTs to Support High-Performance
Applications

Venugopalan Ramasubramanian,
Yee Jiun Song, and Emin Gun Sirer,
Cornell University

DHTs show great promise to run
infrastructure services because
they are self-organizing, failure
resilient, and highly scalable.
Honeycomb investigates the
space-time tradeoff in caching
data, and guarantees <1 hop
average lookup performance
while minimizing resource
consumption.

PRACTI Replication for Large-Scale
Systems

Mike Dahlin, Lei Gao, Amol Nayate,
Arun Venkataramani, Praveen
Yalagandula, Jiandan Zheng,
University of Texas at Austin

PRACTI focuses on several princi-
ples involving replication for
large-scale systems: separate
mechanism from policy, and
separate data and control paths.
This result is a universal replica-
tion toolkit with the following
attributes:

Partial replication: an order-of-
magnitude less bandwidth and
storage space

Topology independence: reduced
time taken to synchronize

Arbitrary consistency: improved
availability in disconnected
operation

Shruti: Dynamic Adaptation of
Aggregation Aggressiveness

Praveen Yalagandula, Mike Dahlin,
University of Texas at Austin

Shruti is a dynamically adapting,
lease-based mechanism that adapts
based on read/write history.

MOAT: A Multi-Object Assignment
Toolkit

Haifeng Yu, Phillip B. Gibbons,
Intel Research Pittsburgh

Heavy user accesses to shared files
requires replication of data objects
and files. The goal of such a sys-
tem is high availability for multi-
object accesses, and the key issue
of the problem is replica assign-
ment. MOAT is the first system to
observe the importance of replica
assignment, shows strong theoreti-
cal results regarding best/worst
assignments, and implements a
toolkit for replica assignments.

Causeway: Operating Systems Sup-
port for Distributed Resource Man-
agement, Performance Analysis, and
Security

Anupam Chanda, Khaled Elmeleegy,
Nathan Froyd, Alan L. Cox, John Mel-
lor-Crummey, Rice University; Willy
Zwaenepoel, EPFL

Causeway provides a general-pur-
pose, distributed, multi-tier frame-
work for scheduling, performance
analysis, and security and access
control. This project is motivated
by solutions that exist for single-
node systems, poor ad hoc solu-
tions for multi-tier systems, and
the lack of a general-purpose
framework.

PLuSH: A Tool for Remote Deploy-
ment, Management, and Debugging

Christopher Tuttle, Jeannie Albrecht,
Alex C. Snoeren, Amin Bahdat,
University of California, San Diego

Fundamental abstractions of
remote deployment include things
such as abstract description lan-
guage, resource discovery, resource
allocation, host and environment
monitoring, experiment deploy-
ment, and execution management.
PLuSH is a framework of compo-
nents that integrates these abstrac-
tions.

Using Inferred Emergent Behavior to
Automate Resource Management

Patrick Reynolds, Duke University;
Janet Wiener, Jeff Mogul, and Marcos
Aguilera, Hewlett-Packard Labs; Amin
Vahdat, University of California, San
Diego

To automate resource manage-
ment, we must find a system’s
emergent behavior from events
and discover highly suspicious
behavior that is different from a
programmer’s stated expectation,
statistically anomalous, or a domi-
nant source of delay. To find prob-
lem sources, applications are
instrumented to infer a model of
system behavior. Multi-resolution
tracing starts with a black-box
approach and then explores the
benefits of additional information,

66 ; L O G I N : V O L . 3 0 , N O . 2

resulting in more specific, more
accurate information.

Using Access Logs to Detect
Application-Level Failures

Peter Bodik, University of California
Berkeley; Greg Friedman, Lukas
Biewald, and H.T. Levine, Ebates.com;
George Candea, Stanford University

Sometimes it takes months or
years to detect a failure in Internet
services. Based on the assumption
that users change behavior in
response to failures, a chi-square
test of access history can detect
anomalous activity.

A Trust-Based Model for
Collaborative Intrusion Response

Kapil Singh, Norman C. Hutchinson,
University of British Columbia

Most intrusion detection systems
emphasize detection; response is
limited to blocking part of the net-
work. This approach temporarily
stops the intrusion but does not
cost anything for the attacker. If
network components collaborate
to identify the source of attack,
they can defend against it by
attacking the attacker. An attacker
is identified by a proof of attack
using router logs of activity.

The Ghost of Intrusions Past

Ashlesha Joshi, Peter M. Chen,
University of Michigan

There is a window of vulnerability
between the discovery of a bug
and the application of its patch.
An administrator may not know
whether an intrusion occurred in
this window. An approach to this
problem is to use virtual machine
replay and introspection to detect
the triggering of the vulnerability.

SoftwarePot: A Secure Software
Circulation System

Yoshihiro Oyama, University of Tokyo;
Kazuhiko Kato, University of Tsukuba

SoftwarePot is a user-level middle-
ware system that provides a virtual
environment “pot.” The system
contains a private namespace of
resources and a private file tree,

and it can be mapped to a real
external resource.

Implementing an OS Scheduler for
Multi-threaded Chip Multiprocessors

Alexandra Federova, Harvard Univer-
sity and Sun Microsystems; Margo
Seltzer, Harvard University; Christo-
pher Small, Daniel Nussbaum, Sun
Microsystems

Multi-threaded chip-multiproces-
sors lead to contention for L2
cache. Modifying the OS scheduler
to co-schedule hand-picked
processes can lead to increased
throughput of 27–45% and a
reduction in L2 miss rate by
19–37%. Processes are character-
ized and profiled by predicting
miss ratios by randomly sampling
how often certain memory loca-
tions are reused (30% overhead).

Charon: A Framework for Automated
Kernel Specialization

Mohan Rajagopalan, Saumya K.
Debray, University of Arizona; Matti A.
Hiltunen, Rick D. Schlichting, AT&T
Labs Research

Charon takes a holistic systems
design to combine programming
languages and OS design to
improve both performance and
security. Charon uses binary
rewriting capabilities and static
analysis to achieve a reduction in
memory footprint while ensuring
correctness. Potential applications
include synthesizing kernels for
specific targets (motes, routers,
cell phones), QoS, adaptation reli-
ability, configuration checking,
and bug discovery.

Java in the Small: Enabling Standard
Java on Embedded Devices Through
Customization

Alexandre Courbot, Gilles Grimaud,
LIFL; Jean-Jacques Vandewalle,
Gemplus Research Labs

Many embedded devices would
like to run Java, but often Java
does not fit because the entire JRE
is too large. JITS tailors a full-
fledged JRE to a specific applica-
tion based on runtime usage by

removing unnecessary com-
ponents and reducing space
overhead.

Singularity: Software Systems as
Dependable, Self-Describing Artifacts

Galen Hunt et al., Microsoft

Singularity is a new operating sys-
tem developed by Microsoft to be
used for dependable systems
research. Dependability, defined as
behaving as expected by creators,
owners, and users, is the primary
goal of this project. Singularity
makes configuration a first-class
concept with built-in abstractions.
Online and offline inspection, ver-
ification using partial specifica-
tions, and IPC via bi-directional
message channels are all supported.

K E R N E L N E T WO R K I N G

Summarized by Alan Shieh

Deploying Safe User-Level Network
Services with icTCP

Haryadi S. Gunawi, Andrea C.
Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of
Wisconsin, Madison

icTCP addresses the deployment
of TCP/IP extensions. Many such
extensions have been proposed in
recent research. However, the tran-
sition from research to practice has
been slow. Moreover, as new oper-
ating environments such as wire-
less networks emerge, new exten-
sions may be needed. icTCP aims
to reduce the kernel development
costs of extensions by moving
extensions from the kernel to user
libraries, and adding a small, easy-
to-implement set of kernel inter-
faces to enable multiple such user-
level extensions. Thus, the kernel
modifications are amortized over
multiple extensions. Extensions
written using icTCP require small
amounts of kernel support, have
low design and performance over-
head, and are guaranteed to be
TCP friendly.

icTCP provides application
read/write access to internal TCP

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 67

variables (cwnd, ssthresh). By
modifying these variables, applica-
tions can modulate the send rate.
These variables are virtualized in
that applications are not allowed
to write arbitrary values, since this
would enable TCP-unfriendly
flows. Instead, only those transfor-
mations allowed by RFC 2581 are
allowed, and so extensions are, by
definition, TCP-friendly. The
icTCP virtual variables should be
applicable to most TCP implemen-
tations, since the TCP variables
are found in most implementa-
tions. A recent packet history may
also be provided; this extension is
optional, since not all imple-
mentations keep such a history,
and passing this history can be
expensive.

icTCP requires 316 lines of code in
Linux. The effectiveness and nec-
essity of restricting the operations
on virtual variables are confirmed.
Multiple TCP extensions (TCP
Vegas, TCP Nice, TCP-RR, TCP-
EFR) were implemented as user
extensions, at smaller line-number
counts than the original kernel
implementations. Extensions
could be combined in a stack to
leverage the benefits of multiple
different extensions for the same
connection. Interposing a user-
level extension degrades perfor-
mance slightly—bandwidth is not
affected at small numbers of con-
nections, but is slightly degraded
at larger numbers of connections.

George Kola (University of Wis-
consin, Madison) pointed out that
TCP Reno has a coarse timer reso-
lution, while TCP Vegas has a fine-
grained timer resolution; he asked
how icTCP supports TCP Vegas.
The response was that icTCP has
more fine-grained timeout.
Andrew Whitaker asked how the
icTCP technique applies to non-
TCP protocols, for instance, con-
gestion-controlled UDP. The
response was that the authors have
explored how UDP flows can use
information from TCP flows and
that this has not yet been imple-
mented. Currently, the authors

have only looked at algorithmic
extensions, not new protocols.

ksniffer: Determining the Remote
Client Perceived Response Time from
Live Packet Streams

David P. Olshefski, Columbia Univer-
sity and IBM T.J. Watson Research Cen-
ter; Jason Nieh, Columbia University;
Erich Nahum, IBM T.J. Watson
Research Center

Response time is critical, and poor
response time can have economic
consequences. Also, response time
must be controlled to meet service
level agreements (SLAs). Improv-
ing accuracy and minimizing
latency to feedback (e.g., provid-
ing online rather than offline
results) could improve the efficacy
of automated management sys-
tems. However, existing method-
ologies have shortcomings. Prob-
ing at external points is either not
scalable or does not have a high
sampling rate. Application-level
log analysis is typically offline and
does not capture all the system
latencies. Instrumenting Web
pages requires overhead and
changing the content, and does
not work for all clients.

Ksniffer, a kernel-level latency
analysis that captures the kernel
and network latencies of a com-
plete HTML page view, operates at
gigabit rates on commodity hard-
ware (e.g., relies on no driver
modification and requires no spe-
cial hardware) and works for all
clients and all types of content,
without instrumentation over-
head. To minimize the persistent
state of a packet, all packets are
processed online, without inter-
vening windowing or queuing.
Using these techniques, ksniffer
achieves low overhead while meas-
uring response time accurately.

ksniffer returns page view infor-
mation—the latency from the ini-
tial request of the root object, to
the last object on that page.
ksniffer does not parse HTML to
identify the last object, since
parsing is too slow and the HTML
does not directly correlate with the

actual fetch/processing order.
Instead, ksniffer uses pattern
learning to determine the embed-
ded objects for a given page using
referrer fields: The referral field for
a request for an embedded object
(e.g., a JPG or GIF) generally
points to the container. These pat-
terns are not used for situations
where container information is
directly available—e.g., requests
from a single HTTP/1.1 connec-
tion, referrer field available. In the
remaining cases, the referrer field
is inferred by matching against the
pattern cache. Where appropriate,
low-level TCP latencies (e.g.,
propagation time for the last
packet, connection setup time) are
added to the page view time com-
puted from this HTTP analysis.

The evaluation measured ksniffer
under a range of experimental
conditions. ksniffer results closely
matched directly measured results
from a modified client instru-
mented to directly report its per-
ceived timeout. ksniffer correctly
correlated the response time distri-
bution within a subnet (similar
distance from server), and differ-
entiated the distribution between
different subnets (different dis-
tance from server). ksniffer results
also tracked the load surges in a
highly variable stress test. Com-
pared to Apache, ksniffer meas-
ured the correct response time,
while Apache measured an order
of magnitude lower (and incor-
rect) response time.

Ilya Usvyatsky (EMC Corpora-
tion) asked, “How do content dis-
tribution networks (CDNs) affect
the correlation techniques?” The
response was that the only way the
CDN will affect the response time
is if it generates the last complet-
ing download. However, since a
CDN should be much faster than
the server, and runs in parallel, the
last download to complete is
unlikely to come from the CDN.
Stefan Savage (University of Cali-
fornia, San Diego) commented
that “often there are external
objects, e.g., advertising banners,

68 ; L O G I N : V O L . 3 0 , N O . 2

which could add significant over-
head (especially when DNS is
accounted for). Also layout and
rendering time can dominate.
These DNS/external fetches and
layout issues are invisible to the
server.” The response was that the
latency due to other Web sites can
be significant, but if the critical
path is not on your own server,
optimizations on your server are
not going to improve response
time. Other tools are available for
measuring end-to-end rendering.
One can’t measure this on the
server.

FFPF: Fairly Fast Packet Filters

Herbert Bos and Willem de Bruijn,
Vrije Universiteit Amsterdam, The
Netherlands; Mihai Cristea, Trung
Nguyen, and Georgios Portokalidis,
Universiteit Leiden, The Netherlands

Code is available from
http://ffpf.sourceforge.net.

FFPF reexamines packet filters,
since the assumptions underlying
their original design no longer
hold. For instance, at the time,
computational speed was close to
network speed; this is no longer
the case. While network monitor-
ing is important, a large fraction of
traffic is unclassifiable due to
shortcomings in the expressive-
ness of traditional packet filters.
Many monitoring solutions sup-
port only slow networks, or only
sample portions of the input.

The goal of FFPF is to achieve
high link rate without resorting to
sampling. To allow more traffic to
be classified, FFPF supports a
more flexible notion of a flow as
any packet stream that matches
arbitrary criteria. FFPF is designed
to support multiple simultaneous
filters efficiently: common subex-
pressions of different filters are
executed only once, and copying is
avoided by allowing different fil-
ters to share buffers.

To minimize bus and memory
bandwidth, operations are pushed
as close to the data sources as pos-
sible (e.g., executing aggregation

operators on a NIC or in the ker-
nel, rather than on the CPU or
user space, respectively). For
instance, a FFPF pipeline to count
the number of packets in a flow
would both filter and perform the
count. FFPF supports multiple
languages, and compiles to user
space, kernel space, and network
processor code (IXP1200). FFPF
is faster than existing libraries;
packet loss is lower than pcap, and
CPU utilization is slightly lower
for a single filter and considerably
lower for multiple filters with
common subexpressions.

F I L E A N D STO R AG E SYSTE M S I I

Summarized by Charles Weddle

Energy Efficiency and Storage
Flexibility in the Blue File System

Edmund B. Nightingale and Jason
Flinn, University of Michigan

Edmund B. Nightingale’s presenta-
tion began with a discussion of
ubiquitous computing—specifi-
cally, network variability, power
management, and stale data. This
led to the introduction of the
BlueFS and the “read from any,
write to many” strategy. The
BlueFS’s flexible cache hierarchy
extends battery lifetime through
energy-efficient data access, sup-
ports portable storage, and im-
proves performance by leveraging
the unique characteristics of het-
erogeneous storage devices.

The presentation next discussed
how BlueFS’s implementation han-
dles read from any/write to many,
as well as power management, hid-
ing device transitions, cache man-
agement, and cache consistency.
The BlueFS implementation con-
sists of a user-level daemon called
Wolverine that handles reading
and writing of data to multiple
local, portable, and remote storage
devices. It also contains a kernel
module that intercepts VFS calls,
interfaces with the Linux file
cache, and redirects operations to
Wolverine. In addition, there is a

BlueFS server that stores repli-
cated data. Most interesting is the
ability of the BlueFS to hide device
transitions to mask the perfor-
mance impact of device power
management. The BlueFS can also
create device affinity so that the
latest version of an object will
always be cached on a particular
device.

BlueFS compared favorably to NFS
and Coda in a modified Andrew
benchmark, being over ten times
faster than NFS and 19% faster
than Coda. The evaluation showed
that, because of its ability to hide
access delays caused by disk
power management, BlueFS can
read 4k-sized files up to 60 times
faster then ext2 starting from a
disk in standby mode, due to the
ability of BlueFS to hide access
delays caused by disk power man-
agement. Someone asked whether
it was assumed that a connection
to the network must be present.
The presenter responded that if
data consistency guarantees are
wanted, then a network connec-
tion must be in place.

Life or Death at Block-Level

Muthian Sivathanu, Lakshmi N.
Bairavasundaram, Andrea C.
Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of
Wisconsin, Madison

Muthian Sivathanu began with a
discussion of how liveness infor-
mation is not available in modern
storage systems and how certain
functionality can be enabled with
this information: for example,
eager writing, adaptive RAID, opti-
mized block layout, intelligent
prefetching, faster recovery, self-
securing storage, and secure
delete. This led into a discussion
of how to make storage liveness-
aware—specifically, through the
two approaches taken by the
authors, explicit notification and
implicit detection.

Explicit notification adds new
allocate and free commands to the
existing storage interface. The file

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 69

system is modified to use these
commands to explicitly convey
liveness information to the storage
system. With implicit detection,
the storage system monitors
block-level reads and writes issued
by the file system from underneath
an unmodified interface and
implicitly infers liveness informa-
tion. The presentation points out
that explicit notification is concep-
tually simple to implement but
made difficult due to the asyn-
chrony of file systems. Implicit
notification can be implemented
without an interface change but is
fairly complex and ties the file sys-
tem and storage system layers
together.

The authors presented the secure
delete case study they conducted
to show the design, implementa-
tion, and evaluation of a secure
deleting disk using both explicit
notification and implicit detection.
The authors chose the secure
delete problem because it requires
the tracking of generation liveness
and provides a context in which
liveness information is very
important. For performance evalu-
ation, a prototype-enhanced disk
was implemented as a pseudo
device driver in the Linux 2.4 ker-
nel. Exploring the foreground per-
formance of implicit and explicit
secure delete, the authors found
that the explicit implementation

performs better. When asked
whether the implementation
duplicated file system functional-
ity, Muthian stated that they dupli-
cate a small amount but only on
disk structures about the file
system.

Program-Counter-Based Pattern
Classification in Buffer Caching

Chris Gniady, Ali R. Butt, and
Y. Charlie Hu, Purdue University

Chris Gniady began his presenta-
tion with a discussion of the buffer
cache in file systems and how
important the buffer cache is to
performance. A key observation in
process architecture is that pro-
gram instructions, or the instruc-
tion’s program counters, provide
highly effective means of recording
the context of program behavior.
This led to the introduction of PC-
based pattern classification (PCC).
PCC identifies the access pattern
among the blocks accessed by I/O
operations triggered by a call
instruction in the application.
These pattern classifications are
then used by a pattern-based
buffer cache to predict the access
patterns of blocks accessed in the
future by the same call instruction.
Chris noted that this is the first
demonstration of program
counter-based prediction used in
operating system design.

Chris went on to describe the PCC
design and talked about the pat-
tern classifications in PCC. There
are three reference patterns that
PCC uses to classify the instruc-
tions: sequential references, loop-
ing references, and other refer-
ences. These classifications are
used by PCC to manage future
block accesses by a classified pro-
gram counter. Chris then dis-
cussed the implementation of
PCC, how PCC data structures
capture the classifications of the
program counters, and how this
information is used.

In evaluating PCC, the authors
compared PCC, UBM, ARC, and
LRU through trace-driven simula-
tions. They found that PCC com-
pares favorably to UBM, improving
the hit ratio by as much as 29.3%,
with an average improvement of
13.8%. PCC also outperforms
ARC, with the hit ratio improving
by as much as 63.4% and with an
average improvement of 35.2%.
Lastly, the authors found that com-
pared to basic LRU, PCC results in
an average of 41.5% reduction in
the number of disk I/Os. With this
disk I/O reduction, PCC reduces
the average execution time of LRU
by 20.5%.

70 ; L O G I N : V O L . 3 0 , N O . 2

