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Abstract 
 

Hyper-Threading Technology (HT) is Intel®’s implementation of Simultaneous Multi-Threading (SMT). HT 
delivers two logical processors that can execute different tasks simultaneously using shared hardware resources on 
the processor package. In general a multi-threaded application that scales well and is optimized on SMP systems 
should be able to benefit on systems with HT as well for most cases, without any changes, although the operating 
system (OS) needs HT-specific enhancements. Among those we found process scheduling is one of the most crucial 
enhancements required in the OS, and we have been seeking the optimal scheduling for HT, evaluating various 
ideas and algorithms. One of our finds is, to efficiently utilize such execution resources, severe resource contention 
against the same and limited execution resource should be avoided in a processor package. The OS can attempt to 
utilize the CPU execution resources in processor packages if it can monitor and predict how the processes and sys-
tem utilize the CPU execution resources in the multiprocessor environment. We have implemented a supplementary 
functionality for the scheduler called “Micro-Architectural Scheduling Assist (MASA)” on Linux (2.4.18) chiefly as 
a user program, rather than in the scheduler itself. This is because we believe that the users can tune the system 
more effectively for various workloads if we clarify how it works as a distinct entity. Most of this problem and solu-
tion is generic; all we require is for the OS to support an API for processor affinity and to provide per-thread or per-
process hardware event counts from the hardware performance monitoring counters at runtime.  

By utilizing the process-level or thread-level parallel-
isms in applications, twice as many (hardware) 
threads can be dispatched and executing concurrently 
using the execution resources in a processor package. 
Each logical processor maintains a complete set of 
the architecture state (See Figure 1). The architecture 
state consists of registers, which includes the general-
purpose registers, the control registers, the advanced 
programmable interrupt controller (APIC) registers 
and some machine state registers. From the software 
perspective, once the architecture state is duplicated, 
the processor appears to be two processors. 

1. Introduction 

1.1. Overview of HT 
Hyper-Threading Technology (HT) is Intel®’s im-
plementation of Simultaneous Multi-Threading 
(SMT) ([9],[10]). SMT machines increase utilization 
of the execution resources in a processor package and 
speedup the execution of jobs, by fetching and exe-
cuting multiple instruction streams. 

Figure 1: Architecture state and shared execution re-
sources function as a logical processor. 

One logical processor can utilize excess resource 
bandwidth that is not consumed by the other logical 
processor, allowing the other task to make progress. 
This way, both the overall utilization of execution 
resources as well as the overall performance of soft-
ware applications in the multi-tasking/multi-
threading environment increases. Logical processors 
share nearly all other resources on the physical proc-
essor, such as caches, execution units, branch predic-
tors, control logic, and buses.  
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HT is not expected to make a given single-threaded 
application to execute faster when executing alone, 
but when two or more unrelated applications are exe-Processor Package 

 



cuting under HT, the overall system throughput can 
improve due to HT. See [5] for details. 

1.2. General HT enhancements in the 
Operating System 

This section describes the typical enhancements, to 
explain the implications of HT to the OS. Following 
is a summary of enhancements recommended in the 
OS.  

Detection of HT – The OS needs to detect both the 
logical and processor packages if HT is available for 
that processor(s).  

hlt at idle loop – The IA-32 Intel® Architecture 
has an instruction call hlt (halt) that stops processor 
execution and normally allows the processor to go 
into a lower-power mode. On a processor with HT, 
executing hlt transitions from a multi-task mode to 
a single-task mode, giving the other logical processor 
full use of all processor execution resources; see [5] 
for the details. 

pause instruction at spin-waits – The OS typically 
uses synchronization primitives, such as spin locks in 
multiprocessor systems. The pause is equivalent to 
“rep;nop” for all known Intel® architecture prior 
to  Pentium® 4 or  Intel® Xeon™ processors. The 
instruction in spin-waits can avoid severe penalty 
generated when a processor is spinning on a syn-
chronization variable at full speed. 

Special handling for shared physical resources – 
MTRRs (Memory Type Range Registers) and the 
microcode are shared by the logical processors on a 
processor package. The OS needs to ensure the up-
date to those registers is synchronized between the 
logical processors and it happens just once per proc-
essor package, as opposed to once per logical proces-
sor, if required by the spec. 

Preventing excessive eviction in first-level data 
cache – Cached data in the first-level data cache are 
tagged and indexed by virtual addresses. This means 
two processes running on a different logical proces-
sors on a processor package can cause repeated evic-
tions and allocations of cache lines when they are 
accessing the same virtual address or near in a com-
peting fashion (e.g. user stack).  

The original Linux kernel, for example, sets the same 
value to the initial user stack pointer in every user 
process. In our enhancement, we offset the stack 

pointer simply by a multiple of 128 bytes using the 
mod 64, i.e. ((pid%64) << 7) of the unique process 
ID to resolve this issue. 

Scalability issues – The current Linux, for example, 
is scalable in most cases, at least up to 8 CPUs. How-
ever, enabling HT means doubling the number of 
processors in the system, thus it can expose scalabil-
ity issues, or it does not show performance enhance-
ments when HT is enabled. 

Linux (2.4.17 or higher) supports HT, and it has all 
the above changes in it. We developed and identified 
the essential code (about just 1000 lines code) for 
those changes (except scalability issues) based on 
performance measurements, and then improved the 
code with Linux community. 

APPENDIX locates the relevant lines for the changes 
in Linux 2.4.19 (the latest tree as of writing). Those 
changes or requirements should be applicable to an 
OS in general when supporting HT, although some of 
them might need to be re-implemented for the target 
OS. 

1.3. Basic scheduler optimizations for HT 
This section describes the basic scheduler related 
enhancements for HT. 

Processor-cache affinity – Processor-cache affinity 
is a commonly used technique in modern operating 
systems; see [8] for example, for the benefits of ex-
ploiting processor-cache affinity information in 
scheduling decisions. It is more effective on the HT 
systems in the sense that a process can benefit from 
processor-cache affinity even if moved to the other 
logical processor within a processor package.  

Since the L2 cache is shared in a processor package, 
however, the hit (or miss) ratio can depend on how 
the other logical processor uses the L2 cache as well. 
If the current process on a processor consumes the 
L2 cache substantially, it can affect the processes 
running on the other logical processors. Therefore, to 
avoid performance degradation caused by cache 
thrashing between the two logical processors, we 
need to monitor and minimize such L2 cache misses 
in a processor package. 

Note that excessive L2 cache misses also can affect 
the entire system, causing significant traffic on the 
system (front-side) bus. 

 



2.1. Performance Monitoring Counter Page coloring (for example, see [4]) could reduce 
occurrence of severe impacts on two different proc-
esses or threads caused by competitive eviction of L2 
cache lines in a processor package.  If two different 
processes access their own data very frequently, and 
the pages associated with the data happen to have the 
same color, the possibility of competitive eviction of 
L2 cache lines can be higher, compared to the case 
where page coloring is implemented. The same dis-
cussion is applicable to the threads in a multi-
threaded application.  

The work [1] is interesting in that it combined the 
hardware monitoring counters and program-centric 
code annotations to guide thread scheduling on SMP, 
to improve thread locality. Some findings show that 
some workloads achieved speedup almost entirely 
through user annotations, and for some long-lived 
ones speedup is gained by preserving locality with 
each thread.  

We need to run a process for some time, to get the 
information of its workload. Such user’s annotation 
(including processor binding) would be helpful. Although there are some patches are available for 

page coloring in Linux, we haven’t measured the 
benefits of page coloring for HT. We use hardware performance monitoring counters 

(simply performance monitoring counter, hereafter) 
to get such micro-architectural information. See [1] 
for general and detailed description and benefits of 
performance monitoring counters that are available 
on various architectures. The major benefit of using 
performance monitoring counters is to allow software 
to obtain detailed and specific information at runtime 
without impacting the performance. Usually, per-
formance monitoring counters are used to tune appli-
cations and the OS. There are some tuning tools that 
use them for the Intel® architectures, such as VTune 
[3], for example.  

HT-Aware idle handling – This enhancement in the 
scheduler significantly improves performance when 
the load is relatively low. For the scheduling pur-
poses, the OS needs to find idle CPUs, if any. On HT 
systems, however, the processor package is not nec-
essarily idle even if one of the logical processor is 
idle; the other may be very active. Therefore, the 
scheduler needs to prioritize “real-idle” (both logical 
processors are idle) over “half-idle” (one of them is 
idle), when dispatching a process to a logical proces-
sor to obtain higher performance. 

This attribute also helps to avoid the situation where 
two processes run on a processor package but the 
other package is completely idle in a 2-way SMP 
system. However, this kind of situation cannot al-
ways be prevented because the OS cannot predict 
when a particular process terminates. Once this situa-
tion occurs, the scheduler usually does not resolve it. 

Performance monitoring counters can be micro-
architecture specific, not architecture-specific. This 
means, the performance monitoring counters avail-
able can vary even if the architecture appears same. 
In terms of the OS implementation, this is an issue, 
and we resolve it by defining load metric, rather than 
bare performance monitoring counters. We discuss it 
later in Section 4.1. 

Scalability of the scheduler  – The Linux original 
uses a single global run queue with a global spin 
lock. This scheduler works well for most cases, but 
there are some scalability issues especially handling a 
large number of processes/threads. The O(1) sched-
uler from Ingo Molnar is proposed to resolve such 
issues, and it uses per-CPU run queue and a spin lock 
for each, and locking is not required as long as the 
CPU manipulates its own run queue. 

We don’t see conflicts with such tools and the sched-
uler, although the number of performance monitoring 
counters available will be reduced.  Since perform-
ance monitoring counters are the system-wide re-
sources, the OS should provide API for allocating the 
counters to avoid conflicts among such tools or driv-
ers. 

2.2. Symbiotic Jobscheduling 
2. Related works We share the issues to resolve with the symbiotic 

jobscheduler ([6], [7]): We discuss how the existing techniques can contrib-
ute to performance enhancements of HT systems. In 
this paper, we assume that processes are scheduled in 
a time-sharing fashion. 

• Jobs in an SMT processor can conflict with each 
other on various shared system resources. 

 



• The scheduling has to be aware of the SMT re-
quirements to find the optimized utilization of 
execution resources. 

However, the target system and the methodology is 
quite different: 

• We don’t attempt to make a running set of jobs 
that will be coscheduled, by discovering efficient 
schedules in a processor on the fly. Instead, we 
attempt to detect interference or conflicts with 
the execution resources in SMP systems consist-
ing of multiple SMT, i.e. HT processors, and to 
balance the load among such processors. There-
fore, uni-processor (UP) systems are not our tar-
get. We believe the programmer/developer can 
tune their application better in the UP case using 
proper performance tuning tools. 

• We don’t require modifications to the OS sched-
uler in the kernel that needs to support SMP sys-
tems as well. Inventing a new scheduler only for 
SMT can generate maintenance and QA issues in 
a commercial OS. Instead, we provided a user-
mode daemon that monitors hardware events in 
the processors, to detect such conflicts with the 
execution resources. 

2.3. Load balancing 
In the multiprocessor environment, a typical load 
metric employed by the OS scheduler at load balanc-
ing time is the length of the run queue(s).  This is 
generic and effective when keeping fairness of the 
processes that are run in a time-sharing fashion, be-
cause the processes on a processor with a shorter run 
queue can have more chances to run.  

At the same time the length of the run queue does not 
reflect the load of the processor or processor pack-
age, because the workload or the execution resources 
utilized at runtime can vary from process to process. 

3. Advanced HT Optimizations in the 
Scheduler 
In this section we discuss advanced HT optimizations 
in the scheduler. As such, we are evaluating their 
effectiveness gathering data from various workloads. 

3.1. Motivation 
When HT is enabled, the number of the processors 
looks doubled to the OS, because each of them (logi-

cal processor) has architectural state as a processor, 
and BIOS reports as such. In general a multi-threaded 
application that scales well and is optimized on SMP 
systems should be able to benefit on systems with 
HT.  

In the multiprocessor environment, however, there 
can be process placement issues, because the two 
logical processors in a processor package share the 
execution resources. 

Note - For the following illustrations we have used 
164.gzip of SPEC-CPU2000 (referred as INT) as the 
integer operation intensive benchmark, 177.mesa of 
SPEC-CPU2000 (referred as FP) as the floating-
point intensive benchmark and 197.parser of SPEC-
CPU2000 (referred as L2C) as the L2 cache inten-
sive benchmark. See [12] for details. 

The floating-point execution unit, for example, is one 
of the limited execution resources in a processor 
package. If we run two processes of an integer-
intensive program (INT) and two of floating-point 
intensive program (FP) on a 2-way (4way HT) ma-
chine, binding them to the processor package, we see 
significant performance difference depending process 
placement (see Table 1).  

Another example of a critical execution resource is 
L2 cache unit. If we run two processes of an integer-
intensive program (INT) and two of a program (L2C) 
that consumes L2 cache lines intensively, we also see 
visible performance difference depending on process 
placement (see Table 2). 

To explain the benefits of HT, we also run the test 
case with HT disabled as well. The “(“ and “)” indi-
cate a processor package with HT enabled, and “[“ 
and “]” a physical processor with HT disabled. 
“(INT, INT) (FP, FP)”, for example, means: 

• Two INT programs are bound to a processor 
package, and two FP programs are bound to the 
other processor package. HT is enabled, and the 
system looks a 4-way SMP. 

“[INT, INT] [FP, FP]” means,  

• Two INT programs are bound to a processor, 
and two FP programs are bound to the other 
processor. HT is disabled, and the system looks a 
dual-processor system. The two programs are 
not run at the same time in a processor, but in a 
TSS fashion. 

 



We made the measurements on a system that has dual 
Intel® XeonTM.  

Placement INT INT FP FP Total  

(INT, FP) 
(INT, FP) 

269.3 270.7 234.0 234.7 1008.7 

(INT, INT) 
(FP, FP) 

317.6 316.0 256.3 255.7 1145.6 

[INT, FP] 
[INT, FP] 

342.0 337.6 271.6 272.3 1223.6 

[INT, INT] 
[FP, FP] 

343.0 342.6 268.7 268.3 1222.6 

Table 1: Average time (sec.) to complete (INT, FP) 
 

Placement INT INT L2C L2C Total 

(INT, L2C) 
(INT, L2C) 

291.0 291.0 437.7 440.3 1460.0 

(INT, INT) 
(L2C, L2C) 

317.3 317.7 462.0 459.0 1556.0 

[INT, L2C] 
[INT, L2C] 

342.6 341.7 509.0 509.7 1703.0 

[INT, INT] 
[L2C, L2C] 

344.3 345.7 492.3 492.0 1674.3 

Table 2: Average time (sec.) to complete (INT, 
L2C) 

“Total Time” means the sum of the average time (in 
second) to complete each program (4 of them). As 
we in both Table 1 and Table 2,  

• Performance is always better when HT is en-
abled (about 17% in Table 1 and 13% in Table 
2). This is because HT is utilizing the execution 
resources more by running the two logical proc-
essors in a processor packages. 

• For HT, combining different workloads is better 
(about 12% in Table 1 and 6% in Table 2). This 
is because such different workloads tend to have 
less interference with the execution resources. 

Table 3 shows values in the hardware performance 
monitoring counters for the cases in Table 1 and Ta-
ble 2. The samples were taken in a 5-second period 
when the test cases were run. Table 4 lists the place-
ments in the Table 1, Table 2, and Base (HT enabled) 
as well, where a single instance of FP or L2C runs at 
full-speed with the other processor package idle. For 
each, it includes the number of L2 cache misses, 
floating-point uops (decoded IA-32 floating-point 
instructions) retired (actually executed), and instruc-

tions retired. CPU/Package means the logical CPU 
ID and the processor package that it belongs to. Note 
that the process “masad” is our user-mode micro-
architectural scheduling assist daemon, and we used 
it to control placement of the INT and FP or L2C 
processes. Also note that the execution resources 
used by the process is negligible. 

Table 4 summarizes Table 3 per processor package, 
providing the number of the L2 cache misses, FP 
uops retired, and the ratios for those events per in-
struction retired (processor package 0 or 1 in Base 
was omitted because only a single instance of the 
program was run.). Notice the following things for 
the FP test case: 

• The total instructions retired are more in (INT, 
FP) (INT, FP) than the others. This implies this 
setup achieves higher overall throughput than the 
other cases. 

• The number of FP uops in (INT, INT) (FP, FP) 
is outstanding in the processor package 1. And it 
is more than the one in Base. 

The above observation suggests that FP execution 
resources are causing over-subscription or interfer-
ence between the FP processes.  

The above discussion applies to the L2C test as well. 
See Table 3 and Table 4: 

• One of the processor packages has a higher num-
ber of the total instructions retired, but the other 
one has significantly lower (5.815E+09) with 
(INT, INT) (L2C, L2C). 

• The number of L2 cache misses is outstanding in 
the processor package 1 with (INT, INT) (L2C, 
L2C). 

The above observation again suggests that L2C exe-
cution resources are causing over-subscription or 
interference between the L2C processes. 

The problem above happens with practical multi-
threaded applications, and in fact it is a generic SMP 
issue as well. Inktomi Traffic Server, for example, 
can be tuned by setting CPU affinity. Performance is 
measured on a 2-way SMP (4-way with HT) machine 
by request rate (req/sec) within 1600 ms response 
time. Since the threads in the application can run any 
processor, they occasionally run on the same proces-
sor package, and showing worse (unacceptable) re-

 



sponse time (1638.08 ms). In many cases, a typical 
technique is to bind the processes or threads of inter-
est to CPUs. In case of HT, we need to bind such 
processes or threads to a processor package or a set 
of logical processors. If we set CPU affinity, binding 
the thread to each processor package, we see better 
performance with shorter response time (1436.12 
ms). 

P lacement CP U/P ackage P rocess L2 cache miss FP  uops Inst . Ret ired
2/0 init 73 0 1955
2/0 masad 152 1389 60275
2/0 INT 2660214 0 5531725966
0/0 FP 1203806 61710721 5073047685
3/1 sendmail 116 16 6737
3/1 emacs 7430 29 91376
3/1 INT 2641327 1 5550636901
1/1 FP 1946383 61444159 4859221730
2/0 masad 181 1389 62002
2/0 INT 4604056 61 4812888475
0/0 INT 5219503 105 4780357278
3/1 FP 1434903 62467839 4674550450
1/1 init 70 0 1955
1/1 sendmail 115 14 6759
1/1 sshd 259 107 118998
1/1 emacs 7875 3649 345118
1/1 FP 1355739 60287239 4619649049
2/0 init 69 0 1955
0/0 FP 847987 106756347 8713126869
3/1 emacs 1965 2702 350680
3/1 sendmail 76 16 6666
3/1 masad 108 820 41724
1/1 sshd 55 64 83267

(INT , FP ) (INT , FP )

(INT , INT ) (FP , FP )

Base

P lacement CP U/P ackage P rocess L2 cache miss FP  uops Inst . Ret ired
2/0 init 85 0 1955
2/0 masad 1445 1445 66739
2/0 L2C 34197735 143644 3420942349
0/0 INT 4832876 0 4972729362
2/1 sendmail 105 16 6759
1/1 emacs 826 2733 355311
1/1 INT 10127606 150 4548505455
3/1 L2C 38214884 580769 3744309183
2/0 masad 159 1379 66105
2/0 INT 5269351 127 4726320225
2/0 init 85 0 1955
2/0 sendmail 112 16 6759
2/0 sshd 179 26 90156
0/0 INT 4600986 117 5404163660
3/1 L2C 39424290 55080 2627281901
1/1 emacs 9679 4776 815817
1/1 L2C 34522937 81583 3186873833
0/0 sshd 57 60 90212
0/0 emacs 1965 2702 350680
1/1 L2C 46925899 1246614 6577434630
3/1 init 57 0 1955
3/1 sendmail 115 16 6666
3/1 masad 147 822 42455

(INT , L2C) (INT , L2C)

(INT , INT ) (L2C, L2C)

Base

 

Table 3: Performance Counter Values 

 



 

Affinity 
Set 

Request Rate 
(req/sec.) 

Response Time 
(ms) 

Off 1600 1638.38 

On 1700 1436.12 

Table 5: Inktomi Traffic Server Performance Dif-
ference 

It is true that the same problem occurs with in the 
SMP environment as well, but resolving the issue is 
more difficult in the HT environment. In the HT en-
vironment, each of the net threads is actually running 
on a logical processor in a processor package. And 
we need to migrate the currently running one to an-
other logical processor in the other processor pack-
age (i.e. process migration), rather than one in the 
run queue as in the SMP case. In the SMP environ-
ment, even if the two instances of the net thread are 
in the same CPU, at most one is running and the 
other one must be on the run queue. In other words, a 
scheduler with a proper load balance mechanism 
should be able to handle this case relatively easily in 
the SMP environment. 

We have used limited number of processes for the 
illustrations here. However, this kind of problem can 
occur in heavily loaded system too, if the currently 
running processes on two logical processors of a 
package use similar kind of execution resources. 

To understand and resolve those issues, we need to 
look at the micro-architecture level, because the 
amount of execution resources and dependencies are 
micro-architecture specific. In other words, the sever-
ity of the problem above can vary from micro-
architecture to micro-architecture, even though the 

architecture implemented is equivalent. In addition, 
it’s barely possible to tell which and how execution 
resources are used to execute a given instruction, as 
long as we are looking at the instruction/architecture 
level.  

3.2. Manual Binding of Processes 
Binding a process/thread to a CPU(s) is commonly 
supported on a typical OS, including Linux.  

In Linux, the following API are available in branch 
trees (2.5 and Alan Cox’s tree as of today), and will 
be available soon in the base (i.e. 2.4 tree): 

• sched_setaffinity(pid, len, *cpu_mask) – set af-
finity. 

• sched_getaffinity(pid, len, *cpu_mask) – get 
affinity. 

The first argument pid is the process ID of the target 
process, and the third argument cpu_mask specifies 
the bit set of the CPUs to bind the process to. The 
second argument len specifies the length of the CPU 
mask. For example, to bind a process with the proc-
ess ID 46732, to the logical CPU 0 and 2, one can 
use the following C code: 

unsigned long cpu_mask = 0x5; 
 
sched_setaffinity(46732,  
     sizeof (unsigned long), &cpu_mask); 
 
As we present in 3.1, this method is effective for HT 
systems as well, as long as the system behaves as the 
user expects and understands. However, this is frag-
ile in the following aspects: 

• The optimal process/processor binding can 
change, as the system configuration (e.g. the 

P lacement P ackage L2C miss L2C miss/Inst . FP  uops FP  uops/Inst T otal Inst . Ret ired
0 3.864E+06 3.644E-04 6.171E+07 5.819E-03 1.060E+10
1 4.595E+06 4.414E-04 6.144E+07 5.902E-03 1.041E+10
0 9.824E+06 1.024E-03 1.555E+03 1.621E-07 9.593E+09
1 2.799E+06 3.011E-04 1.228E+08 1.321E-02 9.295E+09

Base 0 8.481E+05 9.733E-05 1.068E+08 1.225E-02 8.713E+09

(INT , FP ) (INT , FP )

(INT , INT ) (FP , FP )

P lacement P ackage L2C miss L2C miss/Inst . FP  uops FP  uops/Inst T otal Inst . Ret ired
0 3.903E+07 4.650E-03 1.451E+05 1.729E-05 8.394E+09
1 4.834E+07 5.829E-03 5.850E+05 7.054E-05 8.293E+09
0 9.871E+06 9.744E-04 1.665E+03 1.644E-07 1.013E+10
1 7.396E+07 1.272E-02 1.414E+05 2.432E-05 5.815E+09

Base 1 4.693E+07 7.134E-03 1.247E+06 1.895E-04 6.577E+09

(INT , INT ) (LC2, L2C)

(INT , L2C) (INT , L2C)

Table 4: Execution Resource Usage 

 



number/speed of processors, memory installed, 
I/O subsystems) changes. 

• Per-process or per-thread hardware event counts 
from hardware performance monitoring counters 
are available. A device driver can provide this 
information. Some OS maintains the threads in a 
process in the kernel whereas a thread in Linux, 
for example, is implemented as a process and the 
kernel has no idea about the mapping between 
threads and processes.  

• The user sometimes has difficulty identifying the 
optimal placement as long as he or she looks at 
the instruction level, rather than the micro-
architecture level. 

• The scope of a particular application is static and 
local, and the assumption can be wrong when the 
other system activities, such as interrupts or 
swap handling, are active at runtime. 

The benefits of having user-level policy are signifi-
cant: 

• Extending the load-balancing algorithm in the 
OS does not solve the case where two very ac-
tive processes are “stuck” in a processor pack-
age, because it does not migrate the currently 
running processes. 

• The micro-architecture can change, and the op-
timal process/processor binding can also change 
because of that. If the user needs to run the same 
system on processors with a newer or different 
micro-architecture, the system may need differ-
ent process/processor binding. The load calibra-
tion technique discussed in Section 4.1 attempts 
to solve this problem. 

• The users can tune the system more effectively 
for various workloads if we clarify how it works 
as a distinct entity, rather than providing a black 
box in the scheduler. 

These issues are common between SMT and MP 
systems (including MP systems of SMT processors), 
the impacts caused by a wrong setup or tuning could 
be more exposed in SMT, mainly because the hard-
ware threads (i.e. logical processors in the OS) are 
not necessarily physically independent. If the system 
in Section 3.1 were a usual 4-way SMP machine, the 
total would be same for any process placement in the 
both Table 1 and Table 2. 

• The scheduler in the OS can be architecture in-
dependent especially when it needs to support 
multiple architectures. Thus it is not good idea to 
change it for a particular architecture for various 
reasons (performance impacts, verification, 
maintenance, etc.) 

• The kernel usually does not use floating-point 
operations except for very limited case. Such a 
program would need to process a number of 
large values (from performance monitoring 
counters). It would be efficiently written with 
floating-point operations available. 

3.3. Changes in Kernel or User 
The problems above can happen especially when a 
process/thread is bound to a CPU(s) statically. If we 
can adjust such affinity at runtime, i.e. reset affinity 
accordingly, we can avoid such problems. This moti-
vated us to employ the micro-architectural informa-
tion or hardware performance monitoring counters at 
runtime when adjusting or tuning placement of the 
processes on the processors/processor packages. 
Since we know static binding can provide fairly rea-
sonable performance, we don’t believe we need to 
change affinity very frequently. Rather, we attempt to 
detect wrong placement that causes performance deg-
radation, and to resolve such a situation. 

The next section explains our proposal to do this op-
timization using a user-mode monitoring daemon. 

4.  Micro-Architectural Scheduling As-
sist (MASA) Methodology 
As we discussed our requirements for the OS in 3.3, 
the Micro-Architectural Scheduling Assist (MASA) 
should be available if the OS provides the generic 
requirements. In the following section, we discuss the 
methodology. The other benefit of this approach is that we can pro-

vide such a load balancing policy as a user-level pro-
gram if: Since the micro-architecture implements the architec-

ture of the processor, it can vary even for a same 
processor family in details, such as the numbers of 
execution units, or size of L1/L2 caches. Since our 
purpose to monitor utilization of limited and shared 

• Getting/setting of CPU binding is available for 
either a process or software thread, depending on 
the unit scheduled by the OS, and 

 



execution resources for HT, we define load metrics to 
evaluate utilization of those resources, based chiefly 
on the Intel® XeonTM processor family.  

MASA calculates the following loads, reading the 
performance event counter information from the 
PMC driver. 

Load Metric Process Load 
A load metric is an abstracted performance monitor-
ing counter in a sense, and it is defined as a formula 
using a set of performance-monitoring event count-
ers, focusing on events on a particular micro-
architectural resource(s). Since the events monitored 
by the performance monitoring counters are typically 
very detailed and specific, it is comprehensive and 
efficient if we combine them as a functional unit. In 
addition, we can reduce the differences among the 
performance monitoring counters that can be micro-
architecture specific, but can vary from architecture 
to architecture. A performance monitoring counter is 
incremented when an event specified occurs. We 
define the following load metrics based on the micro-
architecture of the Intel®  Pentum® 4 or Intel® 
XeonTM Processors [2]: 

For a process, process load is calculated against its 
load metrics, based on the performance monitoring 
counters. Thus process load is not a linear value, but 
multi-dimensional one. Those bare values read from 
the performance monitoring counters maintained in 
the per-process data structure in the OS, and the 
PMC driver reads and reset those values.  

CPU Load 
CPU load represents the accumulated load against 
that logical processor, calculated by counts against 
the load metrics. Like a process, it is not linear value, 
but multi-dimensional one. Since there are many ac-
tivities other than the ones for processes, such as in-
terrupt, exception handling (especially, page fault), 
we don’t calculate CPU load as the sum of process 
loads on it. Instead, we keep the performance moni-
toring counters running, and we update CPU load 
and reset the counters at context switch time. Those 
bare values read from the performance monitoring 
counters are maintained in the per-CPU data structure 
in the OS, and the PMC driver reads and reset those 
values.  

• The number FP operations executed. This 
represents load against FP Move and FP Execute 
unit.  

• The number of cache and TLB related activi-
ties. L1/L2 cache misses, TLB misses. We are 
interested in more in the local impacts, rather 
than the system-wide ones. 

4.1. Load Evaluation and Load Calibra-
tion • The number of memory load/store operations. 

This represents load against Memory Load and 
Store unit.  We need to evaluate the load to estimate the impact, 

especially when we migrate a process from a proces-
sor package to another, for the purpose of load bal-
ancing. We need to simplify the calculation and make 
it effective. There are two options for that: 

• The number of bus activities. Access to main 
memory, traffic for cache coherency, DMA op-
erations, etc. 

Option 1 – Use a linear function converting a multi-
dimensional value to a linear one. The issue with this 
evaluation is that we lose information when convert-
ing a multi-dimensional value to a linear one, espe-
cially which execution resources are used most for 
that process. It is possible that two different work-
loads can have a similar range of load under this 
evaluation. And they can have different impacts on 
the processor package because they utilize different 
set of execution resources 

PMC driver 
The /proc/pmc is a read-only file, and it provides 
information on the number of events measured by 
hardware performance monitoring counters. We de-
veloped the driver for the purpose of this project. 
Upon read, it prints the information after the last 
read, then resets the counters. For each process, it 
lists PID (process id), command name (the one seen 
in the ps command, for example), CPU ID (on which 
it is located), processor package ID, and performance 
event counters. For each logical processor, it also 
lists the accumulated event counts. 

Option 2  – Check one load metric at a time. This is 
more effective, but we need to determine the order to 
check. 

 



Check Each Load Metric and Load Calibra-
tion 
The question with this option is the order in which 
we check imbalance at load balancing time. To set 
priority on the load metrics, we use what we call 
“load calibration.”  Load calibration determines the 
ratio of performance impacts caused by sharing a 
particular execution resource(s) for each load.  

Example: 

Run a typical floating-point intensive program on a 
logical processor in a processor package. Run the 
same program on the other logical processor, and 
measure the performance degradation (time) (∆T0) 
and the increased load (∆L0) associated with the 
floating-point load metric. The ratio ∆T0/∆L0 basi-
cally provides relative impact of using floating-point 
execution resources. 

Run a typical L2 cache intensive program on a logi-
cal processor in a processor package. Run the same 
program on the other logical processor, and measure 
the performance degradation (time)  (∆T1) and in-
creased number of events (∆L1) associated with the 
cache load metric. 

The ratio ∆T0/∆L0 : ∆T1/∆L1 for example, indicates 
relative impacts of utilizing the executions resources 
associated with those load metrics. The load calibra-
tion technique can handle the variations of micro-
architectures for a particular architecture, because we 
“measure” the actual impacts by running typical pro-
grams on the system. The micro-architectural sched-
uling assist determines the priority of load metrics at 
its initialization time. 

Assuming we use the two programs FP (i.e. 177.mesa 
of SPEC-CPU2000) and L2C (197.parser of SPEC-
CPU2000) for load calibration and 5-second samples 
reflect the load, we can use the data in Table 3.  

First we need to get the performance of the Base 
cases (solo-run), and then run the test cases binding 
two instances of FP or L2C to a processor package 
(coupled-run) with the other processor package idle. 
For each run, we measure time (in sec.) and the event 

counts of FP uops and L2 cache misses. 

From the data in Table 6, we can calculate ∆T0/∆L0 : 
∆T1/∆L1 : = 1.03. This means an L2C cache miss 
event has slightly higher impacts. However, the 
above calculation is an example only, and we need to 
use pure benchmarks for this purpose.  

If we use this data and look at Table 4, we realize 
that the processor package 1 has significantly high 
load (7.369E+07) in the (INT, INT) (L2C, L2C) test 
case. 

4.2. Implementation 

Algorithm for Resolving Load Balance 
The basic method for resolving load imbalance be-
tween two packages (with the lowest and highest 
load) is: 

1. Detect interference with execution resource(s) in 
a processor package.  

We use an execution resource limit measured at 
load calibration time. It is the value measured at 
solo run. An execution resource limit is the 
maximum number of the hardware events (per 
second) associated with a particular execution 
resource. For example, the execution resource 
limit for L2C is 46925899/244 = 192319 from 
Table 6. Note that it is an example to show how 
to calculate, and it may vary. 

2. If found, find the processor packages with the 
lowest and highest load. 

3. Look for a process to migrate, or two processes 
to swap in those processor packages, to equalize 
the loads as much as possible.  

We employed swapping processes among processor 
packages rather than simple process migration, be-
cause of more choices when equalizing the loads. 
Since the process swapping mechanism can handle 
the process migration mechanism as well, we use 
process swapping hereafter. 

Table: 6 Data for Load Calibration 

Load Met ric
T ime 
(solo)

T ime 
(coupled) Load (solo)

Load 
(coupled,1/2)

Load 
(coupled, 2/2)

Load 
(coupled,total) delta T delta L

FP 134 252 106985316 58783608 60970800 119754408 118 12769092
L2C 244 445 46925899 31677006 36395793 68072799 201 21146900

 



In general we need to project the future load of the 
processors when migrating a process from a proces-
sor to another at load balancing time. Assuming that 
a process continues on the current workload, we can 
estimate the impact on the new processor that the 
processes are swapped. It’s possible, however, that 
we can choose a wrong process at process swapping 
time, causing fluctuations.  

We avoid unnecessary fluctuations by checking if the 
projected load after swapping does not exceed the 
execution resource limit for every execution re-
source. 

MASA Program 
MASA is a user-level program, and it requires the 
performance monitoring counters (PMC) driver (de-
scribed below) that provides information of hardware 
monitoring counters. The following is a summary of 
the steps taken by the program: 

1. Read the device file /proc/pmc implemented 
by the PMC driver, to get information of the per-
formance monitoring counters for the last period.  

2. Calculate process load for the existing processes, 
and calculate CPU load, and processor package 
load accordingly. Load of a processor package is 
given simply by adding the CPU load of the two 
logical processors in that package. 

3. If we detect imbalance between the CPU loads in 
a processor package, for example, the case 
where one CPU has more than one outstanding 
process, but the other has none. This kind of 
situation can happen as new processes are 
spawned. 

We calculate (sum of package loads)/(4 × N) 
where N is the number of the CPUs in the sys-
tem (4 is an ad hoc number obtained by experi-
ments). If a process has load more than this 
value, then we increment the counter for the 
CPU.  

If any imbalance is detected, migrate one of the 
outstanding processes to the other CPU. Sleep 
for a specified time to refresh the performance 
counters, and go back to Step 1. Otherwise, 

4. Begin with the top priority load metric: 

a. Check interference with the load, by check-
ing if the load exceeds the execution re-

source limit. If not detected, then check the 
next load metric in the priority order. Go 
back to Step 4. Otherwise (if detected), 

b. Find the processor packages with the high-
est (max_load) and lowest CPU 
(min_load) load in the system with re-
spect to the current load metric.  

c. If the imbalance is less than 25%, then 
jump to Step b (25% is an ad hoc value ob-
tained by experiments). The imbalance is 
calculated by: 
(max_load – min_load) / 2 

 
d. If load imbalance is found, swap the proc-

esses that equalize the loads of the two 
processor packages with max_load and 
min_load, as much as possible by setting 
processor affinity. It uses 
sched_setaffinity() by providing the PID 
(process id) and the CPU mask (on which 
CPU the program must run) for them.  

 
If load imbalance is not detected or no 
processes to swap are found for this load 
metric, then go back to Step 4 for the next 
load metric. If all the load metrics are 
check, sleep for a time period specified (5 
sec. by default), and go back to Step 1. 

 

Note that migration can be suppressed by a command 
option to the program, and the program only logs 
such an event. 

4.3. Performance 
We made a prototype of MASA, and reached the 
same performance as the set up manually bound us-
ing full knowledge of the workload (using processor 
affinity statically), reducing performance variations. 
At this point, we are using information only on float-
ing-point execution resources and L2 cache load and 
store misses. 

SPEC-CPU2000 
To verify the MASA mechanism works for various 
workloads, we simultaneously executed four shells of 
the following shells, each of which executes the pro-
grams from SPEC-CPU2000 sequentially: 

• Shell_0 – 164.gzip, 176.gcc, 186.crafty, 252.eon, 
254.gap, and 256.bzip2. 

 

 



• Shell_1 – 175.vpr, 181.mcf, 197.parser, 
253.perlbmk, 255.vortex, and 300.twolf. 

• Shell_2 – 168.wupwise, 172.mgrid, 177.mesa, 
179.art, 187.facerec, 189.lucas, and 200.sixtrack. 

• Shell_FP – repeats 177.mesa 7 times to have the 
same duration as the other shells.  

 

Shell Benchmark
w/o M ASA 
(Shell_L2C)

w M ASA 
(Shell_L2C)

164.gzip 286 298
176.gcc 561 598
186.crafty 225 235
252.eon 313 338
254.gap 256 271
256.bzip 2 526 487
175.vp r 529 525
181.mcf 607 613
197.p arser 630 515
253.p erlbmk 422 453
255.vortex 479 458
300.twolf 629 507
168.wup wise 337 331
172.mgrid 708 639
177.mesa 266 270
197.art 842 781
187.facerec 320 301
189.lucas 314 299
200.sixtrack 314 256
197.p arser 519 498
197.p arser 597 587
197.p arser 466 505
197.p arser 557 563
197.p arser 336 389

Total 11036 10717

Shell_0

Shell_1

Shell_2

Shell_L2C

• Shell_L2C – repeats 197.parser 5 times to have 
the same duration as the other shells. 

Shell_0 and Shell_1 are based on CINT2000 (for 
measuring and comparing compute-intensive integer 
performance), and the benchmark programs (12 of 
them) are split into these two shells one by one. 
Some of require large data areas. 

Shell_2 is based on CFP2000 (for measuring and 

comparing compute-intensive floating-point per-
formance), and the benchmark programs (7 of them) 
are picked alternatively i.e. one every two in the list. 
In reality, such floating-point intensive programs 
tend to use large data as well, and thus have higher 
L2C misses. 

Note that obviously the SPEC-CPU2000 benchmarks 
are not intended to run this way, and thus our per-
formance is not relevant to actual SPEC-CPU2000 
performance. We measured the results from two test 
cases where the four shells are run in parallel on a 
system has dual Intel® XeonTM : 

Test Case1 – Shell_0, Shell_1, Shell_2, and 
Shell_L2C 

Test Case 2 – Shell_0, Shell_1, Shell_2, and 
Shell_FP 

Shell Benchmark
w/o M ASA 
(Shell_FP)

w M ASA 
(Shell_FP)

164.gzip 279 272
176.gcc 475 408
186.crafty 215 218
252.eon 330 336
254.gap 205 236
256.bzip 2 417 433
175.vp r 436 484
181.mcf 474 448
197.p arser 481 536
253.p erlbmk 440 385
255.vortex 473 290
300.twolf 558 470
168.wup wise 297 300
172.mgrid 621 513
177.mesa 234 250
197.art 585 594
187.facerec 292 278
189.lucas 279 196
200.sixtrack 347 247
177.mesa 244 246
177.mesa 335 294
177.mesa 302 284
177.mesa 227 237
177.mesa 251 263
177.mesa 284 280
177.mesa 244 245

Total 9322 8743

Shell_FP

Shell_0

Shell_1

Shell_2

Table 7: Time (sec.) to complete SPEC-CPU2000 benchmarks w/o and w/ 
MASA



Table 7 shows the results without and with MASA 
enabled for the test cases, and Table 8 summarizes 
the results. The results are the average of three runs 
of each of the test cases (w/o and w/ MASA), and the 
numbers are the time to complete the benchmarks (in 
second). The time period for sampling used MASA is 
5 seconds. Table 8 also shows the number of process 
migration during the test case, and they are applica-
ble only to the cases with MASA. Test Case 1, for 
example, caused process swapping 51 times due to 
imbalance with respect to L2 misses, and 13 times 
due to imbalance with respect to FP uops. Since we 
placed higher priority on imbalance with L2 cache 
misses based on load calibration, we tend to see 
higher swapping rates for L2 misses.  

At this point, we don’t see visible overhead with run-
ning MASA mainly because it checks relatively in-
frequently (once per 5 sec. or, at most once per 1 
sec.). Since our purpose is to detect and resolve se-
vere load imbalance caused by execution resource 
contentions, we don’t believe we need more frequent 
monitoring. 

Test 
Case 

Total (w/o 
MASA) 

Total (w/ 
MASA) 

Gain 
(%) 

# of Swap-
ping 

Test 
Case 1  

11036 10717 2.9 51 (L2 miss) 
13 (FP uops) 

Test 
Case 2 

9322 8743 6.2 54 (L2 miss) 
20 (FP uops) 

Table 8: Summary of Table 7 

5. Conclusions and Future Work 
In a single processor package, HT enables the execu-
tion resources in a processor package to be used 
more efficiently. Excess resource bandwidth from 
one logical processor can be used to make progress 
on the other and increase overall utilization of the 
processor execution resources. In the multiprocessor 
(or multi-processor-package) environment, the OS 
can utilize the CPU execution resources among the 
processor packages with optimal placement of the 
processes, if it can monitor and balance the load of 
the execution resources utilized at runtime. 

MASA uses the information from the hardware 
monitoring counters to evaluate the load of process 
packages and processes. We implemented a proto-
type of MASA, and the data shows that it improves 
performance by 6% for the workloads from SPEC-
CPU2000, especially for floating-point intensive 
case. We still need to evaluate the effectiveness of 

MASA by running various applications, and to im-
prove the algorithm, exploiting more load metrics.  

I/O interrupt handling can be handled in the same 
fashion. At this point, the mechanism of I/O interrupt 
routing is primitive (typically done by the chipset and 
interrupt controller) and we believe that it can be 
improved by using the micro-architectural scheduling 
assist when deciding to which processor/package 
particular interrupts are routed at runtime.  

Acknowledgement 
We would like to thank the anonymous reviewers for 
their useful comments. We thank Sunil Saxena and 
Asit Mallick for their support. 

References 

[1] Guy G.F. Lemieux, “Hardware Performance 
Monitoring in Multiprocessors”, Department of 
Electrical and Computer Engineering, University 
of Toronto,1996. 

[2] Hinton, G; Sager, D; Upton, M; Boggs, D; Car-
mean, D; Kyker, A.; Roussel, P. “The Microar-
chitecture of the Pentum® 4 Processor”, Intel 
Technology Journal, 2002. 
http://developer.intel.com/technology/hyperthread 

[3] Intel® Vtune Performance Analyzer, 
http://www.intel.com/software/products/vtune/vt
une60/ 

[4] W. L. Lynch, B. K. Bray, and M. J. Flynn, “The 
Effect of Page Allocation on Caches”, Proc. of 
International Symposium on Microarchitecture, 
pp. 222-225, December, 1992 

[5] Marr, D.; Binns, F.; Hill, D.; Hinton, G.; Kou-
faty, D.; Miller, J.; Upton, M. “Hyper-Threading 
Technology Architecture and Microarchitecture” 
Intel Technology Journal, 2002. 

[6] A. Snavely, D. M. Tullsen, and G. Voelker, 
“Symbiotic Jobscheduling with Priorities for a 
Simultaneous Multithreading Processor”, Proc. 
of International Conference on Measurement and 
Modeling of Computer Systems, June, 2002 

[7] A. Snavely and D. M. Tullsen, “Symbiotic Job-
scheduling a Simultaneous Multithreading Proc-
essor”, Proc. of 9th International Conference on 
Architectural Support for Programming Lan-
guage and Operating Systems, November 2000.  

[8] M. S. Squillante and E. D. Lazowska, “Using 
Processor-Cache Affinity Information in Shared-

 

http://www.intel.com/software/products/vtune/vtune60/
http://www.intel.com/software/products/vtune/vtune60/


 

Memory Multiprocessor Scheduling”, IEEE 
Transactions on Parallel and Distributed Sys-
tems, Vol. 4, No. 2, February 1993, pp. 131 – 
144. 

[9] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, 
and R. Stamm, “Exploiting Choice: Instruction 
Fetch and Issue on an Implementable Simultane-
ous Multithreading Processor”, In ISCA96, pp. 
191-202, May 1996 

[10] D. Tullsen, S. Eggers and H. Levy, “Simultane-
ous Multithreading: Maximizing On-Chip Paral-
lelism. In 22nd Annual International Symposium 
on Computer Architecture, pp. 392-403, June, 
1995. 

[11] B. Weissman, “Performance Counters and State 
Sharing Annotations: A Unified Approach to 
Thread Locality”, Proc. of the 8th Int. Conf. Ar-
chitectural Support for Programming Langurage 
and Operating Systems, pp. 127 – 138, 1998. 

[12] SPEC CPU2000, 
http://www.spec.org/osg/cpu2000/ 

 

APPEDIX – Changes for HT in Linux 
This appendix describes the changes for supporting 
HT in Linux 2.4.19 (www.kernel.org) kernel. Those 
changes or requirements should be applicable to an 
OS in general when supporting HT, although some of 
them might need to re-implemented for the target OS. 

• fs/binfmt_elf.c (line 141 – line 155):  Linux sets 
a constant value to the initial user stack pointer 
for every process. We adjust the pointer using 
the PID to minimize L1 cache eviction (see 1.2). 

• kernel/sched.c (line 265 – line 279): Prioritize an 
idle package (both logical CPUs are idle) over an 
idle CPU, because the other logical CPU may 
not be idle, but busy. The variable 
smp_num_siblings maintains the number of the 
logical CPUs in a package. It is 2 for the Intel® 
XeonTM processor family at this point. 

• arch/i386/kernel/setup.c (line 2404 – line 2452): 
Detection of HT, and setup of mapping between 
the logical CPUs and the processor package, or 
the array cpu_sibling_map[], which con-
tains the other logical CPU number given the 
current CPU number as the index.  

• arch/i386/kernel/acpitable.c (entire file): ACPI 
(Advanced Configuration & Power Interface, see 
http://www.acpi.info) table parsing. When HT is 

enabled, the number of the logical CPUs is re-
ported in the ACPI table, not the MPS (Multi-
Processor Specification, see 
http://www.intel.com/design/intarch/MANUALS
/242016.htm, for example) table. The OS needs 
to look at the ACPI table for HT. 

• arch/i386/kernel/semaphore.c (line 270, line 
283):  PAUSE instruction “rep; nop.” This 
change is useful for generic IA-32 Intel® Archi-
tecture SMP systems as well. 

• arch/i386/kernel/mtrr.c: The code used when if 
the target CPU is MTRR_IF_INTEL. Since the 
MTRRs (Memory Type Range Register) re-
sources are shared in a processor package, and 
update to MTRRs must be atomic. In Linux, it 
was possible that two logical CPUs in processor 
package update MTRRs simultaneously and 
changed those registers inconsistently. 

• arch/i386/kernel/microcode.c (line 76, line 252 – 
line 299): The current Linux updates the micro 
code simultaneously on every CPU sending In-
ter-Processor Interrupt (IPI). Since the micro 
code resource is shared by the logical CPUs in a 
processor package, the update should be done 
one time. To ensure that the update happens only 
one time for each processor package rather than 
for each logical CPU, the spin lock  

microcode_update_lock is used to make 
the update atomic. Otherwise we see a race con-
dition. 

• include/asm-i386/spinlock.h (line 62): No 
change required. Original code already had had 
this code (PAUSE instruction). 

• include/asm-i386/system.h (line 318): No change 
required. Original code already had had this code 
(hlt instruction for the idle loop). 

http://www.spec.org/osg/cpu2000/
http://www.kernel.org/
http://www.acpi.info/
http://www.intel.com/design/intarch/MANUALS/242016.htm
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