conference reports

3rd Virtual Machine Research
and Technology Symposium
(VM '04)

SAN JoSE, CALIFORNIA
May 6-7, 2004

TECHNICAL SESSIONS

(The first Keynote Address, on “Virtual
Machines: Past, Present, and Future,”
was presented by Mendel Rosenblum of
Stanford University.)

2D KEYNOTE ADDRESS

THE Mono VM

Miguel de Icaza, Co-Founder and CTO,
Ximian

Summarized by Maria Cutumisu
Miguel de Icaza discussed the imple-
mentation of Mono, an open source
execution engine for the ECMA CLI
specification. The Mono VM was imple-
mented by an enthusiastic group of peo-
ple who were newcomers to the virtual
machine domain but were attracted by
the social, technical, and personal
aspects of this project. They were inter-
facing with a large community of devel-
opers around the world and were
observing a growing user community.
The speaker started with a brief descrip-
tion of various systems, interesting for
their capabilities with respect to the
Mono project: UNIX, the Ghome Pro-
ject, and Latte 2000. He continued with
historical information about Ximian
which was focused on making Linux
succeed on the desktop.

August 2004 ;login:

At the time Mono was launched, the
intent of the authors was to bring .NET
features to Linux (C# compiler, virtual
machine, core class libraries) and to pro-
vide open source features well suited to
distribute the work. The team did not
have any experience in compilers or vir-

tual machines at the time. Currently,
Mono has become an open source
implementation of .NET that is based
on the ECMA/ISO standards, includes
C# and VB compilers, and works with
third-party compilers, such as Delphi,
Eiffel, COBOL, FORTRAN, Mercury,
Python.NET, PerlSharp, and Nemerle.

The speaker described in detail several
Mono features, including multi-lan-
guage support, two stacks, C# compiler,
virtual execution system, runtime, JIT
environment, and support for optimized
code compilation. Today Mono benefits
from extensive inlining of intrinsic oper-
ations and an SSA-based representation.
The talk concluded with an interesting
discussion about research in virtual
machines and compilers, as well as a
brief outline of .NET limitations. Mono
URL: http://www.go-mono.com.

A VIRTUAL MACHINE GENERATOR FOR HET-
EROGENEOUS SMART SPACES

Doug Palmer, CSIRO ICT Centre
Summarized by Maria Cutumisu
Doug Palmer presented a virtual ma-
chine generator that provides “numer-
ous virtual machines, each tailored to

This issue’s reports focus on the 3rd
Virtual Machine Research & Technology
Symposium, held in San Jose, Califor-
nia, May 6-7, 2004.

OUR THANKS TO THE SUMMARIZERS:
Maria Cutumisu
Vivek Haldar
Yahya H. Mirza
Feng Qian
Ananth I. Sundararaj

Photo: VM ’04 Program Chair Tarek
Abdelrahman, with Best Paper winners
Vivek Haldar and Deepak Chandra (not
shown: co-author Michael Franz)

67

VM 04



68

the capabilities of a class of resources.”
The speaker started by defining hetero-
geneous smart spaces as “networks of
communicating, embedded resources
and general-purpose computers that
have a wide spread of power and capa-
bilities.” These spaces are typical of com-
mercial, agricultural, or other outdoor
environments.

The author then stated the central pro-
gramming problem: Each heterogeneous
smart space is unique; therefore a pro-
gramming model that allows domain
knowledge to be reused across smart
spaces is necessary. The virtual machine
generator constitutes a solution to the
problem of providing a single virtual
machine implementation that operates
in heterogeneous smart spaces.

The speaker illustrated the virtual
machine generation process and talked
about the subset declaration for a virtual
machine. The virtual machine is speci-
fied in an XML document, and this
specification allows a stack-based virtual
machine to be generated. A virtual
machine specification and a subset dec-
laration together constitute the input for
the generator. The generator analyzes
the virtual machine and generates
source code files for Java and C that
implement the subset virtual machine.
These source files are compiled and
linked in the presence of a standard
library of support functions and classes;
an assembler is generated at this point.
The complete virtual machine is ana-
lyzed, and instruction codes, event
codes, and stores are allocated before
subsetting.

In conclusion, the advantages of the
compact generator were outlined,
including the fact that any optimizations
that are made will propagate to future
generated virtual machines. Moreover,
“using a generator allows virtual
machines to be quickly generated for
new resources and to try new instruc-
tion sets.”

MCI-Java: A MODIFIED JAVA VIRTUAL
MACHINE APPROACH TO MuLTIPLE CODE
INHERITANCE

Maria Cutumisu, Calvin Chan, Paul Lu,
and Duane Szafron, University of
Alberta

Summarized by Yahya H. Mirza

Duane Szafron presented an attempt to
decouple the various roles a class
plays—concept, interface, implementa-
tion, representation, factory, and
extent—by separating them. The paper
makes the case that most object-ori-
ented languages do not separate these
notions. The authors state that Java loses
an opportunity for code reuse. This
problem is illustrated by showcasing a
concrete example from the Java 1/0
libraries. In Java a class can’t inherit code
from two parents, since it does not sup-
port multiple code inheritance.

A new language construct, “implementa-
tion” is presented as a solution. An
implementation is essentially an inter-
face with pure behavior code, but does
not include data. With this approach,
one can inherit code, but not data, from
two parents, thus relaxing Java’s inheri-
tance semantics. The authors claim that
they achieved significant code reuse by
adding this feature to Java. The paper
also adds a new “multi-super” mecha-
nism which can be used to define an
inheritance path to a particular super-
implementation.

The “implementation” language feature
is applied by making a minimal number
of changes to the Jikes Java compiler and
the Sun JVM. The compiler code gener-
ation process includes generating an
invokeinterface for calls for which the
static receiver type is an implementa-
tion. An invokespecial is generated for
multi-super calls but with a reference to
an interface instead of a class; the virtual
machine can recognize these calls since
all invokespecial bytecodes refer to
classes. Finally, when the receiver is
“this,” an invokeinterface is generated
instead of the usual invokespecial.

The changes to the Sun JVM include

changes to the class loader (interface
method table construction algorithms).
These changes included detecting and
reporting potential ambiguities, copying
code pointers from interfaces to classes,
and, finally, creating new method blocks
on the JVM C-heap in two rare scena-
rios. The presenter stated that the reso-
lution and dispatch of invokevirtual and
invokeinterface bytecodes and the quick-
ening of these bytecodes did not change.
A key lesson learned from this project
was that to make an efficient change to
the VM, one must make changes when
the class is loaded, but never during dis-
patch.

SEMANTIC REMOTE ATTESTATION—A VIR-
TUAL-MACHINE-DIRECTED APPROACH TO
TRUSTED COMPUTING

Vivek Haldar, Deepak Chandra, and
Michael Franz, University of California,
Irvine

Summarized by Maria Cutumisu

This paper won the Best Paper award.
Vivek Haldar presented a framework for
semantic remote attestation, as well as
two example applications built within
this framework: a distributed computing
client-server application (Mersenne
Primes) and a Gnutella-like peer-to-peer
network protocol. In contrast with cur-
rent static techniques for remote appli-
cations, his team’s approach uses lan-
guage-based virtual machines to enable
the remote attestation of dynamic pro-
gram properties independently of the
underlying platform. Their two exam-
ples illustrate applications that distribute
trust dynamically.

One of the key questions addressed in
the talk was how to transcend the notion
of trust from closed systems to open sys-
tems. Trusted computing constitutes the
effort of adding components and mech-
anisms in open systems with the goal of
providing trust. As a result, the integrity
of the system is checked and enforced,
and the system is allowed to authenticate
itself to remote systems.

The speaker talked about critical issues
in trusted computing and remote attes-

Vol. 29, No. 4 ;login:



tation, with a focus on integrity (ensur-
ing a secure boot process), authenticity,
and trust vs. security. Moreover, he
stressed how virtual machines can make
trusted computing more secure, flexible,
and effective. In particular, problems
with remote attestation were discussed,
including issues such as the lack of pro-
gram behavior attestation, the nature of
the remote attestation (static, inexpres-
sive, and inflexible), the heterogeneity of
devices and platforms, and the revoca-
tion problem inherited from public-key
cryptography.

The solution proposed by the authors is
the implementation of a prototype
framework for semantic remote attesta-
tion, i.e., the use of a trusted virtual
machine (TrustedVM) for remote attes-
tation. Virtual machines execute plat-
form-independent code with rich meta-
information. In addition, the code runs
under the control of a virtual machine.
A trusted VM can attest to properties of
classes, as well as dynamic and system
properties.

Several advantages of semantic remote
attestation were outlined during the
presentation, such as certified program
behavior, the capability of allowing vari-
ous implementations of the same pro-
gram respecting certain security require-
ments, dynamicism and flexibility,
explicit trust relationships (checked and
enforced) between nodes, and a mecha-
nism for finer-grained trust using
degrees of trustworthiness. In conclu-
sion, the speaker pointed out that cur-
rently proposed mechanisms for trusted
computing are severely limited and that
leveraging VM technologies can make
trusted computing more flexible and
effective.

TOWARDS SCALABLE MULTIPROCESSOR VIR-
TUAL MACHINES

Volkmarr Uhlig, Joshua LeVasseur,
Espen Skoglund, and Uwe Dannowski,
University of Karlsruhe

Summarized by Feng Qian

The paper presented a new algorithm,
time ballooning, for better scheduling of

August 2004 ;login:

virtual machines in a multiprocessor
environment. The combination of tech-
niques enables scalable multiprocessor
performance with flexible virtual
processor scheduling. Experimental
results demonstrate that the new
approach is effective.

UsING HARDWARE PERFORMANCE MONITORS
TO UNDERSTAND THE BEHAVIOR OF JAVA
APPLICATIONS

Peter F. Sweeney, Brendon Cahoon,
Perry Chen, David Grove, and Michael
Hind, IBM T.J. Watson Research Center;
Mathias Hauswirth and Amer Diwan,
University of Colorado at Boulder

Summarized by Feng Qian

Large Java applications have many com-
plex components. The paper introduces
the design of an extension of a Java Vir-
tual Machine (JikesRVM) for helping
programmers to understand the applica-
tion behaviors.

The new extension generates traces

of hardware performance monitor
counters. The mechanism can generate
separate traces for each thread in a mul-
tithreaded and multiprocessor environ-
ment. The events, such as instruction
per circle (IPC), cache misses, etc.,
expose the behavior of a Java applica-
tion at the architecture level. These
traces are useful for JVM developers to
improve JIT compilers and garbage col-
lectors. Authors also reported the design
of a tool, Performance Explorer, for
visualizing trace data. The tool can
extract metrics from a trace file. Using
SPECjbb2000 as an example, the paper
shows anomalies observed by Perfor-
mance Explorer.

VBLADES: OPTIMIZED PARAVIRTUALIZATION
FOR THE ITANIUM PROCESSOR FAMILY
Daniel J. Magenheimer and Thomas W.
Christian, Hewlett-Packard Laboratories

Summarized by Vivek Haldar

Daniel Magenheimer specifies that,
because of their design, some processors
are more “virtualizable” than others. The
Intel x86 and Itanium architectures are
hard to virtualize, while the PowerPC

VM 04

and future Intel architectures (Vande-
built) are easier to virtualize. When an
architecture cannot be fully virtualized,
this has adverse impacts on both com-
plexity and performance of a virtual
machine. Parts of guest operating sys-
tems have to be dynamically rewritten,
page tables need to be explicitly man-
aged, and privilege-level leakage must be
guarded against. Performance suffers
due to additional ring crossings and an
increased number of context switches
between the virtual machine monitor
and the guest OS.

The alternative to this is paravirtuali-
zation. The virtual machine monitor
provides an interface similar but not
identical to the physical machine. The
guest OS in turn needs to be modified to
accommodate this differing abstraction.
The advantage of this approach is that
full multi-application commercial OSes
can be supported, application-level
modification is not needed, and there

is near-native performance. The dis-
advantage, of course, is that the guest
OS needs to be modified. The author
described vBlades, an HP Labs research
prototype. It is an Itanium-based host-
less virtual machine monitor that runs
on bare metal. It provides the capability
for full virtualization. A few sensitive
instructions are statically translated. An
API for paravirtualization is provided. It
achieves within 2% of native perfor-
mance.

KERNEL PLUGINS: WHEN A VM Is ToO
MucH

Ivan Ganev, Greg Eisenhauer, Karsten
Schwan, Georgia Institute of Technol-
ogy

Summarized by Vivek Haldar

Ivan Ganev describes an extension
mechanism for operating system kernels
that provides safety, extensibility, and
low performance overhead. The claim is
that full virtualization is not necessary
for providing strong isolation to kernel
plugins—using virtual machines to solve
this is overkill. Virtual machines are not
lightweight and have to deal with a

CONFERENCE REPORTS

69



70

whole array of low-level machine issues,
such as the BIOS, 1/0, and other legacy
hardware.

The alternative is to use kernel plugins
that employ other mechanisms for safe-
ty and isolation. This is done with a
combination of hardware and software
techniques. The hardware memory
man-agement unit is used to enforce
segmentation and memory isolation.
Dynamic code generation enables arbi-
trary and heterogeneous adaptation on
the fly. Dynamic linking maintains a
clean interface between the kernel and
plugins and manages namespaces.

This architecture was evaluated on a
client-server benchmark. An in-kernel
Web server (khttpd) was used on the
server. The client was set up to be much
faster than the server so that the server
could be saturated. The cost of running
a null plugin was negligible. The
throughput of the server with and with-
out the plugin was almost the same.
Future avenues of work include fault
recovery and isolation, and an 1A64
port.

THE VIRTUAL PROCESSOR: FAST, ARCHITEC-
TURE-NEUTRAL DYNAMIC CODE GENERATION
lan Piumarta, Université Pierre et Marie
Curie

Summarized by Yahya H. Mirza

lan Piumarta presented VPU, a reusable
dynamic code generation infrastruc-
ture that can be used as a back end for
dynamically compiled languages. Piu-
marta emphasized that a key element

of VPU’s design was to make adding
dynamic code generation capabilities to
an existing application essentially “plug-
and-play.” Today the vast majority of
compiler infrastructures are either
designed for static compilation, focus on
low-level code generation, or are tightly
coupled to their underlying source lan-
guages. These issues make it difficult to
retarget current compiler infrastructures
to other applications or language imple-
mentations. Additionally, Piumarta
illustrated how a client interacts with the

VPU's stack-based, processor-indepen-
dent computational model to generate
efficient native code.

The presentation also described the
phases of the VPU’s compilation
process, including conversion to an
internal abstract representation, applica-
tion of several optimizations, instruc-
tion selection, register allocation, and
native-code generation. Since the VPU
tries to generate code as fast as possible,
it only implements a small number of
processor-independent optimizations.
These optimizations are designed to oc-
cur in parallel with other traversals of
the VPU's abstract representation, such
as type or control flow analyses. Instruc-
tion selection is implemented through a
table-driven approach using a small
number of heuristics. The tables them-
selves are generated by feeding a proces-
sor-description file to a program called
cheeseburg, which shares similarities
with existing instruction selection gen-
erators such as iburg and Iburg.

Systems using VPU are insulated from
the underlying processor architecture
and are supported on all VPU platforms,
including the Pentium, SPARC, and
PowerPC architectures. The VPU cur-
rently serves as the execution engine for
the YNVM dynamic interactive incre-
mental compiler and as the code genera-
tor for the INJVM.

LIL: AN ARCHITECTURE-NEUTRAL LANGUAGE
FOR VIRTUAL-MACHINE STUBS

Neal Glew, Spyridon Triantafyllis,
Michal Cierniak, Marsha Eng, Brian
Lewis, and James Stichnoth, Intel

Summarized by Feng Qian

Machine code stubs are often used in
implementing high-performance run-
time systems for languages such as Java
and CLI. To ease the task of coding, the
authors presented a domain-specific
language, LIL, for describing the func-
tionality of such code stubs in a high-
level, architecture-neutral manner. A
special compiler transfers the descrip-
tion in LIL to architecture-dependent
native instructions. LIL also has engi-

neering benefits, such as improved read-
ability and validity checks of stubs. The
LIL compiler is faster and produces effi-
cient machine code for stubs.

DETECTING DATA RACES UsING DYNAMIC
EscAPE ANALYSIS BASED ON READ BARRIER

Hiroyasu Nishiyama, Hitachi, Ltd.
Summarized by Feng Qian

Data race can result in unexpected
behaviors, and data race detection is an
important method for locating potential
bugs in concurrent programs. This
paper proposed a new dynamic data race
detection algorithm for Java. Based on
the observation that only objects truly
accessed by multiple threads require
data-race monitoring, the new approach
uses read-barrier to build the set of
objects potentially subjected to data
race. The number of monitored objects
was reduced when compared with a
write-barrier-based approach, which
assumes all objects reachable from
global objects are escaping. Further-
more, the author improves the dynamic
escape analysis of arrays by dividing an
array object into sub-blocks. The smaller
number of monitored objects at runtime
reduces the cost of dynamic data race
detection and also improves the preci-
sion (reducing false alarms). The imple-
mentation of the proposed method and
evaluation on a set of standard Java
benchmarks shows the new approach

is superior, both in accuracy and effi-
ciency, to existing write-barrier
approaches.

TowARDS DYNAMIC INTERPROCEDURAL
ANALYSIS IN JVMs

Feng Qian and Laurie Hendren, McGill
University

Summarized by Vivek Haldar

The goal of this paper, presented by
Feng Qian, was to perform interproce-
dural analysis in order to support specu-
lative optimizations in a JIT compiler.
This is a challenging problem because:
(1) itis hard to construct a high-quality
call graph efficiently; (2) dynamic class
loading must be handled; and (3) the

Vol. 29, No. 4 ;login:



analysis must accommodate unresolved
symbolic references. The problem
attacked in this paper was the first one:
to construct a call graph dynamically.

The call graph is constructed incremen-
tally, under conservative assumptions.
Profiling stubs are inserted into methods
to accomplish this. Rapid type analysis
and class hierarchy analysis is used to
resolve non-virtual and interface
method calls. The runtime overhead for
this is 2-3%. These results are opti-
mistic, and future work hopes to under-
take and make use of more advanced
interprocedural analysis.

JAvA JUST-IN-TIME COMPILER AND VIRTUAL
MACHINE IMPROVEMENTS FOR SERVER AND
MIDDLEWARE APPLICATIONS

Nikola Grcevski, Allan Kielstra, Kevin
Stoodley, Mark Stoodley, and Vijay
Sundaresan, IBM Canada Ltd.

Summarized by Yahya H. Mirza

IBM Canada’s JVM product team pre-
sented a series of optimizations to
enhance server and middleware perfor-
mance. These optimizations are shipped
as a part of the IBM Developer Kit for
Java and the J9 Java Virtual Machine
products. As a result of going over large
amounts of customer-specific Java code,
IBM identified three issues that signifi-
cantly impacted performance: bytecode
generation, finally blocks, and large
usage of exceptions. To remedy these
and other performance issues, IBM
introduced 12 separate enhancements,
including optimizations to synchroniza-
tion and Java class libraries.

Server performance optimizations
include both JIT and VM improve-
ments. Many of the server enhance-
ments target, in particular, the
SPECjbb2000 benchmark. These opti-
mizations include object allocation
inlining, lock coarsening, thread-local
heap batch clearing, and the utilization
of the Intel SSE instructions. The perfor-
mance of middleware applications have
been improved through the SPEC-
JAppServer2002 benchmark. Start-up
time is improved through multiple

August 2004 ;login:

recompilation strategies by the JIT.
Interface dispatch is optimized by poly-
morphic inline caches. In addition, 64-
bit variables, themselves used to perform
unsigned 32-bit calculations, are recog-
nized and dealt with. Finally, code
reordering is utilized to minimize
instruction cache misses and branch
mispredictions.

The results from this project indicate
that such performance improvements
are not necessarily additive, and some
are platform specific. Thus the perfor-
mance improvements achieved are not
indicative of potential improvements for
future platforms. The SPECjAppServer-
2002 benchmark shows the potential of
these optimizations: Polymorphic inline
caches and code reordering give a com-
bined improvement of 14% for the IBM
Developer Kit for Java.

JAVA, PEER-TO-PEER, AND ACCOUNTABILITY:
BuUILDING BLOCKS FOR DisTRIBUTED CYCLE
SHARING

Ali Raza Butt, Xing Fang, Y. Charlie Hu,
and Samuel Midkiff, Purdue University

Summarized by Ananth I. Sundararaj

This paper, presented by Ali Raza Butt, is
based on the increased popularity of
grid systems and cycle sharing across
organizations. The authors attempt to
build one such system that would be
scalable and provide means to locate
resources and further ensure that these
resources are used fairly. The main goal
is that all the participants should be able
to utilize the system. The problem of
resource discovery and management is
solved using existing P2P networks.
Portability is provided by leveraging the
Java Virtual Machine. The ability to
remotely monitor Java programs’
progress provides for some security. The
authors have developed a distributed
credit-based system of accountability to
ensure fairness.

Because cheaters can be effectively and
easily removed from the system, the
overhead for monitoring jobs is vir-
tually eliminated. So the main building
blocks for providing fair cycle sharing

VM 04

are peer-to-peer networks, Java-based
progress monitoring and security, and
credit-based accountability mech-
anisms. More information on this proj-
ect can be accessed at
http://expert.ics.purdue.edu/~butta.

TowARDS VIRTUAL NETWORKS FOR VIRTUAL
MACHINE GRID COMPUTING

Ananth |. Sundararaj and Peter A.
Dinda, Northwestern University

Summarized by Ananth I. Sundararaj

The work has been done in the context
of Virtuoso. The high-level aim of the
Virtuoso project is to provide arbitrary
amounts of computational power to
ordinary people to perform distributed
and parallel computations. The tradi-
tional methodology of doing grid com-
puting, which involves resource multi-
plexing using OS level mechanisms,
addresses this aim. A problem with this
approachis that it presents too much
complexity both from the perspective of
the resource provider and that of the
resource user. Virtuoso proposes to do
grid computing in the context of OS-
level virtual machines, where the
abstraction is that of a raw machine.

A very interesting networking problem
shows up in this new context. A particu-
lar user’s virtual ma-chines are spread
over a number of foreign networks.
These machines are at the mercy of the
foreign network administrator for their
network connectivity. The authors wish
to move this network management
problem back to the home network of
the user. VNET is the virtual network
tool that accomplishes this. The authors
provided performance results for VNET
and showed that its performance is quite
close to that attained in the underlying
network. VNET is an overlay network of
VNET daemons and has a lot of poten-
tial to improve performance through,
for example, network reservation. The
first iteration of VNET is publicly avail-
able from the Virtuoso Web site. More
information on this project can be
accessed at http://virtuoso.cs.northwest-
ern.edu.

CONFERENCE REPORTS

71



72

WORK-IN-PROGRESS REPORTS

EFFiciENT CoDE CACHING FOR AN EMBED-
DED DYNAMIC ADAPTIVE COMPILER

Oleg Pliss and Bernd Mathiske, Sun
Microsystems, Inc.

Summarized by Maria Cutumisu

Bernd Mathiske and Oleg Pliss reported
on various code caching techniques in
an embedded Java Virtual Machine
(VM) for memory-constrained devices,
such as mobile phones. In such environ-
ments, the presence of a dynamic adap-
tive compiler is salutary, as the compiled
code cache management becomes
performance critical.

The compiled code cache can be dynam-
ically adjusted in size due to combined
results of profiling and garbage collec-
tion feedback. Recently and frequently
executed methods are profiled using a
combination of sampling and instru-
mentation techniques with the goal of
constructing a cache eviction policy
based on method weight and decay.

The talk highlighted the process of code
cache eviction from the perspective of
the results collected from the garbage
collector. Methods that are identified as
nonrelevant are selected as victims,
while currently executed methods are
retained in the cache by setting the high
bit of their weight.

The authors presented results on all
EEMBC benchmarks showing large
performance increases, due to the
improvements in the working method
set detection and cache size manage-
ment.

SOLARIS ZONES: OPERATING SYSTEMS SupP-
PORT FOR SERVER CONSOLIDATION
Andrew Tucker and David Comay, Sun
Microsystems, Inc.

Summarized by Maria Cutumisu

Andrew Tucker and David Comay intro-
duced Zones, a new operating system
abstraction for partitioning systems such
that multiple applications run in isola-
tion from each other on the same hard-
ware, within a single operating system
instance. Zones has an abstraction layer

that separates applications from the
physical attributes of the designated
machine.

Different zones can be administered in

a similar manner on separate machines.
A zone can have access to dedicated
resources or can share resources with
other zones. Each zone has its own name
service identity, password file, and root
user. With Zones, there are multiple vir-
tualized views of the process table corre-
sponding to processes running within
individual zones, as reflected in the
/proc file system. Moreover, each zone
has a virtualized /etc/mnttab file that
shows only file system mounts in that
zone. Even if a zone is compromised by
an intruder, the system and other zones
are not affected.

The isolation provided by Zones pre-
vents processes running in different
zones from monitoring or altering

each other, seeing each other’s data, or
manipulating the underlying hardware.
The cost of running multiple workloads
on the same system is reduced through a
better hardware utilization, reduced
infrastructure overhead, and lower
administration costs. The authors pre-
sented results showing that the perfor-
mance impact from using zones is negli-
gible.

During the talk, the authors indicated
several resources supporting their sys-
tem, including http://www.sun.com/
bigadmin/content/zones. Zones are
developed as part of the N1 Grid Con-
tainers feature in Solaris 10. A version of
Solaris 10 that includes an initial imple-
mentation of zones is available for
download from http://wwws.sun.com/
software/solaris/10.

OpcoODE LEVEL ENERGY CONSUMPTION
MODEL FOR A JVM

Sebastian Lafond and Johan Lilius,
Turku Centre for Computer Science,
Finland

Summarized by Vivek Haldar

Sebastian Lafond presented a simulation
to measure the energy consumption of
Java programs on mobile devices. Java

bytecode is executed on the KVM (an
implementation of the J2ME standard,
which interprets Java bytecode) running
on an ARM processor, and the resulting
instruction trace is passed through an
instruction-level energy profiler. The
authors found that some KVM stages
consume a constant amount of energy
independently of the Java application
being run. The most energy-expensive
operation was the dup2_x2 instruction.

REAL-TIME GARBAGE COLLECTOR FOR
EMBEDDED APPLICATIONS IN CLI

Okehee Goh and Yann-Hang Lee, Ari-
zona State University; Ziad Kaakani and
Elliot Rachlin, Honeywell International
Inc.

Summarized by Vivek Haldar

In the .NET Common Language Infra-
structure (CLI), determinism is an issue
for time-constrained applications. How-
ever, garbage collection is non-deter-
ministic. The goal is to schedule garbage
collection by applying real-time schedul-
ing algorithms. This can be used to con-
trol the garbage collector’s pause time
and do incremental garbage collection.
So far, the authors have modified the
Mono runtime (which uses the mark-
sweep Boehm collector) to generate
write barriers. This can help to make
garbage collection incremental at a fine
granularity.

ONEe-CLIcK DISTRIBUTION OF PRECONFIG-
URED LINUX RUNTIME STATE

Richard Potter, Japan Science and Tech-
nology Corporation

Summarized by Feng Qian

Richard Potter’s work-in-progress
reports the idea and applications of
ScrapBook for User-Mode Linux
(SBUML). SBUML can take a snapshot
of the transient runtime state of the
Linux OS, and the state can rapidly be
restored in another computer. SBUML
could be used to distribute preconfig-
ured Linux runtime state for demos or
debugging. More details can be found at
http://sbuml.sourceforge.net.

Vol. 29, No. 4 ;login:



