
USENIX Association

Proceedings of the
2nd Workshop on Industrial Experiences

with Systems Software

Boston, Massachusetts, USA
December 8, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Building an "impossible" verifier on a Java Card
�

Damien Deville
deville@lifl.fr, http://www.lifl.fr/˜deville

Gilles Grimaud

grimaud@lifl.fr, http://www.lifl.fr/˜grimaud

Université des Sciences et Technologies de Lille,
Laboratoire Lifl, Bat M3,

cité scientifique, 59655 Villeneuve d’Ascq - France

Abstract

Java is a popular development platform for mo-
bile code systems. It ensures application porta-
bility and mobility for a variety of systems, while
providing strong security features. The interme-
diate code (byte code) allows the virtual machine
to verify statically (during the loading phase) that
the program is well-behaved. This is done by
a software security module called the byte code
verifier. Smart Cards that provide a Java Virtual
Machine, called Java Card, are not supplied with
such a verifier because of its complexity. Alterna-
tives are being studied to provide the same func-
tionality outside the card. In the present paper,
we propose to integrate the whole verifier inside
the smart card. This ensures that the smart card
becomes entirely autonomous, which allows full
realization of smart cards potential as pervasive
computing devices. Our verifier uses a special-
ized encoding and a software cache with a vari-
ety of cache polices to adapt to the hardware con-
straints of smart card. Our experimental results
confirm the feasibility of such a security system
being implemented in a smart card.

Keywords: Smart card, Java Card, static ver-
ification, type inference, secure embedded sys-
tem.

�

This work was supported by a grant from Gemplus Re-
search Labs, the CPER Nord-Pas-de-Calais (France) TACT
LOMC C21, under the European IST Project MATISSE num-
ber IST-1999-11435, and our prototype was performed within
the Gemplus Research Labs and considred by our partner as
a proof of concept for further industrial development.

1 Introduction

This paper presents the motivations and tech-
niques used to develop a stand-alone verifier in-
side a smart card. The verification process is one
of the most important parts of the security in a
Java Virtual Machine. In a JVM, this process
is performed while a new application is loaded
into the virtual machine. Due to smart card con-
straints, a verifier as it was defined by Sun is said
to be impossible to embed in a Java Card Virtual
Machine (JCVM).

“Bytecode verification as it is done for Web
Applet is a complex and expensive process, re-
quiring large amount of working memory, and
therefore believed to be impossible to implement
on a smart card” [12].

“Clearly, bytecode verification is not realiz-
able on a small system in its current form. It
is commonly assumed that downloading bytecode
to a JAVACARD requires that verification is per-
formed off-card” [18].

Nevertheless, we will present here some solu-
tions to obtain a stand-alone verifier in a JCVM.

We first outline the standard verification pro-
cess, in order to introduce the reader to standard
verification principles. Next we present degraded
solutions of this process that have been designed
to cope with supposed smart card constraints. To
overcome these difficulties, we show that these
constraints are not actually a problem by detail-
ing the properties of smart card hardware prop-
erties used for our stand-alone verifier. We then
present our approach that consists of hadrware-

specific adaptations to efficiently match the stan-
dard algorithm with these detailed hardware char-
acteristics. We do not change the standard veri-
fication algorithm, but instead propose some in-
novative techniques that allow an improved exe-
cution on top of the smart card limited hardware.
In the last part we give some experimental results
extracted from our prototype. Our prototype sub-
sequently became a proof of concept of an em-
bedded smart card verifier for our industrial part-
ner.

2 Verification principles

First we present the standard verification pro-
cess performed by the Java Virtual Machine in
a conventional implementation. This verification
process consists of performing an abstract inter-
pretation of the byte code that composes each
method of an application. The aim is to stati-
cally check that the control flow and data flow do
not generate errors (underflow or overflow of the
stack, variable used with invalid type, ...). This
algorithm is called type inference and its con-
cepts were first introduced in [10]. The paper [11]
gives an overview of the whole Java verification
process. Java Card Virtual Machine (JCVM [3])
is a stack-based machine that uses particular reg-
isters named local variables. The Java specifica-
tion [14] imposes some constraints on the byte
code generated by compilers so that it can be
verified. Because of these constraints, the type
for each variable used by the program can be in-
ferred. We use stack map to mean a structure giv-
ing the type of each variable, for each particular
point of our program. Java programs are not lin-
ear; one can jump to a particular instruction from
various sources. Thus we can have different hy-
potheses for the type of the variables; we need to
merge all these hypothesis into one, and we need
to find the corresponding type that matches all,
i.e. a compatible one. This operation is called
unification and is notated

�
. For example, for

classes, it corresponds to the inheritance relation.
We give, in the next paragraph, the standard ver-
sion of the verification algorithm [14]. We also
use this later on for the description of our imple-
mentation techniques for smart cards.

The standard algorithm uses the hypothesis
that each instruction has an associated stack map,

a TOS (Top of stack), and one changed/unhanged
bit.

Initialization:

� mark first instruction as changed;

� fill its typing information by using the sig-
nature of the method (variables with no type
are given the type � that means unusable
variable), initialize the top of stack (TOS) at
0;

� for all other instructions:

– mark them as unchanged,

– initialise their TOS at -1 (this means
that this instruction has not been
checked earlier).

Main Loop:

� while there remain instructions marked as
changed;

� choose an instruction � marked as changed;

� mark � as unchanged;

� simulate the execution of � over correspond-
ing typing information (if there is an error,
method is rejected);

� for each successor � of � :

– we use � to mean the stack map for �
and � to mean the stack map for � ,

– if � ’s TOS is equal to -1, then copy the
stack map from � into � (we also ini-
tialize the TOS of � with the one of �),

– otherwise, perform unification be-
tween each cells of the stack map for
� and the ones for � . Result is de-
noted by � � � (if the TOS does not
correspond, verification stops with an
error),

– if � � ���	 � , mark � as changed;
� � � is now the new stack map for � .

3 Java Cards and verifiers

The standard verification algorithm is usually
presented as being impossible to embed in a
smart card, due to hardware limitations. Instead,
the verification process is simplified and adapted
in order to fit on small devices. In the next
parts we present existing solutions that guarantee
a good security level in a standard Java Card.

In a regular Java architecture, the produced ap-
plication is verified while being loaded in the vir-
tual machine. The byte-code verifier is define by
[14] JVM specification as the basic component
of safety and security in a standard JVM. Cur-
rently, SUN Java Card is built upon a split VM
scheme: one part is called the “off-card VM”;
the other one is called the “on-card VM”. As the
on-card VM cannot load a CLASS file format be-
cause of its complexity, a converter is used to pro-
duce CAP files (Converted APplet) that is more
convenient to smart card constraints (no runtime
linking, easy to link on load, ready to use class
descriptor [20], ready to run byte code). While
converting the class file, verification is performed
in order to ensure that the produced CAP file is
coherent with the CAP file structure definition.
Smart cards are considered secure devices, and
because of the lack of on-card verification it is
currently impossible to download a new applica-
tion to a card after it has been issued to an end-
user. Some solutions have been proposed in order
to achieve a good security level of the Java Card
without using a verifier with regard to smart card
constraints.

� Digital signature. The application designer
sends the CAP file to a trusted third party
that digitally signs it; hence, the card can
now easily check if the application has been
modified. This model guarantees a high
level of security; the only requirement is to
dispose of cryptographic routines on board
for checking the validity of the signature. As
smart cards already have a cryptographic co-
processor, the verification cost is low. How-
ever, there is one major problem: it is a cen-
tralised deployment scheme. This central-
ization decreases the flexibility of such an
approach: all cards need to be declared to
the trusted third party. Moreover it is not
compatible with a smart card that operates
off line, nor to a massive smart card distri-

bution (wolrdwide, there are roughly 1000
times more smart cards than PCs with web
browsers).

� Defensive VM. As SUN has defined the
conditions and rules required for execut-
ing each byte code of the Java Card lan-
guage, a defensive virtual machine [4] can
be used. Before executing a byte code, the
virtual machine can perform all the required
tests. Thus, a very high level of security
is achieved, but the efficiency of the vir-
tual machine is decreased, and the amount
of working memory needed for running the
applet is also increased significantly.

� Proof-Carrying Code. PCC techniques
were introduced by G. Necula and P. Lee
[17]. E. and K. Rose have adapted it to Java
[18]. G. Necula and P. Lee have proposed
an architecture to use PCC verification on a
Java platform [5, 16]. A PCC verifier was
developped by G. Grimaud [7] for a special-
ized language with regard to smart card con-
straints. An off-card part produces a proof
(or certificate) that is joined to the applica-
tion. The on-card verifier has just to perform
a linear verification phase in order to check
if the code is malicious. This verification is
simple enough to be performed by the card.
This is the solution that is recommended by
SUN when implementing a KVM [19]. The
size of the downloaded application is in-
creased because of its proof (from 10% to
30%). The major problem is that the ap-
plication deployment is now more complex
because of the need for the proof generator.
Valid applications can also be rejected only
because their proof is not provided. Such a
Java Card verifier as been fully embedded in
a smart card by Gemplus Research Lab. It
was developed using formal method and is
described in [2].

� Code transformation. X. Leroy [21] has
proposed another solution that is described
in [12, 13]. It consists of some off-card
code transformations (also named “normal-
ization”), in such a way that each variable
manipulated by the virtual machine has one
and only one type during all the different ex-
ecution paths of the program. The embed-
ded part just needs to ensure that the code re-
spects this property. Valid applications can
also be rejected only because they were not

transformed using Trusted Logic[21] nor-
malizer. The major problem is that per-
forming such code transformations would
increase the number of variables and also
decrease the re-usability of them. Thus the
card would need more memory resources for
executing the programs, and it might refuse
fully optimized code.

� An infeasible solution (?): stand-alone
verification. Each of the solutions de-
scribed earlier has some disadvantages that
a stand-alone verifier would not have. The
major problem is the need of some exter-
nal pre processing of applets that can make
a non stand-alone verifier refuse some valid
applets. But the main stand-alone verifica-
tion problem is its time and memory com-
plexity.

Table 1 summarizes advantages and drawbacks
of each solution.

In the next part we give some information
about the hardware of smart cards, in order to ex-
plain the difficulties of having a stand-alone veri-
fier on board.

4 Smart card constraints

Smart card has some hardware limitations due
to ISO [9] conbstraints that are mainly defined to
enforce smart card tamper resistance. Now we
are going to focus on each of the hardware fea-
tures of the smart card, starting with the micro-
processor, then the memory and ending with the
I/O.

� Microprocessors. A wide class of micro-
processors are used from old 8-bit CISC
micro chip (4.44 Mhz) to powerful 32-bit
RISC (100 to 200 Mhz). The type of CPU
used for smart card is highly influenced by
the ISO[9] constraints linked to the card.
For example, as the card is a portable de-
vice that is stored in a wallet, it must meet
standards related to torsion and bending ca-
pacity. Table 2 gives an overview of some
processors commonly used in smart cards.
Historically, smart card manufacturers used

8-bit processors because operating systems
and applications code are more compact.
But smart cards now need to be more ef-
ficient and new embedded applications re-
quire more and more computing power. So
card designers now choose 32-bit RISC pro-
cessors (or 8/16 bits CISC). For our exper-
imental prototype presented in the last part
of this article, we are using an AVR from
Atmel [1]. It is an 8/16 bit processor with
32 (8 bits) registers. Some of them can be
grouped to perform computation on 16 bits
values. Its is a typical platform in the smart
card community for operating system design
[15].

Computing performance of a smart card is
not a significant problem for a stand-along
verifier. What is really the limiting fac-
tor for smart card programs is the very
small amount of memory, and some annoy-
ing hardware-specific problems.

� Memories. Different types of memory
exist on the card. The first one is the
RAM (Random Access Memory); there
is also some ROM (Read Only Memory);
and finally EEPROM (Electric Erasable
Programmable Read Only Memory) or
FLASHRAM that are writable persistent
memories. Because smart card silicon is su-
posed to be limited to 20 ���

�
, the physical

space needed for storing 1 bit is an important
factor. Each kind of memories used is of dif-
ferent size concerning this point; the small-
est is the ROM. Table 3 gives an overview
of the amount of memory present on board,
and also present the “memory cell” which is
the size for 1 byte of memory on the micro
module.

Persistent memory has a major drawback,
linked to its electronic properties. Its writ-
ing delay is up to 10000 times slower than
RAM one. Furthermore, writing in persis-
tent memory may damage the memory cells
(the stress problem occurs when using the
erase operation: making a bit going from 0
to 1). These constraints have led others de-
veloping light-weight byte-code verifiers to
consider persistent memory only as a mem-
ory to store data and not has a working mem-
ory.

EEPROM provides 4 primitive operations:

– read: reading a value,

Solution Pro Cons

Crypto dedicated hardware centralized solution
Defensive VM easy to implement important run time penality
PCC

no run time penality
code overload, non standard
deployment schemeCode transformation

Stand alone standard deployment scheme impossible ?

Table 1: Summarize of each solution

Model Architecture Data BUS size Registers Frequency
68H05 CISC 8 bits 2 (8 bits) 4.77 Mhz
AVR RISC/CISC 8 bits 32 (8/16 bits) 4.77 Mhz
ARM7TI RISC 32 bits 16 (32 bits) 4.77 to 28.16 Mhz

Table 2: Characteristics of common smart card microprocessors.

– erase: changing some bits from 0 to 1,

– write: changing some bits from 1 to 0,

– update: an erase followed by a write.

Erase is a stressing operation, it can provoke
a lapse of the memory cell. It is also 38%
slower than a write. Table 4 illustrates this
characteristic. This characteristic is also true
for FLASHRAM.

Operation time for writing a 64 bytes page
erase � �������

ms
write � �

ms

Table 4: Differences between the two writing op-
erations in a typical EEPROM usage.

Using this memory well is the key techno-
logical challenge for smart card developers.

� I/O. We have one half duplex serial line
(from 9600 to 15700 baud in conventional
smart cards). This rate means that 1 KB
of data is transferred in less than 1 sec-
ond. Compared to the number of CPU cy-
cles available in 1 second, the I/O capacity
reduces the viability of technical solutions
that involve an additional data transmission.

5 A fully embedded Java Card byte
code verifier?

The byte code verifier is said to be impossible
to be implemented inside a smart card; the impos-
sibility is due to its high algorithmic complexity
and also to its large memory consumption. In this
part, we focus on all these constraints, and give
solutions for allowing its usage on board, over-
coming the hardware limits described previously.

5.1 Time and space complexity

The elementary operation we are going to use
is the interpretation for a byte code working on a
simple variable. Complexity is limited by � � � �� �
	 . � is the depth of the type lattice. � is the
number of instructions of the verified program.

�
is the maximum number of jump (branching in-
structions), and 	 is the number of variable used
at most. In the worst case, all instructions are
jumps (� 	 �

). By analyzing all the different
byte codes of Java Card we can find the one that
manipulates the highest number of variables. Let� represent this number, thus 	 	 � � � in the
worst case. We can also state that we need one
instruction for creating a new type in our lattice,
thus � 	 � . Finally time complexity is �
� ����� .
Hence, type inference is a polynomial form of
the number of analyzed instructions. Let us now
evaluate the memory that is needed for perform-
ing a typing inference. We need the type infor-
mation for each label (destination of a branch) of

Type memory point capacity write time page size
ROM reference 32-128 KB read only 1 byte
FlashRAM x 2-3 16-64 KB 2.5ms 64 bytes
EEPROM x 4 4-64 KB 4ms 2-64 bytes
RAM x 20 128-4096 B ��� � ����� 1 byte

Table 3: Card memory characteristics

our program. The size of each of them is the num-
ber of local variables plus the maximal stack size.
We also need one more frame for the current one.
Thus the memory we need is � � � �	��
 � � � � �
� �
where

�
is the number of branching instructions

and/or exception handlers, � the size needed to
encode one type, � the stack size, and
 the num-
ber of local variables. Practically, we can easily
require more than 3 KB of RAM. Thus we need
to store the proof in persistent memory. Doing
this we need to be aware of the stressing problem
and also of the slowness of writing of persistent
memory.

5.2 Our solutions

We propose to use persistent memory (i.e.
EEPROM or FLASHRAM) for storing stack
maps of the current method. Nevertheless, the
amount of memory needed is smaller than the one
for a PCC verifier [2] that needs to store the proof
for every methods in persistent memory. Our
strategy consists of using RAM to hold the entire
stack map whenever possible, and when not pos-
sible to use it as a cache for persistent memory.
The first challenge is the bad property of persis-
tent memory related to cells stressing. We pro-
pose the usage of a non stressing type encoding.
The second challenge is to find the best cache pol-
icy according to our problem.

5.3 A non stressing type encoding

In order to solve the problem of persistent
memory stress, we propose to find a good en-
coding of the type lattice used during type infer-
ence. The goal is to use a non-stressing write
when storing a type in persistent memory. The
paper [8] presents examples of type lattice encod-
ing that are used in compilation or in databases.
It proposes techniques to perform a bijection be-

tween lattice operations and Boolean operations.
Described encodings allow finding the Least Up-
per Bound (LUB) of two elements using a com-
position of logical functions. Type unification
consists of finding the LUB of two types. Typ-
ing information needs, sometimes, to be store in
persistent memory due to its size, and persistent
memory has a stressing problem. We observe that
when unifying two types, the result type is higher
in the type lattice, so we would like to be able
to move upward in the lattice while only chang-
ing bits from 1 to 0. Such an encoding causes
no stress on persistent memory, and unification is
reduced to a logical AND that has the property
of only clearing bits (1 to 0 transitions). As non
stressing writes takes less time than a stressing
one, unification goes faster.

We could find a more compact encoding (i.e.
using less memory) by using a more complex
Boolean function, but this would take less into
account persistent memory properties.

In our prototype, dynamic downloaded classes
do not take benefits of the encoding, as it would
require computing the whole type encoding.
However our experiments show that complex uni-
fication (i.e. one between two classes, producing
a class that is not java.lang.Object) hap-
pens very rarely. In fact, smart card software
engineering implies using specific rules that re-
duce the number of different class used at the
same time. Accordingly, we do not try to opti-
mize these cases, we just accept the minor per-
formance degradation. This choice has no effect
on security. Experimentally, we found that less
than 1% of unification are performed between
two classes. All these techniques reduce

�
com-

putation time and ensure a non stressing usage of
persistent memory but they do not deal with the
latency of write operation.

Top

00000 000000

Int

00001 000000

Int0

00010 000000

short

00100 000000

Ref Object

01000 000000

Uref

10000 000000

Ref Array Object

01000 000001

Ref Array Derived

01000 000001

Intarray

01000 100000

Ref Derived

01000 000010

Boolarray

01000 000100

Bytearray

01000 001000

Shortarray

01000 010000

Null

01000 111111

Figure 1: Our non stressing type encoding

5.4 Efficient fixed points using software
cache policy

As described earlier, type inference is an it-
erative process that stops when a fixed point is
reached. By using our type encoding we decrease
the persistent memory stress, but we can also
obtain better results by trying to maximize the
RAM usage. The aim is to maximize the size of
the data we can store and work on in a RAM. For
example, some specific methods extracted from
our application test pool need more than 4 KB of
memory for the verification process. As RAM
memory is faster than persistent memory, but is
less present on a smart card, we use a software
cache for working on typing information. Such
a technique can speed up the verification of huge
(13KB) applets as it highly decreases the number
of write in persistent memory.

In order to perform type inference, we need to
find the target of branching instructions. Having
the branching instructions and also the branched
ones, we can build (at low cost) the control graph
flow of the verified program. Then, when veri-
fying a particular code section we know which
are the ones we can jump to by using the con-
trol graph flow. If we look at the example given
in Figure 2, when verifying the last code sec-

Start of program

Label1

Label2

Label3

End of program

Figure 2: An example of a cache policy using
control graph flow

tion (the one beginning with Label 3), we can see
that none of the other code section are accessi-
ble. The control graph flow is used for piloting
the eviction of data in the cache. Moreover, we
can sometimes extract from the graph the prop-
erty that a label is not reachable from any fur-
ther point of the program. In this case, eviction
performs no write in persistent memory as the
type information will not be used anymore. Prat-
ically, this happens frequently in conventional
Java Card code. The eviction significantly in-
crease the speed of stand-alone byte code veri-
fication.

We note that the techniques we propose are
compatible with future types of persistent mem-
ory like FERAM (Ferro-Electric Random Access
Memory) or MRAM (Magnetic Random Access
Memory), and will take benefits of using these
memories. The techniques we have presented
here have been delivered to the industry and are
protected under the patent [6].

6 Experiments

We have implemented a prototype that in-
cludes each of the techniques we have mentioned.
This prototype shows that the stand-alone byte
code verifier is feasible in a smart card. More-
over, we have used common benchmarks for
evaluating its performance against a system us-
ing a PCC verifier.

6.1 Our prototype

We have implemented the concepts and tech-
niques described in the earlier part of this article
on an AVR 3232SC smart card microprocessor
from ATMEL. This chip includes 32 KB of per-
sistent memory, 32 KB of ROM, and a maximum
of 768 bytes of RAM. The amount of available
RAM highly depends on the state of the veri-
fier and also of the virtual machine. Practically,
in most of cases, using less than 512 bytes of
RAM does not alter stand-alone byte code verifi-
cation’s efficiency. The type inference algorithm
has an important advantage: we can compute the
amount of memory we will need to verify a par-

ticular method of an application. We propose dif-
ferent algorithms and heuristics: we have imple-
mented different cache policies that suit a partic-
ular amount of RAM (an “all in RAM policy”,
a LRU policy, a more evolved LRU, and finally
the one described earlier that uses control graph
flow of the verified program). We also use some
heuristics for selecting the current label to verify.
These heuristics have different properties in term
of performance. We choose a heuristic dynami-
cally in order to fit the amount of working mem-
ory. We give in Table 5 the size of the important
part of our verifier.

Module name code size in bytes
Byte code transition rules 13552
Unification 2242
Cache policies 3700

Table 5: Memory footprint in ROM

We have a total of 30 KB of code for our stand-
alone type verifier. The remaining part which is
not described in table 5 consists of routines that
deal with the cap file format, I/O, and RAM and
EEPROM allocators. We did not tune this imple-
mentation for our proof of concept, and we would
expect a production version to be both smaller
and faster. For example, a standard JCVM rep-
resents 20KB of code; its API represents 60 to
100KB; and a huge user application is about
13KB (these measures are extracted from prod-
ucts from our industrial partner).

6.2 Practical metrics

We give in Table 6 the duration of the loading
phase in milliseconds, and also of verifications,
for three applets which size are from 3 KB to 4.5
KB. The PCC verifier is the one described in [2].

The loading phase for the PCC is higher than
the one for the stand-alone (between 20% to
30%). It is due to the fact that it needs to load
and write the entire proof in persistent memory.
The overhead for the proof in a PCC verifier is
said to be between 20 to 30 % in related work.
The time taken to write the proof in persistent
memory before verification by the PCC could be
avoid by performing the verification on the fly.
Thus the only difference between a PCC and a
stand-alone verifier would be the extra loading

Applet PCC Stand-alone Stand-alone Vs PCC

L
oa

d grl-com.utils.wallet 3335 2744 0.82
grl-com.games.tictactoe 9594 8933 0.93
com.gemplus.pacap.utils 9414 7331 0.78

V
er

if grl-com.utils.wallet 411 318 0.77
grl-com.games.tictactoe 1232 1102 0.89
com.gemplus.pacap.utils 1312 1463 1.12

To
ta

l grl-com.utils.wallet 3746 3062 0.82
grl-com.games.tictactoe 10826 10035 0.92
com.gemplus.pacap.utils 10726 8794 0.82

Table 6: Time for loading and verifying (in ms)

time of the proof. Of course, the techniques de-
scribed earlier could be used on the PCC verifier
to reduce the time needed to use the proof (on the
fly verification, non stressing encoding to speed
up operations on types, ...). We need also to re-
mind that the off-card generation of the proof for
a PCC verifier as a cost in terms of deployment
tools and also in terms of time. Thus PCC as a
model is more expensive than a stand-alone veri-
fier.

If we look at the global time taken for verifi-
cation, we can point out that stand-alone verifi-
cation is not slower than PCC one which has a
linear complexity. In some particular case, stand-
alone verification can be faster than PCC one.
Smart card application are often simple in terms
of generated byte code. Thus stand-alone verifi-
cation is nearly linear. With this table we show
that the extra time needed for stand-alone verifi-
cation (with our technical approach) is often less
than those needed for downloading and storing
the PCC proof.

Some experimental results of a verifier using
code transformation were presented in [13] but
with only few details. Nevertheless, we are in
the same order of magnitude for verification ex-
ecution time (1 sec for 1 kb of code). We did
not have access to smart card using others verifi-
cations strategies so we could not compare them
with our prototype. But cryptographic signature
supposes an extra time to check the basic cap file
signature after download (for example, a smart
card usually performs a RSA in something like
10ms per 64 bytes). Concerning the solution us-
ing digital signature, it is the worst solution in
term of infrastructure as it assumes a trusted third
party to sign applications.

Conclusion

We have shown that careful attention to the
smart card hardware allows us to integrate a
stand-alone verifier on a smart card. Stand-alone
verification is no longer a mismatch to the smart
card constraints. The usage of hardware-specific
techniques allows the stand-alone verifier to be as
efficient as a PCC one.

References

[1] Atmel Corporation. Atmel AVR. http:
//www.atmel.com.

[2] L. Casset, L. Burdy, and A. Requet. Formal
development of an embedded verifier for
java card byte code. In DSN-2002. The In-
ternational Conference on Dependable Sys-
tems and Networks, 2002.

[3] Z. Chen. Java Card Technology for Smart
Cards. Addison Wesley, 2000.

[4] R. M. Cohen. Guide to the djvm model ver-
sion 0.5 alpha ** draft **, 1997.

[5] C. Colby, G. C. Necula, and P. Lee. A
Proof-Carrying Code Architecture for Java.
In Computer Aided Verification, 2000.

[6] D. Deville, G. Grimaud, and A. Requet. Ef-
ficient representation of code verifier struc-
tures, 2001. International pending patent.

[7] G. Grimaud, J. L. Lanet, and J. J. Vande-
walle. Façade: A typed intermediate lan-
guage dedicated to smart card. In Software

Engineering - ESEC/FSE’99, pages 476–
493, 1999.

[8] H. Ait-Kaci and R. Boyer and P. Lincoln
and R. Nasr. Efficient Implementation
of Lattice Operations. ACM Transactions
on Programming Languages and Systems,
TOPLAS, 11(1):115–146, 1989.

[9] International Standard Organisation: ISO.
Integrated circuit(s) cards with contacts,
parts 1 to 9, 1987-1998.

[10] Gary A. Kildall. A unified approach to
global program optimization. In ACM Sym-
posium on Principles of Programming Lan-
guages, pages 194–206, 1973.

[11] X. Leroy. Java bytecode verification : an
overview. In Computer Aided Verification,
2001.

[12] X. Leroy. On-card bytecode verification for
java card. In Esmart, 2001.

[13] X. Leroy. Bytecode verification for Java
smart card. Software Practice & Experi-
ence, 32:319–340, 2002.

[14] T. Lindholm and F. Yellin. The Java Vir-
tual Machine Specification. Addison Wes-
ley, 1996.

[15] Matthias Bruestle. SOSSE - Simple
Operating System for Smartcard Educa-
tion, 2002. http://www.franken.
de/users/mbsks/sosse/html/.

[16] G. C. Necula. A scalable architecture for
proof-carrying-code. In Fifth International
Symposium of Functionnal and Logic Pro-
gramming, 2001.

[17] G. C. Necula and P. Lee. Proof-carrying
code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL
’97), pages 106–119, Paris, January 1997.

[18] E. Rose and K. H. Rose. Lightweight byte-
code verification. In Workshop of the For-
mal Underpinnings of the Java Paradigm,
OOPSLA’98, 1998.

[19] Sun Microsystem. Connected Lim-
ited Device Configuration and K Virtual
Machine. http://java.sun.com/
products/cldc/.

[20] Sun Microsystem. The javacardTM 2.1 spec-
ification. http://java.sun.com/
products/javacard/.

[21] Trusted Logic. Formal meth-
ods, smart card, security. http:
//www.trustedlogic.com/.

