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Abstract

The Arjuna transaction system began life in the mid 1980s as an academic project to examine the use of object-
oriented techniques in the development of fault-tolerant systems; over 15 years later it is now a Hewlett-Packard
product in its own right and is also embedded in several other offerings from HP. In addition, many of the original
developers of Arjuna have accompanied the system on its journey and had first hand experience in taking this
academic research vehicle into a commercial environment. At times the transition has been neither easy nor
smooth but it has been interesting from many different perspectives. In this paper we shall attempt to give an
overview of how this occurred and illustrate some of the lessons we have learned over the years.

1. Introduction

The Arjuna transaction system began life in the mid
1980s as an academic research project to examine the
use of object-oriented techniques in the development of
fault-tolerant distributed systems; 15 years later it is a
product in its own right and is also embedded in
several other product offerings. In this paper we shall
examine how this transition was achieved and the
lessons learnd along the way.

Arjuna is an object-oriented programming system that
provides a set of tools for the construction of fault-
tolerant distributed applications.Arjuna supports the
computational model ofnested atomic actions(nested
transactions) controlling operations on persistent
objects. Arjuna objects can be replicated on distinct
nodes for obtaining high availability. TheArjuna
research effort began in late 1985 at the University of
Newcastle. A version of the system written in C++ to
run on networked Unix systems was operational in the
early nineties and maintained and made available
freely on the Web for research, development and
teaching purposes. The arrival of the Web and
industrial acceptance of CORBA and Java technologies
for distributed object computing during this period
encouraged us to productiseArjuna. In late 1998 we set
up a company, Arjuna Solutions Ltd., with two
products derived fromArjuna: OTSArjuna, a C++
version of the CORBA Object Transaction Service
(OTS) and JTSArjuna, the OTS counterpart in Java.
Through a series of company acquisitions, these later
became part of HP’s middleware product lines. Within
HP, the original Arjuna software continues to be of use
in creating customised transactional services for new

application areas, such as Web Services and mobile
computing. In this paper we examine the reasons for
the longevity of the Arjuna software.

The paper is structured as follows. In the next section
we present an overview of theArjuna system that was
implemented in C++. Sufficient details of the system
are presented here to enable the readers to follow the
subsequent discussions concerning middleware. The
material of this section is taken from our published
papers on Arjuna [1,2,3,4]. Section three describes how
the system was adapted for use as a transaction service
for CORBA and Java middleware; here we also
compare and contrast the functionality of the original
Arjuna system with that of the modern component
based middleware. Section four concludes the paper
with some lessons we have learnt from our
experiences.

2. An Overview of Arjuna

2.1. Design and Implementation Goals

The design and implementation goal ofArjuna was to
provide a state of the art programming system for
constructing fault-tolerant distributed applications. In
meeting this goal, three system properties were
considered highly important:

(i) Modularity: The system should be easy to
install and run on a variety of hardware and software
configurations. In particular, it should be possible to
replace a component ofArjuna by an equivalent
component already present in the underlying system.
As we shall show in the rest of this paper, the
modularisation aspect is an important factor in



Arjuna’s longevity. At the time, this was accomplished
through the use of relatively new object-oriented
techniques of interface-implementation separation:
each module, which defines a specific well-defined set
of functionality, is interacted with through an interface
without exposing the underlying implementation
details.

(ii) Integration of mechanisms:A fault-tolerant
distributed system requires a variety of system
functions for naming, locating and invoking operations
upon local and remote objects, and for concurrency
control, error detection and recovery from failures, etc.
These mechanisms must be provided in an integrated
manner such that their use is easy and natural.

(iii) Extensibility: These mechanisms should also
be flexible, permitting application specific
enhancements, such as type-specific concurrency and
recovery control, to be easily produced from the
existing default ones.

The first goal was met by dividing the overall system
functionality into a number of modules that interact
with each other through well definednarrow
interfaces. This facilitated the task of implementing the
architecture on a variety of systems with differing
support for distributed computing. For example, it was
relatively easy to replace the default RPC module of
Arjuna by Sun RPC and to provide persistence
implementations ranging from flat file to non-volatile
RAM based. The remaining two goals were met
primarily through the provision of a C++ class library
for incorporating the properties of fault-tolerance and
distribution. Finally, and purely for pragmatic reasons,
we decided that it was important to developArjuna
using commonly available tools and hardware: being
an academic institution, we had very few funds on
which to call for projects.

2.2. Objects and actions

Arjuna supports a computation model in which
applications manipulate persistent objects under the
control of atomic transactions. Distributed execution is
achieved by invoking operations on remote objects
using remote procedure calls (RPCs). All operation
invocations may be controlled by the use of

transactions, which have the well known ACID
properties (Atomicity, Consistency, Isolation,
Durability). Transactions can be nested; nesting
provides fault-isolation: a nested action can abort
without causing the abortion of the enclosing action. A
(two-phase) commit protocol is used during the
termination of an outermost atomic action (top-level
action) to ensure that either all the objects updated
within the action have their new states recorded on
stable storage (committed), or, if the transaction aborts,
no updates get recorded. It is assumed that, in the
absence of failures and concurrency, the invocation of
an operation produces consistent state changes to the
object. Transactions then ensure that only consistent
state changes to objects take place despite concurrent
access and any failures.

2.3. System Architecture

With reference to Fig 1, we shall now identify the main
modules ofArjuna and the services they provide for
supporting transactional persistent objects.

1) Atomic Action.Provides atomic action support to
applications in the form of operations for starting,
committing and aborting transactions. It provides
a high level API called theArjuna Integrated
Transactions(AIT).

2) RPC. Provides facilities to clients for
connecting/disconnecting to object servers and
invoking operations on objects. The initial
implementation of this was developed within the
Arjuna research group [5] and used novel C++
stub-generation techniques to enhance distribution
transparency [6].

3) Object Store.Provides a stable storage repository
for persistent objects; these objects are assigned
unique identifiers (Uids) for naming them.

4) Naming and Binding.Provides a mapping from
user-given names of objects to Uids and a mapping
from Uids to location information such as the
identity of the host where the server for the object
can be made available.
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Fig. 1: Components ofArjuna.

Every node in the system provides the RPC and Atomic
Action modules. Any node capable of providing stable
object storage in addition contains an Object Store
module. Nodes without stable storage may access these
services via their local RPC module. The Naming and
Binding module is not necessary on every node since
its services can also be utilised through the services
provided by the RPC module.

Although atomic transactions guarantee consistency in
the presence of failures, they do not provide a means of
guaranteeing forward progress: the failure of a
machine can lead to the abortion of the transactions
using that machine Therefore, as part of the Object
Store module, Arjuna provides a high-availability
option that allows persistent object states to be
replicated on an arbitrary number of machines, thus
improving the probability that machine failures will
not cause a transaction to abort.

All of these modules are accessed through interfaces
that allow their implementations to be replaced at
runtime. For example, there are multiple interfaces
between the Atomic Action and RPC modules offering
different, pluggable functionality. When making
invocations on remote objects which occur within
transactions, it is necessary to propagate information
about the transaction (thecontext) to the remote
Atomic Action module. Therefore, there are interfaces
for allowing the RPC component to obtain and serialise
the context on outward calls and to de-serialise the
context and recreate the transactions it refers to on
incoming calls. The Object Store module has multiple
different implementations, each tailored to a specific

mode of use (e.g., non-volatile RAM, flat file space or
database) and these can be selected on a per object
basis.

2.4. Coordinating Recovery, Persistence
and Concurrency Control

The atomic action module is the most important part of
Arjuna. Its design is based on the principle that as
objects are assumed to be encapsulated entities, then
they must be responsible for implementing the
properties required by atomic actions themselves (with
appropriate system support). This enables differing
objects to have differing recovery and concurrency
control strategies. Given this proviso, any atomic
action implementation need only control the invocation
of the operations providing these properties at the
appropriate time and need not know how the properties
themselves are actually implemented.

The principal classes that make up the class hierarchy
of Arjuna Atomic Action module are depicted in Fig.
2. This is an important hierarchy because, as we shall
see, certain classes within it (e.g.,
AbstractRecord ) have been critical in the
longevity of Arjuna. In addition, the relative ease with
which complex applications can be developed using
this hierarchy has also helped in Arjuna’s success.

To make use of atomic actions in an application,
instances of the classAtomicAction must be
declared by the programmer; the operations this class
provides (Begin , Abort , End) can then be used to
structure atomic actions (including nested actions).



The only objects controlled by the resulting atomic
actions are those objects which are either instances of
Arjuna classes or are user-defined classes derived from
LockManager and hence are members of the
hierarchy shown. Most Arjuna classes are derived from
StateManager , which provides primitive facilities
necessary for managing persistent objects. These
facilities include support for the activation and de-
activation of objects, and state-based object recovery.
Thus, instances ofStateManager are the principal
users of the Object Store module and isolate users from
its underlying implementations (e.g., database or file
based). LockManager uses the facilities of
StateManager and provides the concurrency control

required for implementing isolation. The
implementation of atomic action facilities for recovery,
persistence management and concurrency control is
supported by a collection of object classes derived from
AbstractRecord which is in turn derived from
StateManager . For example, instances of
LockRecord and RecoveryRecord record
recovery information for Lock and user-defined objects
respectively.AtomicAction manages instances of
these classes (using an instance of the class
RecordList which corresponds to the intentions list
used in traditional transaction monitors) and is
responsible for performing aborts and commits.

StateManage r

AtomicAction LockManager Lock AbstractRecor d

User
Classes

User
Locks LockRecor d Recovery

Recor d...

Fig. 2: The Arjuna Class Hierarchy.

Consider a simple example. Assume thatO is a user-
defined persistent object. An application containing a
transactionA accesses this object by invoking operation
op1 of O which involves state changes toO. The
serialisability property requires that a write lock must
be acquired onObefore it is modified; thus the body of
op1 should contain a call to the appropriate operation
of the concurrency controller (see Fig. 3):

{
// body of op1

if setlock (new Lock(WRITE)
=== GRANTED)

{
// actual state change

operations follow
...

}
}

Fig. 3: The use of Locks in implementing

operations.

The operation setlock , provided by
LockManager , performs the following functions in
this case:



(i) check write lock compatibility with the
currently held locks, and if allowed,

(ii) use StateManager operations for creating
a RecoveryRecord instance forO (this is aWRITE
lock so the state of the object must be retained before
modification) and insert it into theRecordList of
A;

(iii) create and insert aLockRecord instance in
theRecordList of A.

Suppose that actionA is aborted sometime after the
lock has been acquired. Theabort operation of
AtomicAction will process the RecordList
instance associated withA by invoking the abort
operation on the various records. The implementation
of this operation byLockRecord will release the
WRITE lock while that of RecoveryRecord will
restore the prior state ofO.

The AbstractRecord based approach of managing
object properties has proved to be extremely useful.
Several uses are summarised here.
RecoveryRecord supports state-based recovery,
since its abort operation is responsible for restoring the
prior state of the object. However, its recovery
capability can be altered by refining the abort operation
to take some alternative course of action, such as
executing a compensating function.LockRecord is a
good example of how recoverable locking is supported
for a Lock object: the abort operation of
LockRecord does not perform state restoration, but
executes arelease_lock operation. Similarly, no
special mechanism is required for aborting an action
that has accessed remote objects. In this case, instances
of RpcCallRecord are inserted into the
RecordList as RPCs are made to the objects.
Abortion of an action then involves invoking the
abort operation of these instances which in turn send
an "abort" RPC to the servers.

In keeping with the tradition of a university research
group, the system as described above was developed
and used by several graduate students (including the
first author) as a part of their doctoral research work,
which included building a distributed database engine
for book citations.Arjuna was also used in a number of
industrial research projects [2], for example use in the
telecoms arena for managing bandwidth reservation
and connection setup. A particularly demanding
application has been the electronic student registration
system in use since 1994 by Newcastle University [8].
The registration system has a very high availability and
consistency requirement; admissions tutors and

secretariesmust be able to access and create student
records (particularly at the start of a new academic
year). In addition, the University required any solution
to be software based and to run on existing hardware
and operating systems, including Unix, Microsoft
Windows and MacOS. At that time, no other software
based solution existed that could fulfil all of those
requirements. Arjuna provided the right set of
mechanisms: transactions for consistency and
replication for availability. In this particular
application, the student record database was triplicated.
During the 8 years that the system has been in use,
there have been several network and machine failures;
with one exception (see below), Arjuna has coped with
them all, leaving users unaware that anything
untoward has occurred.

The student registration system is composed of two
sub-systems: the 'Arjuna sub-system' that runs on a
cluster of Unix workstations and is responsible for
storing and manipulating student data using
transactions, and the 'front-end' sub-system, the
collection of PCs and Macs each running a menu
driven graphical user interface that users employ to
access student data through the Arjuna sub-system The
Arjuna-subsystem was engineered to run in a non-
partitionable environment by ensuring that the entire
cluster of machines was on a single, lightly loaded
LAN segment; this decision was made to simplify the
task of consistency management of replicated data (as
can be appreciated, the problem of consistency
management is quite hard in a partitionable
environment). The current Arjuna sub-system
configuration consists of ten Unix workstations, of
which three act as a triplicated database (object store)
Within the Arjuna sub-system, great care was taken to
ensure that safely (pessimistically) chosen timeouts
together with network level ‘ping’ mechanisms do act
as an accurate indication of node failures. During the
first year of deployment, we did experience initial
consistency problems when one of the replica was
inaccurately diagnosed as failed; this led to further
testing and adjustment of failure detection timeouts.

Success in meeting the requirements of the registration
system was one of the factors that led the Arjuna group
to consider turning the system into a product in 1996.
By then CORBA and Java middleware were attracting
industry attention. The OMG architecture, CORBA [9]
was well established, so it seemed natural to adapt
Arjuna to meet the specification of the Object
Transaction Service (OTS) and later to the Java
Transaction Service (JTS) that is optional within the
Java component middleware, J2EE [10]. In the next
section we describe how this was achieved.



3. Arjuna and Middleware

3.1. Basic middleware concepts

We present a brief overview of middleware concepts,
using CORBA as an example. Fig. 4 depicts the main

elements of the CORBA middleware. It consists of an
‘object bus’, the object request broker (ORB) which
allows client to interact with remote objects. A number
of services are available for facilitating this task; these
include naming, persistence, event notification and
transactions. JAVA/RMI is a broadly similar Java
language specific middleware.

Application
O bjects

C O RBA
facilities

CO RBAservices

Dom ain
In terfaces

Ob ject Re q uest B roker

Fig. 4: CORBA middleware.

Although this middleware simplifies the construction
of distributed applications by providing type checked
remote invocations and standard ways of using
commonly required services, there is still the problem
that programmers have to worry about application
logic as well as technically complex ways of using a
collection of services. For example, transactions on
distributed objects require concurrency control,
persistence and the transaction services to be used in a
particular manner. To address this difficulty, object-
based middleware has been extended to component-
based middleware. In simple terms, a component is an
‘application object with the capability for using
middleware services in a standard manner’. A
component is hosted by acontainer(a server process),
and normally the container uses the underlying
middleware services on behalf of the application object.
A component descriptor specifies, in a declarative
manner, the services that are required by the
component. Containers are provided byapplication
servers that provide tools for deploying components
onto containers using the information specified in the
descriptors. A J2EE Enterprise Java Bean (EJB) is a
good example of a component. In the rest of this
section we will first examine how OTSArjuna and
JTSArjuna were implemented. Secondly, bearing in
mind that Arjuna is not just a transaction service, but a
complete system for building transactional

applications, we will compare and contrast its
functionality with that of J2EE application servers.

3.2. Arjuna, the OTS and the JTS

In 1995 the industry standard for distributed
transactions changed from being predominately based
on X/Open XA [7], which is procedural-oriented, to
the OTS (OMG Object Transaction Service) [9]. This
was based on the experiences of all of the major
transaction processing vendors, including IBM, HP
and DEC. Around this time, theArjuna group attracted
R&D funding from industry led consortia and members
of these consortia expressed interest in standards-
related developments. In particular several of our
industrial sponsors were interested in funding
transactions research and development within a
CORBA environment and the original Arjuna system,
with its own RPC and Naming and Binding
implementations, did not meet these requirements.

The OTS is aprotocol enginethat guarantees that
transactional behaviour is obeyed but does not directly
support all of the transactional properties. As such it
requires other services that implement the required
functionality, such as persistence and concurrency
control. The application programmer is responsible for
using these services to ensure that transactional objects
have the necessary ACID properties.



In addition, the OTS does not provide any participant
implementations (e.g., database resource managers).
These must be provided by the application programmer
or the OTS implementer. As such, a pure OTS
implementation actually provides much less
functionality than that available inArjuna. The OTS
does not define a complete toolkit for the construction
of transactional applications: it has no equivalent of
AIT.

Examining just the transaction engine component of
Arjuna as provided by the Atomic Action module, it
was clear that there was a good match with the OTS.
Although the interfaces that are exposed by the OTS
were different, it was relatively straightforward to
provide these same abstractions on top of the
equivalentArjuna APIs. Most effort was directed at
fully integrating Arjuna (now OTSArjuna) within the
CORBA framework, e.g., how to do distributed
invocations and ensure that the transaction context is
passed as mandated by the specification. The interfaces
we had defined between the Naming and Binding and
RPC modules were sufficiently powerful that only
minimal modifications had to be made. In addition, the
interfaces allowedOTSArjunato be ported to a variety
of different ORBs rather than being tied to one specific
implementation. This was an important aspect as other

OTS implementations required users to own a specific
ORB (usually the one from the same vendor), e.g.,
IBM WebSphere and BEA WebLogic. Being able to
choose the vendor of different components in a
distributed architecture was important to many
prospective users.

The architecture ofOTSArjuna is shown in Fig 5,
where the dark grey boxes compriseOTSArjunaand
everything else is either provided by the application
programmer/user or other software components such as
database drivers (Resource/SubtranAware, for
example). The OTS protocol engine, State
Management and Concurrency Control components are
essentially exactly as they appeared in the original
Arjuna Atomic Action module. AIT was provided to
programmers via theOTSArjunaAPI. The RPC and
Naming and Binding modules from the original
architecture were replaced by whatever the underlying
ORB implementation provided. The existing Object
Store module was made available via suitable
Resource/SubtranAware implementations.

Importantly, to maintain the original pluggable
abstraction, any OTS-specific modifications that were
made (such as API updates) occurred in self-contained
modules accessed through well defined interfaces.

OTSArjuna API

Trans. Appl.
Framework

Trans. Application. . . .

State
Management

OTS protocol
engine

Concurrency
Control
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Fig. 5: OTSArjuna architecture.

Remote participants, XA compliant databases etc. were
all transparently controlled by the core via
AbstractRecord implementations: the transaction
protocol engine could not tell that it was now running
within a CORBA environment. However, there was
one notable exception where the originalArjuna
abstraction we had simply did not work:failure
recovery.

To guarantee ACID properties in the event of failures,
a recovery subsystem is required. This ensures that any
transactions that were in progress are completed, either
by being committed or rolled back. In order to do this,
it may be necessary to recreate any resources that were
participants within the transaction: the recovery system
will recreate the distribution tree that was present prior
to the failure. In order to achieve this, recovery must
have intimate knowledge about the resources (e.g., do



they use a file system for persistence?) and the RPC
mechanism (e.g., what is the machine the object
resides on?) The Arjuna failure recovery
implementation was closely tied to the original RPC
mechanism. We were therefore unable to take this
component or to reuse the interfaces it provided. As
such, we were forced to re-implement recovery and in
doing so we tied it to the OTS model for expediency.

By 1996 Java started attracting serious attention from
industry and many existing OMG standards made their
way into J2EE. Critical amongst them was the OTS.
OTSArjunawas developed using C++, which made the
task of converting to Java relatively straightforward.
Arjuna had been developed with the very earliest
versions of C++, which had no multiple inheritance
and hence this helped facilitate the language transition.
We had made extensive use of C++ templates and
reference parameters, neither of which had their
equivalents in Java at that time and this did require us
to expend effort in re-coding. However, none of the
language differences presented issues that were
substantial enough to require redesigning large
portions of the code.

JTSArjuna, became the worlds first 100% pure Java
transaction system. This system and the group which
helped develop it became part of Hewlett-Packard’s
middleware division through a series of acquisitions.
After two years of intensive work on turning an
academic system into a product (mainly increasing the
team from 5 to 24 people, of which nearly 40% were
dedicated to quality assurance, and putting the product

through much more rigorous testing than it had ever
been through before), theHewlett-Packard Transaction
Servicewas created and became an integral part of
their middleware offerings. Interestingly, because of its
long history of development and use, the number of
issues (bugs) thrown up by quality assurance was
relatively small for such a complex system.

3.3. Arjuna and J2EE

In many ways, the programming model and
environment presented by Arjuna has many things in
common with modern day application servers. In this
section, we shall compare and contrast Arjuna with the
J2EE application server architecture and try to have an
objective examination of why differences exist.

A simplified J2EE application server architecture is
shown in fig. 6. Although this depiction hides many
details, it should be sufficient for a high-level
comparative analysis. It has very similar components to
Arjuna, but utilises industry standard technologies for
the object invocation mechanism and naming and
binding. Although the interfaces to the various
components are different to those inArjuna, the fact
that these components exist in an identifiable (and
typically replaceable) manner is testimony that the
original Arjuna architecture and design goals were
sound.
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Fig. 6: Simplified application-server architecture.

A feature that is missing inArjuna is the declarative
way of managing transactions that is provided by EJBs.
EJBs also provide explicit transaction management
using a high level (compared to JTS) API, called Java
Transaction API (JTA); however, it is not as
convenient to use as AIT, and its use is not generally
recommended [11]. Compared toArjuna, EJB
transactions come with several restrictions:

(i) Participant restriction: both the original Arjuna
system and the OTS, allow arbitrary participant
implementations. The AbstractRecord interface and the
OTS equivalent do not mandate a specific
implementation. This allows recovery, concurrency
control etc. to be transparently enlisted with a
transaction. However, the JTA interface restricts
participants to being XA-aware. This effectively
mandates that applications must use databases for
persistence: other types of persistence are possible, but
a lot of effort is necessary from the developers in order
for the implementations to be driven by the JTA, since
whatever persistence implementation is used, it must
be XA compliant. Several users ofArjuna and its
descendant products have found the fact that
persistence implementations are configurable and not
bound to a specific model (e.g., XA) extremely useful,
especially in the area of ease of deployment.

(ii) No nested transactions: if an object’s methods are
required to use transactions then, in an environment

which supports nested transactions, the implementer
can use transactions without concern about how those
methods will be used: if the invoker uses transactions,
then the methods will be nested within them, otherwise
they will be top-level. In addition, nesting provides a
level of failure containment, since the failure of a
nested transaction does not require the enclosing
transaction to roll back. The JTA does not support
nested transactions because XA does not. Once again,
user feedback on nested transactions has shown that
they are an extremely useful structuring tool, especially
when developing large-scale systems which may have
many engineers working on them.

(iii) Poor concurrency control: Unfortunately, no
satisfactory way of using read and write locks is
available in EJBs. Because the JTA mandates that all
participants must be XA-aware, this ties the
persistence model to using a database. Most databases
implicitly couple persistency and concurrency together,
such that, for example, when an object loads its state it
obtains a lock on the entire database table, which is
maintained for the duration of the transaction. All
other object states held within the same table are also
implicitly locked. In order to provide object-level
concurrency control, the programmer is supposed to
make use of the Java languagesynchronized
construct, which obtains an exclusive lock on a
method. However, this construct is not transaction-
aware and as such cycles (where object A calls object B
which calls object A) can result in deadlock and are



illegal. Because AIT locks are transaction-aware, not
only can an object use multiple-reader/single-writer
policies, but cycles within a transaction are supported.
This makes the construction of complex, distributed
applications more straightforward as programmers
need not worry about whether cycles may occur, which
could require in-depth knowledge of objects
implemented by others.

(iv) No support for orphan detection and elimination:
Client crashes or network partitions can occasionally
create orphan servers.. Orphans are undesirable as they
consume resources, and need to be destroyed. The RPC
mechanism used inArjuna detected and eliminated
orphans [5]. Experience with the use of application
servers has indicated that orphans do occur in practice;
unfortunately no automatic support for orphan
detection and elimination is provided in application
servers (or any other middleware system for that
matter). Given our experience with the Student
Registration system and phantom machine failures,
this lack of orphan detection is worrying.

4. Further evolution

The increasing use of the Web for commercial
activities has led to a paradigm shift from closely-
coupled, synchronous systems to loosely coupled
asynchronous systems. Several researchers (e.g.
[12,13]) have argued that in the Internet/Web
environment, a practical way of gluing applications is
through loose coupling as provided by asynchronous
messaging. The main reason behind this is that
asynchronous communication de-couples producers of
information from consumers; they do not need to be
both ready for execution at the same time.

The one constant amongst traditional and new
distributed environments is their requirement for
transactions. Irrespective of whether applications are
closely-coupled or loosely-coupled, failures happen
that affect both the performance and consistency of
applications run over them. Transactions can be used
in all of these environments to ensure consistency and
specifically within Hewlett-Packard, Arjuna
transaction technology has been used.

4.1. ArjunaCore

As part of the Hewlett-Packard NetAction product
suite, there was a requirement for both transactional
messaging (based on the JMS specification) and Web
Services transactions implementations (based on the
OASIS Business Transactions Protocol [14]). The
existing transaction products covered the J2EE and

CORBA arenas using a two-phase commit protocol.
When comparing the functionality provided by
JTSArjunawith that required by the JMS, for example,
it was clear that there was much overlap. In fact, it was
possible to categorise all of the transaction products
with the following requirements:

• The use of a two-phase commit protocol.

• They carry transaction context information in a
manner suitable to their environment, e.g., XML
and SOAP for BTP, or IIOP for CORBA.

• Their transaction participant implementations are
opaque to the two-phase transaction engine.

Careful examination showed that it appeared possible
to use the samecore protocol engine that had been
within the originalArjuna system and was now within
JTSArjuna, within HP’s BTP (HP Web Services
Transactions) and JMS (HP Messaging Service)
implementations. The interfaces (e.g.,
AbstractRecord ) isolate the coordinator from the
specifics of participant implementations and how
transactional distributed invocations occur. By
providing different implementations
ofAbstractRecords , for example, it was possible
to drive BTP Web Service participants or JMS
participants through a two-phase commit protocol
using theexactsame transaction engine.

Therefore, the work that was performed to transform
Arjuna into JTSArjunawas generalised. The first step
was to create a fully-functional transaction engine that
had no dependencies on CORBA (including failure
recovery) or any distribution infrastructure. This
createdArjunaCore, which is concerned solely with the
use of local transactions, i.e., transactions that run on a
single machine. If distributed transactions are required,
ArjunaCore provides the necessary hooks to enable
information about its transactions to be transmitted in a
manner suitable for the environment in which it is
running, e.g., CORBA IIOP or SOAP/XML. Systems
that useArjunaCorefor their transaction requirements
are then required to utilise these hooks in order to
obtain the context information and then transmit it in a
suitable manner.

The main obstacle to the design ofArjunaCorewas the
failure recovery sub-system. When designing
OTSArjunait had been closely tied to the CORBA OTS
model. In order to determine transaction statuses, it
was a requirement thatall transactions were
implemented by CORBA objects, whether or not they
were used in a distributed manner. By re-examining



the failure recovery architecture, a more modular
approach was taken, that was essentially based on the
original Arjuna goals: recovery is directed through an
abstract interface (the RecoveryModule) that does not
imply specific implementations. Each RecoveryModule
is responsible for recovering specific types of resources
(transactions, application objects etc.) without exposing
implementation choices such as whether or not
CORBA was used, to the recovery framework. Since
ArjunaCore is responsible for only local transactions,
its default RecoveryModule implementations are
relatively simple. Other products in whichArjunaCore
is embedded, e.g., BTP, provide suitable
implementations to do distributed recovery where
necessary.

With the benefit of hindsight, this abstraction should
have been used from the start when creating
OTSArjuna. The reason it was not was basically that,
in an effort to productise the system we believed that
the OTS was to be the final destination forArjuna:
CORBA was being widely adopted as the de facto
middleware standard and J2EE helped to propagate
that myth. As such, there did not seem to be any reason
to believe that Arjuna would be used anywhere except
within an OTS environment and hence no requirement
for such flexibility in the recovery sub-system.
Obviously this did not turn out to be the case and we
paid the price in time and effort spent in re-
implementation and backward compatibility support.

Despite the necessary redesign of the failure recovery
subsystem, the remainder ofArjunaCoreis the same as
existed in the originalArjuna system. The interfaces
have proven sufficient to allow the system to be the
core transaction engine within a diverse range of
products. The fact that it is no longer reliant on a
specific distribution infrastructure makes it extremely
small (less than 250 kilobytes compared to almost 1
megabytes for JTSArjuna) and embeddable:
experiments have been performed to port ArjunaCore
onto mobile devices (PDAs) something which other
industrial transaction products would find extremely
difficult to accomplish.

5. Concluding remarks

Thus, after nearly 15 years of design and evolution,
Arjuna has evolved through its various OTS/JTS
incarnations, to a stand-alone, non-distributed
transaction engine. Of the original architecture shown
in fig 1., only the Atomic Action and ObjectStore
modules remain. However, of these, the majority of the
code that was written while in academia continues to
exist within theArjunaCoreproduct.

Figure 7 attempts to illustrate the history of Arjuna as a
timeline, showing the relevant events we have
discussed previously from its start in 1986 to the
present day.

A r ju n a p r o je c t b e g in s

F i r st b e ta C + + r e le a s e
fr o m A T & T (c fr o n t)

F i r st fu l ly fu n c t io n a l
A r ju n a p r o to typ e

A r ju n a c o m p le te

S tu d e n t r e g is tr a t ion

O T S A r ju n a cr e a te d

J T S A r ju n a cr e a te d

C O R B A b e g in s

O T S 1 .0 s p e c i f ic a t ion r e le a s e d

A r ju n a S o lu t ion s fo u n d e d

B lu e s to n e S o ft w a r e a c q u ir e s A r ju n a
S o lu t io n s

H P a c q u i r e s B lu e s to n e

H P -M S d e v e l o p e d

O A S IS B T P s p e c i f ic a t io n b e g u n
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Fig 7. The evolution of Arjuna.

In achieving the transition of the Arjuna distributed
transaction processing software from research to
products, we have learned a number of lessons, some of
which will be relevant to others involved in or
embarking on a similar process. We shall attempt to
enumerate them below:

• Modularity within the architecture helped us to
restructure the uses to which we put Arjuna
without requiring re-implementation of the entire
system. As we have discussed, the core transaction



engine available today remains relatively
unchanged from its original C++ version.

• The use of object-oriented techniques helped to
make the structuring of the architecture flexible
and extensible. It also helped to make its use
relatively intuitive for new developers. A crucial
factor has been the structure of the atomic action
module for coordinating concurrency, persistence
and recovery for atomic actions using
AbstractRecord s (section 2.4), which meant
that transaction coordinator need only control the
invocation of the operations providing these
properties at the appropriate time and need not
know how the properties themselves are actually
implemented.

• A commercial product requires a lot more
emphasis on quality assurance (QA) and testing
processes than a research system. At the time of
writing, the number of QA tests for Arjuna
number in the thousands, cover every aspect of the
system and can take days to run to completion.
Only with the evidence of these tests is it possible
to convince people to invest time and money in
purchasing the product.

• Within each component there are typically many
places where configuration choices are made (e.g.,
the location of the object store, the maximum size
of the transaction log before the system begins to
prune it, etc.) When Arjuna started, many of these
choices were hardwired in at compilation time.
Over the years (and particularly when it became a
product) the requirement for these choices to be
exposed to developers was intensified. With
hindsight, as designers of the system we tended to
cater for the optimum configuration for ourselves
and this was often inappropriate for others.

• At the time of writing, JTSArjuna is used within 5
separate products and has been sold to 3 other
companies to embed within their own products. It
is impossible to say with certainty how many users
it has, but it has brought millions of dollars to the
various companies that have sold it.

• Once we were acquired by Bluestone, the use of
JTSArjuna increased significantly and hence so
did the support and training load put on the
developers. We quickly realised that a commercial
product is much more than the software that
actually executes: there is a significant amount of
collateral material required too, e.g., training
material, white papers etc.

• The biggest mistake we made was in the
development of crash recovery for OTSArjuna and
tying it to the CORBA model. With hindsight it is
possible to see that Arjuna could be used in other,
non-CORBA environments and we should have
designed accordingly.

• Commercial requirements on robustness of
software systems are far more rigorous than you
would expect from research prototypes and this
was the probably the hardest aspect for us to
tackle.

• Working with various standards bodies (OMG,
Java Community Process, OASIS to name but a
few) has been fruitful but also extremely
frustrating at times (committees rarely agree on
anything, especially if there is existing product to
protect).

The discussion in section three indicates that the
original structure of the Arjuna system was sound for
its adaptation in various types of middleware. The 15
year journey from academic project to commercial
product has been an interesting one and enlightening
in many respects. And finally, the most surprising
thing has been the amount of use to which Arjuna has
been put over the years.
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