USENIX Association

Proceedings of
USITS’03:
4th USENIX Symposium on
Internet Technologies and Systems

Sesattle, WA, USA
March 26-28, 2003

USENIX
SAGE

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Anypoint: Extensible Transport Switching on the Edge

Kenneth G. Yocum, Darrell C. Anderson; Jeffrey S. Chase, and Amin M. Vahdat
Department of Computer Science®
Duke University

{grant, anderson, chase, vahdat}@cs.duke.edu

Abstract

Anypoint is a new model for one-to-many communication with
ensemble sites—aggregations of end nodes that appear to the
external Internet as a unified site. Policies for routing Any-
point traffic are defined by application-layer plugins residing
in extensible routers at the ensemble edge. Anypoint’s switch-
ing functions operate at the transport layer at the granularity
of transport frames. Communication over an Anypoint connec-
tion preserves end-to-end transport rate control, partial ordering,
and reliable delivery. Experimental results from a host-based
Anypoint prototype and an NFS storage router application show
that Anypoint is a powerful technique for virtualizing and ex-
tending cluster services, and is amenable to implementation in
high-speed switches. The Anypoint prototype improves storage
router throughput by 29% relative to a TCP proxy.

1 Introduction

This paper presents the design and implementation of
Anypoint, a new architecture for transparent communi-
cation with ensemble sites such as cluster-based network
services. Intermediary routers at the ensemble border act
to mediate communication with the ensemble, presenting
it as a single virtual site to the outside network. Anypoint
is implemented as a new set of functions for extensible
switches.

Anypoint provides transport switching; it is the first gen-
eral indirection approach that operates at the granular-
ity of transport frames. Transport switching enables re-
liable, ordered, rate-controlled communication to the en-
semble through a redirecting switch. Unlike a TCP proxy,
an Anypoint switch does not terminate transport connec-
tions. Instead Anypoint switching functions transform
each frame to maintain transport-layer guarantees be-
tween end nodes. Anypoint is complementary to IP-layer
Internet indirection architectures such as Anycast [33] and
i3 [41].

*D. Anderson is currently at Google.

This work is supported in part by the U.S. National Science Foun-
dation (CCR-00-82912, ETIA-9972879, and ANI-126231), Network Ap-
pliance, and Cisco Systems, and by an equipment grant from IBM.

A key goal of Anypoint is to generalize “L4-L7” server
switches that support load balancing and content-aware
request routing for Web server clusters. Previous work
(e.g., [31, 8, 9, 18]) demonstrated the importance of
content-aware request routing for Web services, and the
challenges of supporting it, particularly with persistent
connections [28]. Web switch architectures are limited to
handle each request in a separate transport connection, or
to process requests on each persistent connection serially;
the former increases overheads and provides no order-
ing guarantees, and the latter limits concurrency and im-
poses head-of-line blocking for delayed packets or large
requests. While these restrictions still exist for HTTP,
redirection architectures that depend on them cannot ex-
tend to other services including network storage proto-
cols, which have also been shown to benefit from content-
aware request routing [5].

To overcome this challenge, we designed Anypoint for
advanced IP transports with partially ordered application-
level framing (ALF), as proposed by Clark and Ten-
nenhouse over a decade ago [14]. These features are
present in emerging IP transports such as SCTP [40] and
DCCP [27]. We show how redirecting switches can lever-
age framing to enable an approach that is both more
powerful and more elegant than Web switches and other
solutions constrained by TCP. Our premise is that IP-
based services—including network storage, general RPC-
based services, and next-generation Web services using
SOAP/HTTP—will migrate from TCP to these new trans-
ports. Our goal is to define a redirecting switch that
accommodates pluggable indirection policies for a wide
range of service protocols, not limited to HTTP over TCP.
This generality is in the spirit of Active Networks [44] and
subsequent proposals for extensible routers [17, 29, 38].

The contributions of this paper are to: (1) show that trans-
port frame switching at the network edge is a power-
ful technique to virtualize and extend Internet services,
(2) define an extensible framework and mechanisms to
enable this technique, (3) present experimental results
demonstrating the use of Anypoint for an NFS storage
router, (4) compare the behavior of the Anypoint pro-

unified, persistent, pipelined
communication channel

logical endpoint

service ensemble

Anypoint Switch

decentralized endpoint

Figure 1: A connection between a peer (client) and an Anypoint server ensemble. The ensemble appears to the peer as a single
virtual server; an Anypoint switch at the ensemble border transforms the packets to route the connection’s traffic according to policies
defined by switch plugins (Application Layer Routing Modules or ALRMs). In addition to simple load balancing, an ALRM can
implement content-aware routing policies to improve service performance and robustness. In contrast to current Web switches,

Anypoint enables concurrent handling of pipelined requests while preserving ordering constraints at the transport layer; thus it is

useful for a general class of service protocols including IP storage.

totype to an alternative structure using application-level
proxies [19, 39], and (5) explore the implications for In-
ternet service structure, extensible switches, and IP trans-
port protocols.

2 Motivation and Overview

Figure 1 illustrates the Anypoint abstraction. An Any-
point connection allows communication between two log-
ical endpoints: an ensemble of end nodes and another peer
IP site. In a typical use, the ensemble is a server cluster
and the peer is a client interacting with it through some re-
quest/response service protocol. Many connections may
be active to the same ensemble. The current ensemble
membership for a connection is its active set. Anypoint
switches direct the traffic flow between each peer and its
active set under the control of the ALRM plugins. This
serves four related purposes:

e Dynamic request redirection. Anypoint switches
direct inbound requests to selected servers accord-
ing to service-specific policies in the ALRM. The
ALRM may consider information above the trans-
port layer, such as client identity, client location, or
the nature of the request, as well as server status and
traffic conditions. Content-aware policies can opti-
mize server cache effectiveness as well as balance
load [31, 18, 5], as in the NFS storage router exam-
ple in Section 3.2.

e Server resource management. Switch-based redi-
rection enables flexible resource provisioning in In-
ternet server clusters. A management interface in

the switch allows the service to reassign server re-
sources with dynamic, coordinated changes to its ac-
tive sets [7, 13], without relying on the client to select
a new server or refresh a DNS cache.

e Response merging. Anypoint supports direct deliv-
ery of content to each peer from multiple ensemble
nodes [22, 5]. The peer receives the response traffic
on a single connection and assembles it using order-
ing information inserted by lightweight translation
functions at the switch. The reassembly buffer re-
sides in the peer, not in the switch.

e Service composition. ALRMs can act as “wrap-
pers” to compose or extend services. For example,
an ALRM might support mirroring for an ordered
multicast of request traffic across replicated servers.
Since the ALRM understands the service protocol, it
might distribute read traffic evenly and mirror only
those requests that modify service state.

This paper focuses on the first three goals, i.e., the role of
Anypoint as a basis for virtualized, manageable, scalable
Internet services.

Redirecting switches are controversial because the Inter-
net architecture implicitly assumes that each IP datagram
is addressed and delivered to a uniquely defined end host,
running a single instance of its operating system (cf. RFC
1122 [12]). Anypoint provides a rich set of capabilities
enabling an ensemble operating system and its applica-
tions to manage the ensemble as a coordinated virtual
“host”—effectively a multicomputer with internal poli-
cies for handling network traffic addressed to it. Cru-

cially, the indirection hides the ensemble’s internal struc-
ture from the connection peer: the peer addresses inbound
traffic to a virtual IP address (VIP) for the ensemble and
receives outbound traffic with that VIP as the source ad-
dress. This use of network address translation (NAT)—
which may be damaging in other contexts—is done with
the guidance and consent of the ensemble applications,
and is transparent to the peer. The switch does not obscure
the identity of the peer from the ensemble members.

2.1 Anypoint and the Transport

Anypoint extends IP transports to decentralized (ensem-
ble) endpoints in a way that supports the key transport
properties of rate-controlled, ordered, reliable delivery.
A core principle of Anypoint is transport equivalence.
To end nodes, an Anypoint connection is equivalent to
a point-to-point connection. The burden of maintaining
these properties—reorder buffering and reassembly, du-
plicate suppression, acknowledgment, retransmission—
are handled in the usual end-to-end fashion by the end
nodes. This minimizes buffering and processing overhead
in the switch.

As previously stated, Anypoint assumes use of trans-
ports with framing [14]. Our purpose is not to propose
a new transport, but rather to construct an indirection
architecture that generalizes to a class of service proto-
cols and framed transports. A frame is a variable-sized,
self-contained sequence of bytes sent as a unit over a
transport connection; frames are semantically meaning-
ful and independently processed at the application layer.
The service protocol uses the transport API to map its re-
quests and responses into transport frames. Depending on
the transport, a frame could span multiple transport seg-
ments (packets), or a single segment might contain multi-
ple frames. Frame boundaries are recognizable from the
transport headers, so a receiver may process frames inde-
pendently as segments arrive.

Framing and partial ordering enable network-level pro-
cessing of transport flows, which is useful for network
adapters with protocol offload or direct-access features
(e.g., RDMA), as well as for virtualization switches and
routers. Frames are the granularity of transformation,
redirection, and merging in Anypoint. While a service
protocol may send frames over TCP, TCP imposes a total
order even when the service does not require it; this pre-
cludes redirecting frames concurrently to different nodes,
which could violate the delivery order. To permit effective
fine-grained (e.g., content-aware) redirection, the service
protocol and transport must not constrain frame order un-
necessarily. However, Anypoint allows the service and
transport to specify partial frame orderings if necessary
for correctness. SCTP is one example of a transport that
supports a partial order on frames.

Because the switch performs transport-layer processing,
we envision the Anypoint switches residing in a data
center or enterprise, with ensemble members colocated
within a single security and routing domain. For exam-
ple, transport switches must access packet state beyond
the IP headers, which may be encrypted (e.g., with IPsec)
across the external network. While packets from a given
Anypoint connection must pass through a single interme-
diary, they use the service’s VIP address to maintain this
invariant even in the presence of asymmetric routing.

3 Anypoint Services

The Anypoint architecture factors service implementa-
tions into (1) a simple, lightweight ALRM installed as a
switch extension, and (2) a server component running on
the ensemble nodes, which handles complex issues such
as server coordination, group membership, and recovery.

3.1 ALRMs

Anypoint ALRMs are plug-in software modules that man-
age Anypoint traffic through the switch. Each ALRM im-
plements frame redirection and transformation logic for a
given service. ALRMs are installed through a privileged
management interface.

An ALRM is an event-driven, asynchronous, determinis-
tic, non-blocking module supporting the interface in Ta-
ble 1. ALRMs affect only traffic for specific designated
ports. At most one ALRM is bound to each connec-
tion. ALRMSs may access only the frame data and private
structures of bounded size. We intend that the process-
ing required per frame is statically bounded, and that the
ALRM’s memory references are statically verifiable.

Inside the switch, common low-level functions examine
transport headers to classify packets into flows (connec-
tions), pass each frame to the redirect() function of the
ALRM bound to its flow, and merge the transformed
frames into the destination transport stream for the se-
lected target node. These functions manipulate transport
headers to extract frames from incoming transport seg-
ments and pack them into outgoing segments. The ALRM
itself may perform deep processing beyond the transport
headers.

ALRMs must be deterministic so they do not apply incon-
sistent transforms or violate exactly-once delivery for re-
transmitted frames. The RTX handle passed to redirect()
indexes a unique state field for each distinct frame, en-
abling the ALRM to cache arbitrary state for each trans-
formed frame. When the receiver is known to have pro-
cessed an ack for the frame, the switch calls retire(*rtx)
so the ALRM may recycle this state.

Upcalls from Anypoint switch transport functions.

redirect(frame,id,*len,src,*rtx)
member to receive it.

Redirect a frame on connection zd. If it is inbound to the ensemble, select an ensemble

retire(*rtx)

Retire rtx state associated with an inactive frame.

{add,rm}_conn(id)

Add a new connection with ID, or delete a connection with ID.

alrm_{init,uninit }(void)

Start up or shutdown this ALRM.

Table 1: Registered upcall interface for an Anypoint ALRM.

3.2 Example: NFS Storage Router

To illustrate the structure of Anypoint services, we outline
use of Anypoint for an L7 storage router for the NFSv3
file system protocol. We refer to this system as “Slice-
lite” or Slite because it is a simplified form of the Slice
storage architecture [5, 4]. Slite presents an ensemble
of standard NFS servers as a single, unified, virtual NFS
server. As in Slice, the directory tree is partitioned into
subtree buckets and spread across the servers as it grows.
This partitioning uses a mkdir switching policy, with a pa-
rameter for subtree granularity. A soft-state map tracks
the assignment of subtree buckets to nodes.

The Slite ALRM uses content-aware routing to direct NFS
requests to the assigned servers. Slice has previously
shown that NFS is amenable to virtualization using this
technique because most NFS operations apply to a single
content item—a directory, name entry, or file—evident
from the request type and arguments. The ALRM extracts
a key identifying the subtree bucket from each request’s
NES file handle at a known offset, and uses it to index
the map to identify the assigned server. This indirection
allows dynamic rebalancing of the buckets across the en-
semble; this technique is common to cluster-based Inter-
net services [31, 21, 36, 23]. With Slite, as in Slice and
these other services, fine-grained content-aware request
routing improves locality of the server caches as well as
balancing load. A switch-based implementation can de-
liver the best latency and bandwidth, both of which are
critical for file services.

Slite differs from Slice in two key respects. First,
Anypoint enables Slite to run the NFSv3 protocol over
a reliable, rate-controlled transport; Slice is limited to
NFS/UDP, which sends one request or response per
packet and relies on the RPC layer for primitive rate con-
trol and retransmission. Second, Slite is easier to deploy
and it can use standard NFS servers. Although both are
NFS-compliant, Slite is not Posix-compliant because it
does not support readdirplus, link, and rename operations
that cross server boundaries. While still compatible with
Anypoint, this coordination requires the more comprehen-
sive Slice approach. We use Slite for simplicity.

The Slite ALRM redirects some complex operations to
a designated back-end server derived from the coordina-

s.una CSN of the oldest unacknowledged
frame.

s.last CSN of the last frame.

s.next LSN of the next frame.

s.hole CSN of the oldest pending sequence
hole from a source.

s.lastgap | CSN of the newest hole at the time
of the last send to a sink.

Table 2: Endpoint table entry. For an outbound flow, s
is a source, and the fields pertain to frames transmitted by
s. For an inbound flow, s is a sink, and the fields pertain
to frames received by s.

tor in the Slice architecture. In particular, the coordina-
tor executes namespace operations (mkdir, rmdir, lookup)
on name entries that cross servers (switched directories).
The coordinator uses a write-ahead intention logging pro-
tocol for failure atomicity [4]. To simplify the ALRM
further, our prototype indirects lookup through the coor-
dinator, which maintains an index of switched directories.
These redirect cases are easy to encode in the ALRM.

4 Inside the Anypoint Switch

This section outlines the transport switching functions
within an Anypoint switch. Without loss of generality we
consider the traffic on a single connection. This traffic
consists of two partially ordered flows of frames passing
through the switch: one flow inbound to the ensemble and
one flow outbound from the ensemble. The n ensemble
members in the connection’s active set are sources for the
outbound flow and sinks for the inbound flow.

We make the following assumptions about the transport.
The transport senders on the end nodes mark the trans-
mitted frames for each flow with frame sequence numbers
(FSNss) that are unique within the flow, monotonically in-
creasing, and consecutive. FSNs are the basis for reli-
able at-most-once delivery. Frames arriving at a receiver
are delivered in FSN order, and the receiver uses FSNs to
generate cumulative acks in the return flow. The transport
limits the number of outstanding unacknowledged frames
to a frame flow window w.

frame.csn CSN for this frame.
frame.lsn LSN for this frame.
frame.source | Source node ID (outbound).
frame.sink Sink node ID (inbound).
frame.ack Has receiver acknowledged?
frame.hole Is this frame a pending hole?
frame.link CSN of next chain entry.

Table 3: Frame ring entry.

The transport equivalence property means that end nodes
do not distinguish Anypoint connections from point-to-
point connections using the same transport. This implies
that each participating node views the frames from each
flow in a local FSN space, since it believes (at the trans-
port layer) that it is the exclusive owner of its end of the
connection. Since there is only one connection peer, it de-
fines a global FSN space of connection sequence numbers
(CSNs) for both flows in the connection. The switch’s se-
quencing functions translate between the end nodes” FSN
spaces—the local sequence numbers (LSNs) understood
by each ensemble member and CSNs understood by the
peer.

The Anypoint switch transforms the frames flowing
through it to split inbound traffic across the LSN spaces
of the n sinks, and to merge outbound traffic from the
LSN spaces of the n sources into the peer’s CSN space.
Correct translation of the sequence numbers is the key to
extending the transport’s end-to-end ordering, duplicate
suppression, acknowledgment, and retransmission func-
tions to Anypoint connections because it enables reassem-
bly buffering and retransmission at the end nodes rather
than in the switch. The switch also coordinates the trans-
port mechanisms for ordering and reliable delivery, and
propagates rate control signals to ensure that each Any-
point connection behaves correctly with respect to flow
control and congestion.

4.1 Per-Flow State

The Anypoint switch maintains per-flow control state
proportional to the number of unacknowledged frames.
This state consists of a frame ring—a circular queue of
w frame entries—and an endpoint table with an entry
for each active set member, as shown in Figure 2. Ta-
ble 2 summarizes the state in each endpoint table en-
try. The frame ring contains an entry for each active
frame in the sliding window ranging from the oldest ac-
tive frame (flow.left) to the highest numbered frame
(flow.left + w) eligible for transmission into the frame
flow window. Entries become active as new frames arrive,
and inactive as the left edge of the window passes them.

Every frame has a unique CSN; the ring entry for a frame

list of frames | |

list of frames I
redirected to node B

redirected to node A

Figure 2: The Anypoint switch has one frame ring per flow,
each of size w. In this example the ALRM redirects inbound
frames to either sink A or sink B. The network has dropped
CSN 1, so the switch inserts a gap of length 1 into each sink’s
LSN space. When CSN 1 arrives, the ALRM may direct the
switch to deliver it to either A or B.

flow.left | CSN of the oldest frame for which
the sender is not known to have re-
ceived an ack.

flowuna | CSN of the oldest frame for which
the receiver is not known to have
sent an ack.

flow.next | CSN of this flow’s next frame.

lastgap CSN of the newest hole (inbound).

hole CSN of the oldest hole.

Table 4: Per-flow state variables.

may be retrieved in constant time by indexing from the
frame’s CSN in the obvious fashion. Table 3 summarizes
the frame ring entry, and Table 4 summarizes per-flow
state variables maintained to index the frame ring. CSNs
are also used to link frame entries in frame chains in CSN
order. For outbound flows, n frame chains link the frames
from each source s, including the holes originating from
s. The chain for each source s is rooted in s.una. For
inbound flows, the n frame chains link the active frames
destined for each sink, with a separate chain for pending
sequence holes (see below). Every active frame is linked
into exactly one chain.

Given these data structures, many aspects of state main-
tenance for the endpoint table, frame ring, and flow vari-
ables are straightforward. The discussion below focuses
on the more interesting aspects.

4.2 Sequencing and Acknowledgments

The switch translates frame sequence numbers between
CSNs and LSNs as frames pass through it. This is trivial

CSN space Anypoint Switch LSN space
Peer Connections Inbound Flow Server A
. LSN(A) 2 1 (21 J
: CSN 54231 Server B
ey 4 31| aarai)
94231 iPNull Frame :
12345 Outbound Flow Sarver A
. \LSN(A)l 2 3| (123 J
: CSN 12345 Server B
LSN(B) 1 2 12

Figure 3: The Anypoint switch translates between the CSN
space of the peer connection and each server’s LSN space. The
network reorders frames 2 and 3 on the inbound flow; a gap is
inserted into server B’s LSN space to maintain ordering if frame
2 is redirected to server B. However, frame 2 is redirected to
server A, and a null frame is sent to server B.

in the common case of frames arriving in order: if the flow
is outbound (merge), assign CSN flow.next; if it is in-
bound (split), assign LSN sink.next for the frame’s des-
tination sink. Figure 3 shows resequencing between CSNs
and LSNs for a single peer connection to two servers.

The frame ring and chains allow efficient handling of
acks. For inbound flows, the sinks encode their outgo-
ing acks as LSNs. To convert an LSN ack from sink to
a CSN for the peer, the switch traverses the frame chain
for sink from sink.una and examines each frame’s [sn
to determine if the ack covers it. The ack passed through
to the peer is the CSN of the oldest frame not acknowl-
edged by any sink s: min(s.una). For outbound flows,
on receiving a CSN ack from the peer, the switch traverses
the frame ring from flow.una to identify frames covered
by the ack and update their source.una. The LSN ack
passed through to each source is its source.una.

The difficult sequencing cases involve reordered or
dropped packets, which create sequence holes. To al-
low ordered, reliable delivery at the receiver, the switch
must pass any sequence holes through to the receiver’s
sequence space. For example, if an outbound frame’s
LSN frame.lsn > source.next for its source, then one
or more frames from that source are delayed. The switch
passes the gap through to the peer by assigning the frame
CSN flow.next+ (frame.lsn — source.next), marking
the intervening frame entries starting at CSN flow.next
as holes from that source, and updating flow.next and
source.next. On the other hand, if frame.lsn <
source.next, then this is a delayed frame that fills an
existing hole. To identify the frame’s CSN, follow the
source’s frame chain forward from source.hole to locate
the hole. The switch then places the CSN in the frame
before forwarding it to the the peer.

The more difficult case occurs when an inbound frame is
delayed. Since the switch does not know which sink will
receive a given delayed inbound frame, it must reserve an
LSN in the local space for any sink that receives a frame
numbered after a pending hole. For each inbound frame,
assign the LSN as sink.next + h, where h is the number
of pending holes created since the last frame sent to the
destination sink. The common case h = 0 is easily rec-
ognized with a check that sink.lastgap = flow.lastgap.
Else h is the number of pending hole frames f with
f-csn > sink.last; these are found by traversing the
frame chain rooted at flow.hole. Note that each pend-
ing hole is visited exactly once for each destination sink
that receives a frame while the hole is pending; inbound
holes create at worst O(n) extra work within the switch.

When an inbound frame destined for sink arrives to fill
a hole at CSN ¢, traverse the frame ring forward from ¢,
visiting each entry. For each sink s, let f be the entry
for the first non-hole frame encountered that was destined
for s (if any frames were sent to s since the sequence gap
opened at 7). If s = sink, then redirect frame i to s. Else,
send a null frame (redirect patch) to s to fill the gap in
its local sequence space (see Figure 3 for an example). In
each case, the LSN for the sent frame is f.lsn—h, where h
is the number of holes encountered before f in the traver-
sal, including the hole at . If no frame for sink is encoun-
tered before the end of the traversal (CSN flow.next),
then redirect ¢ to sink with LSN sink.next. Again, the
number of redirect patches per hole grows with the num-
ber of frames arriving while the hole is pending, and is
bounded by n — 1 and w.

4.3 Rate Control

This section examines the role of the Anypoint switch in
coordinating rate control. This discussion considers the
traffic from the switch’s viewpoint: because the switch
must control each endpoint’s rate independently, it views
the traffic to or from each endpoint (the n active set mem-
bers plus the peer) as distinct flows. (This contrasts with
the previous section, in which the peer’s view of a connec-
tion is a pair of flows, one inbound to the ensemble and
one outbound from the ensemble.) The switch merges a
fan in of n flows—one from each ensemble member—
into the connection’s outbound flow to the peer, and splits
the peer’s inbound flow into a fan out of n flows. As flows
split and merge, the switch propagates rate control signals
to avoid overflowing any receiver or network path. Trans-
port equivalence implies that end nodes do not change
their rate control policies to use Anypoint; the end nodes
are not aware that a split or merge is occurring. Instead, it
is the switch’s responsibility to transform and coordinate
these signals to induce the correct local behavior from the
sources and produce the desired global outcome.

The switch observes rate control signals flowing through
it, and can determine if forwarding a frame violates rate
limits to the receiver. It can also send rate control signals
to any sender. Flow control signals proactively limit the
rate of the source; we assume that the transport allows a
receiver to rate-limit a source by advertising a flow win-
dow. A switch may manipulate these windows to suit its
needs [25]. Congestion signals cause a sender to reac-
tively reduce its rate. For example, if the switch drops a
packet, a TCP-friendly sender interprets the event as con-
gestion in the usual fashion.

The policy choice is to determine how the switch uses
these rate control signals to respond to observed condi-
tions. But the switch cannot predict how the ALRM will
route inbound traffic to the ensemble sinks, or what por-
tion of the bandwidth back to the peer will be needed
for each source. In either direction, it may optimisti-
cally oversubscribe the windows, conservatively rate-
limit senders to avoid any overflow, or select any point
on the continuum between these extremes. For example,
for inbound traffic it may optimistically advertise the sum
of the active set flow windows to the peer, or conserva-
tively advertise the minimum window from any sink. For
outbound traffic, it may advertise the peer’s full window
to each ensemble source, partition it evenly among the
sources, or overcommit it to an arbitrary degree.

The conservative approaches may limit connection
throughput, while the optimistic approaches may cause
the switch to overflow a receiver or network path, forc-
ing it to drop packets. A dropped inbound packet induces
the peer to throttle its sending rate to the entire ensem-
ble, even if just one sink overflows. The peer’s inabil-
ity to distinguish among ensemble nodes is fundamen-
tal to the Anypoint model; we accept it because we as-
sume that the network and memory within the ensemble
are well-provisioned in the common case, and aggregate
throughput is more important than bandwidth from the
peers when the ensemble is overcommitted. For outbound
traffic, congestion on the path to the peer results in a lazy
throttling of individual sources in the usual fasion.

4.4 Discussion

The switch mechanisms described in this section illus-
trate several key points about the Anypoint architecture.
Most importantly, transport equivalence says that Any-
point does not affect the transport connection semantics
perceived by the end nodes. This architectural choice
yields several benefits:

e End nodes use the same transport code for point-
to-point and Anypoint connections, and do not dis-
tinguish between them. All Anypoint-specific func-
tions are local to the switch.

T Anypoint l
frames - frames
Interpreted Transport
(ACP)

P
segments segments

Figure 4: The switch extracts frames from incoming network
segments and packs them into outgoing segments.

e Transport equivalence helps to ensure that Anypoint
is compatible with all clients and servers implement-
ing the transport, conforms to congestion conven-
tions, and composes well with other components of
the Internet architecture. For example, given appro-
priate ALRM support, both ends of an Anypoint con-
nection could be ensembles, or Anypoint ensembles
could nest arbitrarily in a hierarchy.

e Transport functions for sequencing and reliable at-
most-once delivery continue to operate in an end-to-
end fashion. The Anypoint switch never buffers data
for rate control or transport reassembly; its role is
to transform frames to coordinate these functions at
the end nodes. The switch buffers packet data only
as needed for port queues and frame assembly. This
improves scalability of the switch architecture.

Although the switch maintains per-flow control state, it
is bounded by the flow window w. Because acknowl-
edgments and buffering remain end-to-end in Anypoint,
a failed switch does not lose user data. However connec-
tions maintained by the failed switch must be re-initiated
for the service to recover a failed session. Support for
session recovery is common in new service protocols in-
cluding iSCSI and DAFS [16].

Note also that no mutable state is shared across con-
nections within an Anypoint switch. Thus an Anypoint
switch design could spread frame processing load across
processors at each external switch port. An ensemble may
also partition communication traffic from different peers
across multiple switches to further improve scalability.

S Anypoint Prototype

We prototyped a host-based Anypoint switch as a set of
kernel extensions to FreeBSD, implementing the transport
switching mechanisms and ALRM interface. The proto-
type consists of 2080 lines of C code. We also imple-
mented Anypoint ALRMs for the Slite service described
in Section 3.2 and a simple clustered counter service for
microbenchmarking.

5.1 ACP Transport

The Anypoint model can apply to a range of transports
with the properties defined previously. In particular, we
believe that Anypoint is compatible with SCTP. However,
SCTP is a new protocol with complex features unrelated
to Anypoint, and SCTP implementations are not yet fully
mature. To experiment with Anypoint, we implemented a
simple framed transport with a few hundred lines of code
by reusing the FreeBSD TCP implementation, whose be-
havior is stable and reasonably well understood. We refer
to this as Anypoint Control Protocol (ACP), although its
functions are not Anypoint-specific.

ACP adds a shim with framing support based on a subset
of the expired upper-layer framing (TUF) proposal [10].
New code at the kernel socket layer supports ACP sockets
using a UDP-like message interface (sendto, recvfrom).
Each message is sent as a frame, and frame boundaries
are preserved at the receiver; this made it easy to run NFS
over ACP for the Slite experiments.

An ACP segment is identical to a TCP segment, except
that ACP adds one or more framing headers to each seg-
ment’s data to partition it into an integral number of
frames with consecutive FSNs as defined in Section 4.
Like TCP, ACP preserves the send order for all of a con-
nection’s frames routed to a given end node. However,
ACP does not specify an order among frames to or from
different ensemble nodes. ACP differs from TCP primar-
ily in that ACP is not defined to require this ordering.
ACP’s mechanisms for reliable delivery and rate control
are indistinguishable from TCP (4.4 BSD Reno).

ACP segments are self-describing. The first frame header
in each segment is aligned with the segment header so
that an Anypoint switch can recognize frames even when
segments arrive out of order. Each frame header con-
tains a length field giving the offset of the next frame in
the segment, if any. Our testbed network uses 9000-byte
“Jumbo” Ethernet packets, and the maximum ACP frame
size is 8936 bytes, which is less than the Maximum Seg-
ment Size (MSS). The ACP prototype never splits appli-
cation frames across segments, although it may combine
multiple frames in a single segment when space allows. In
practice, this means that ACP often sends short segments,
but it also frees the prototype from the need to “chunk” or
reassemble frames across segment boundaries. Our ACP
prototype does not support path MTU changes.

5.2 Switch Prototype

Figure 4 shows the protocol stack at the switch. Arriving
IP packets are interpreted by a veneer layer that recog-
nizes the transport, classifies flows, and extracts frames.
The Anypoint layer maintains connection-related state,
active set membership, and ALRM bindings as described

in the previous sections. The TCP-derived ACP receiver
uses TCP byte sequence numbers for reordering, and ig-
nores FSNs. The switch also translates byte sequence
numbers and caches them in the frame ring. It uses this
state to identify the frames covered by acks, which are
encoded as byte sequence numbers rather than FSNs.

The switch prototype validates TCP checksums for in-
coming ACP segments and recomputes a fresh checksum
from scratch for transformed outgoing segments, using
network cards with TCP checksum offloading. Redirect
patches are carried in each ACP segment as a monoton-
ically increasing sequence number. This field, updated
by the switch for inbound flows, indicates that all data
with sequence numbers less than this number may be de-
livered to the application. The switch has limited support
for dynamic changes to the active set; it can remove failed
servers, but it cannot add servers.

6 Experimental Results

This section presents results from our host-based Any-
point/ACP prototype and the Slite/NFS server cluster.
The experiments explore the overhead and bandwidth
the host-based Anypoint switch, frame processing costs,
memory requirements, interactions with TCP rate control,
and scaling and response time of Slite/NFS.

We also compare behavior of the Anypoint switch with an
alternative service structure using a redirecting proxy that
terminates incoming client connections and relay traffic
over connections maintained between the proxy and the
servers. Our proxies are implemented at the application
level for TCP or UDP. The TCP proxy uses a blocking
select to relay data between the peer and ensemble.

The Anypoint testbed consists of Dell PowerEdge 4400s
with 733 MHz Pentium-III CPUs and 256 MB RAM, run-
ning FreeBSD 4.4. Each node has an Alteon Gigabit Eth-
ernet NIC with hardware checkum offloading, connected
to an Extreme Summit 7i switch. Unless stated otherwise,
our microbenchmark tests use 4KB transport frames, 128
KB socket buffers, 9KB (Jumbo) segment/MTU sizes,
and delayed acks. The Anypoint switch uses a frame win-
dow w of 384 entries. Each Slite NFS server is fitted with
eight 18 GB 10,000 RPM Seagate Cheetah drives over
two dual-channel Ultra-160 SCSI controllers.

6.1 Memory and CPU Overheads

First we explore the raw performance of the Anypoint
switch and compare its CPU and memory utilization to a
TCP proxy. The microbenchmark suite consists of simple
user-level programs that open TCP or ACP sockets.

Figure 5 shows the peak aggregate throughput for 8 in-
bound streams (outbound results are identical) for the

Anypoint switch and TCP proxy. The active set for each
stream is a single ensemble server; no merging or split-
ting occurs. We vary the frame size from 8§KB to 1KB
(2KB decrements), increasing the number of frames per
segment on the x-axis. With 8KB frames, the TCP proxy’s
aggregate bandwidth is CPU-limited at 63MB/s, while the
Anypoint switch is NIC-limited at I06MB/s. To factor out
copying costs in the user-level proxy, the Anypoint copy
lines show the performance of the Anypoint switch with
two copies added to the critical path. Even with the copy-
ing, avoiding full termination in Anypoint yields an aver-
age 29% improvement in peak bandwidth. The declining
bandwidth with increasing frames per segment quantifies
the effect of per-frame processing costs.

120

OTCP Proxy

—~ 100 - OAnypoint Copy
@ H Anypoint
m
s 80+ .- - —8 -
<
S 60l BY--—1 B B
3
S 40 -
©
o 20

0

1 2 4 8
Maximum Number of Frames Per 9KB Segment

Figure 5: Aggregate bandwidth through the Anypoint switch
and TCP proxy with increasing number of frames per segment.

Figure 6 shows the memory overhead of the TCP proxy
and Anypoint switch for 8 simultaneous inbound single-
server connections as the round trip time increases be-
tween client and ensemble (using dummynet [35]). Any-
point memory usage is determined by the flow window
w and is independent of the number of servers active per
connection. In contrast, a TCP proxy’s memory usage
scales with the aggregate bandwidth-delay product (BDP)
for outbound flows. For inbound flows, proxy memory
usage is inversely proportional to the BDP because an in-
creasing share of the flow window is in transit in the net-
work rather than buffered at the proxy.

Next we investigate splitting and merging of a single con-
nection. Figure 7 shows throughput for a single connec-
tion that is either outbound (merged) or inbound (split)
from/to four servers. The ALRM round robins the in-
bound 4KB frame stream across the ensemble. Through-
put for inbound and outbound flows is nearly identical.
As the round-trip time (RTT) and BDP increase, the out-
bound bandwidth to the peer is limited by the peer’s re-
ceive window for both Anypoint and the TCP proxy. The
Anypoint switch conservatively splits the peer’s flow win-
dow evenly among the servers, each of which achieves the
same share of the outbound bandwidth. For the inbound
case, the TCP proxy is limited by its own receive win-

ABOQ -

—-TCP out
~{-=TCPin |-
-+ ACP out
—--ACP in

0 T T T T

0 2 4 6 8 10
Round Trip Time (ms)

Figure 6: Total memory usage of a TCP proxy versus an Any-
point switch as a function of round-trip time. There are 8 simul-
taneous connections.

dow as BDP increases. In contrast, Anypoint’s inbound
bandwidth is limited by its conservative flow window ad-
vertisement, which is the the minimum of the server’s ad-
vertised windows.

The Anypoint inbound and outbound flows achieve lower
throughput than the TCP proxy at 2ms RTT. This effect
is evident even with one server per connection. It occurs
because the TCP proxy acknowledges data immediately,
even before forwarding it to the receiver. This trades end-
to-end reliable delivery and proxy buffer memory for im-
proved bandwidth in this case. This effect diminishes with
increasing RTT.

~80 g TCP out

k4 TCPin

g 60 PN - —e— Anypointout | |

< —+— Anypoint in

e

D40 - Ny S

> 0

2

& 20 f------ e

o)
0 - ‘ ‘ ‘ ‘

2 4 6 8 10
Round Trip Time (ms)

Figure 7: Bandwidth for single inbound or outbound connec-
tions with an ensemble of four servers.

6.2 Layer-4 Informed ALRMs

We now explore integrating layer-4 information into AL-
RMs with speed-sensitive steering, which always selects
servers with open flow windows for inbound frames in-
stead of using strict round robin, balancing inbound traf-
fic across the ensemble more effectively. This allows the
Anypoint switch to optimistically advertise the sum of the
ensemble’s flow windows to the peer.

We now compare the inbound throughput of a speed-
sensitive steering ALRM versus the TCP proxy. In this
experiment there are four servers, server socket sizes

(flow windows) are 32KB, and the MTU is 1500 bytes.
One server incurs a variable delay between processing
frames. Figure 8 shows throughput as this delay increases
to 0.75ms. The TCP proxy gates the receive rate of every
server to the slowest server. But the Anypoint connection
can take advantage of excess capacity at the other servers
and maintain high throughput during load imbalances.

100
—=— Anypoint
%80 | |—aTCPproxy | -
11] —e— Delayed Server
=
S0l - pmnunuu
L
]
'S 40 -
©
&
3 20 -
0 ‘ : ‘
0 0.2 0.4 0.6 0.8

Increasing Delay Per Frame (ms)

Figure 8: With speed-sensitive steering, the ALRM redirects
inbound frames to servers with sufficient capacity to handle
them. Here one server incurs an increasing CPU delay to process
a frame. The TCP proxy gates the receive rate of each server to
that of the bottlenecked server.

6.3 Observations

Anypoint offers three advantages relative to the TCP
proxy:

e Efficiency. Memory use is bounded independent of
traffic rates, and scales with the number of connec-
tions independent of the number of active servers.
The Anypoint switch also avoids processing over-
heads to terminate the protocol.

e End-to-end guarantees. Anypoint offers end-to-
end reliability. In contrast, a proxy acks data that
it has not yet delivered to the receiving end node.
Also, note that the proxy’s delivery order is the same
as Anypoint’s, which is not the ordering specified by
its transport (TCP).

e Layer integration. Anypoint allows a continuum of
redirection policies that consider Layer 4 state, e.g.,
for speed-sensitive steering during periods of unbal-
anced load.

TCP splicing is one technique to reduce the runtime
overheads for a proxy [19], and is amenable to switch-
based implementations. This technique is related to Any-
point’s sequence number translations to short-circuit pro-
tocol processing. However, the Anypoint transport model
is fundamentally different.

Interestingly, inbound Anypoint flows in our prototype
may slow down relative to a TCP proxy as the ensem-
ble size grows, due to an interaction between the trans-
port’s congestion control and acknowledgments from the
ensemble. The Anypoint switch merges acks from the en-
semble nodes and sends cumulative acks to the peer. If
the servers return acks out of order, the switch must delay
them to avoid inciting a fast-recovery reaction on the peer,
causing it to reduce the congestion window (TCP Reno
and later presume that duplicate acknowledgments indi-
cate lost data). Delaying these acks can negatively impact
the acknowledgment clocking, lowering throughput.

After these experiments we can make a number of obser-
vations about desirable features for Anypoint-compatible
transports:

o Explicit rate control. Outbound Anypoint flows
should share link bottlenecks in a TCP-friendly man-
ner. An outbound flow is an aggregate of n ensem-
ble sources; in our prototype this flow is likely to be
more aggressive than a competing TCP flow. To en-
sure fairness, the switch must coordinate ensemble
sources through explicit congestion control signals.

e Selective acks (SACK). The transport must di-
vorce congestion behavior from reliability. Triple-
duplicate cumulative acks are common and mean-
ingless as congestion indicators for Anypoint com-
munication.

o Flexible flow control. The switch can optimisti-
cally or conservatively manage the flow windows
as described in Section 4.3. If the switch con-
servatively distributes the peer’s advertised receive
window across the ensemble sources, it should be
able to revoke unused window allocations and redis-
tribute them to active sources. Alternatively, ensem-
ble members could bid for the peer’s receive window
by advertising to the switch the amount of data they
wish to send.

6.4 NFS Storage Router

In this section we evaluate the performance of the Slite
NFS storage router. We compare an Anypoint Slite stor-
age router (described in detail in Section 3.2) to user and
kernel-level proxy alternatives.

The kernel-level (fastpath) configurations employ an Any-
point ALRM module to redirect frames. The ALRM
sends most frames directly to servers; some require addi-
tional processing and go to the coordinator, which is just
another server to the Anypoint layer. This category uses
either an ACP or UDP transport. The UDP fastpath uses
a simple kernel hook to intercept UDP packets and adver-
tise them via the Anypoint interface to the Slite ALRM.

—»— TCP proxy
—=— ACP kernel
—+— UDP proxy
—— UDP kernel

Response Time (ms/op)

0 1500 3000 4500 6000
Load (ops/s)

100

;\? 75 4

g ——TCP proxy
-‘E 50 —=— ACP kernel
= —+— UDP proxy
3 —a— UDP kernel
o

(8]

N
(6]
I

0 T T T
0 1500 3000 4500 6000
Load (ops/s)

Figure 9: Slite latency and switch CPU utilizations as a function of offered load for varying intermediary configurations.

We use one coordinator proxy and four back-end NFS
servers, exporting independent drives for a total of 32
NFS volumes (unified into a single logical volume). All
machines run FreeBSD 4.4. Delayed acks are disabled to
get good performance from the NFS RPC protocol over
TCP, and the system is configured to use 8KB transport
frames.

Figure 9 plots results from these four configurations, us-
ing the Fstress NFS benchmark [3] configured to generate
a Web server’s file system load. We measure average op-
eration response time and CPU utilization at the switch
with increasing request rate, plotted on the left and right,
respectively. The TCP proxy has the lowest peak through-
put and becomes CPU saturated at 5500 ops/s. The Any-
point switch shows a 29% improvement in throughput rel-
ative to the TCP proxy.

Note that the user-level UDP proxy gives better response
times than the Anypoint switch, even though the Anypoint
CPU overhead (shown in the right graph of Figure 9) is
lower at any given request rate. We believe Anypoint/ACP
is limited by the interaction between cumulative acks and
congestion control described in the previous section.

7 Related Work

There is a large body of work on incorporating architec-
turally correct support for indirection into the Internet.
The design alternatives span layers of the Internet archi-
tecture and all levels of its implementation. Indirection
may apply to names at any layer (e.g., URNs or URLs,
domain names, I[P addresses, or abstract names [43, 1]).
A given request may route through multiple intermediate
nodes, as in hierarchies, meshes, or overlays for Web con-
tent caching [46]. Request routing policies may reside in
application-level intermediaries (e.g., Web proxy caches),
DNS name servers (e.g., Akamai and other CDNs), in the
clients [45] or servers [8, 9] themselves, or in the network

switches or routers.

IP-layer indirection. Anycast [33] and i3 [41] support
best-effort packet delivery with indirection at the IP layer.
Anypoint operates at the transport layer and above for a
related but different purpose. While Anycast is useful for
binding to service sites across the wide area, Anypoint en-
ables stateful, reliable, and congestion-aware connections
to an ensemble at a logical site.

Web switches and persistent connections. Anypoint
is similar in goals and concept to L4-L7 Web server
switches, which implement server load balancing (SLB)
and/or content-based routing (CBR) for Web server en-
sembles. The benefits of Web server traffic management
are well-established from research studies (e.g., [31]) and
commercial experience. Anypoint offers a more power-
ful mechanism for handling persistent connnections, as
in HTTP 1.1, in which a single transport connection car-
ries a stream of requests to simplify congestion control
and amortize connection setup costs [28]. Web switches
supporting HTTP 1.1 may route all requests on a given
connection to a single server, or else they use connection
handoff 8, 32, 37] to migrate the connection to a differ-
ent server between requests. The first approach does not
support CBR and the second forces the server ensemble to
process and respond to the requests in strict sequence, as
mandated by HTTP 1.1. Anypoint enables independent,
pipelined processing of the requests, to generalize redi-
rection to a broader class of service protocols that do not
impose this constraint. This is important for fine-grained
requests, e.g., storage protocols such as iSCSI or NFS, or
RPC protocols such as RMI.

Redirecting proxies. Section 6 compares Anypoint to
redirecting proxies that terminate incoming client connec-
tions and relay traffic over connections maintained be-
tween the proxy and the servers. Proxies do not preserve
end-to-end transport semantics because the proxy may ac-

knowledge data before delivering it to the receiver, and
this data is lost if the proxy fails. Moreover, the proxy in-
curs a high runtime overhead to perform full protocol pro-
cessing for both connection endpoints and high memory
overhead to buffer connection data. TCP splicing is one
technique to reduce the runtime overheads [19, 15, 39],
and is amenable to switch-based implementations [6].
Anypoint uses related techniques to short-circuit proto-
col processing and rewrite packets to map among mul-
tiple sequence spaces. However, the Anypoint model is
fundamentally different: an Anypoint intermediary does
not terminate transport connections or otherwise interfere
with end-to-end transport functions.

Active Networks and extensible routers. Anypoint is
related to Active Networks [44], in which dynamic pack-
ets carry behavior (capsules) that execute on routers. Like
Active Networks, the Anypoint switch architecture de-
fines a powerful new capability for extending switches
and routers through simple, clean abstractions, meeting
needs that are currently served in an ad hoc fashion.
However, in contrast to capsules, Anypoint extensions—
ALRMs—are installed by an authorized configuration
tool, are relatively constrained in their actions, and have
known, bounded resource and interface requirements.
Thus they are more closely related to switchlets in the
SwitchWare architecture [2]; Anypoint enables such ex-
tensions to perform application-layer functions while pre-
serving transport semantics. Another extensible router ar-
chitecture is Click [29]; Anypoint could run as a new set
of transport-layer and application-layer modules within
the Click framework. Anypoint does not require or benefit
from the richer interfaces of the NodeOS [34] framework
for extensible routers, which supports multiple execution
environments similar to those offered in a general-purpose
operating system.

Group communication and multicast. Anypoint is sim-
ilar to group communication in that it supports commu-
nication with a dynamic ensemble addressed in a unified
way. However, the basic Anypoint abstraction is less pow-
erful in that it supports an indirect frame unicast rather
than ordered multicast. The Anypoint framework is pow-
erful enough to allow an ALRM to implement ordered
multicast using an approach similar to Amoeba [24], in
which a single intermediary for each connection acts as a
sequencer.

Scalable Reliable Multicast(SRM) [20] is similar to an
Anypoint intermediary in that it manipulates sequence
numbers and is based on application-level framing. How-
ever, SRM and Anypoint have different goals: Anypoint
enables application-layer routing while SRM does not,
and Anypoint is not limited to a multicast model.

Traffic shaping and congestion management. One

function of an Anypoint intermediary is to control send-
ing rates to preserve the traffic balance between mul-
tiple senders and receivers. The technique of rewrit-
ing transport-layer flow window advertisements is due to
Packeteer [25]. Anypoint connections aggregate com-
munication from the ensemble to the client, and can
be viewed as a multipoint-to-point session. The issue
of maintaining fairness both among ACP connections
and among ensemble members on an ACP connection is
analagous to work on session fairness across the Inter-
net [26]. Anypointis similar to transport-layer bandwidth
reservation schemes [42] in its use of per-flow state at the
network edge. It is also related to schemes for coordi-
nating congestion control across multiple flows with the
same source or destination, when those schemes are ap-
plied in intermediaries [11, 30].

Multihoming. SCTP includes support for multihoming,
which is similar to Anypoint in that a single connection
may deliver traffic to a site through multiple IP endpoints.
Anypoint differs from multihoming in that it does not re-
quire these multiple IP endpoints to coordinate through
shared memory, and it uses multiple IP endpoints concur-
rently for the same connection.

8 Conclusion

Anypoint is the first architecture to enable switching at
the granularity of transport frames in extensible routers at
the edge of the network. This approach allows service-
specific application plugins (ALRMs), residing in the
router, to coordinate request/response flows to and from
the multiple nodes in an ensemble. These plugins may
support dynamic request redirection, response merging
from multiple servers, and other extensions for network
services based on a partially ordered, framed IP transport.

Anypoint provides transport-layer guarantees including
partial ordering, rate control, and reliable at-most-once
delivery without the overhead to terminate the transport
protocol in the switch. Experimental results with a host-
based Anypoint prototype show that Anypoint is a pow-
erful mechanism for traffic management and virtualiza-
tion in server clusters. We present results from an Any-
point switch under various network conditions, showing
that buffering overheads in the Anypoint intermediary are
significantly lower than an application-level proxy. Re-
sults from an Anypoint-based NFS storage router show
that Anypoint supports scalable services transparently to
clients.

9 Acknowledgments

We thank the anonymous reviewers and our shepherd, Pe-
ter Honeyman, for helpful critiques and suggestions.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and
J. Lilley. The design and implementation of an intentional
naming system. In Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles (SOSP), December
1999.

D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar,
A. D. Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles,
and J. M. Smith. The SwitchWare active network architec-
ture. IEEE Network Special Issue on Active and Control-
lable Networks, 12(3):37-45, May/June 1998.

D. Anderson and J. Chase. Fstress: A flexible network
file service benchmark. Technical Report CS-2002-01,
Duke University Department of Computer Science, Jan-
uary 2002.

D. C. Anderson and J. S. Chase. Failure-atomic file access
in an interposed network storage system. Cluster Comput-
ing: The Journal of Networks, Software Tools and Appli-
cations, 2002. To Appear.

D. C. Anderson, J. S. Chase, and A. M. Vahdat. Inter-
posed request routing for scalable network storage. ACM
Transactions on Computer Systems (TOCS) special issue:
selected papers from the Fourth Symposium on Operating
System Design and Implementation (OSDI), October 2000,
December 2001.

G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and
D. Saha. Design, implementation and performance of a
content-based switch. In Proceedings of IEEE Infocom
2000, March 2000.

K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,
M. Kalantar, S. Krishnakumar, D. Pazel, J. Pershing, and
B. Rochwerger. Oceano - SLA based management of a
computing utility. In Proceedings of the 7th IFIP/IEEE
International Symposium on Integrated Network Manage-
ment, May 2001.

M. Aron, P. Druschel, and W. Zwaenepoel. Efficient sup-
port for P-HTTP in cluster-based Web servers. In Proceed-
ings of USENIX’99 Technical Conference, 1999.

M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel.
Scalable content-aware request distribution in cluster-
based network servers. In Proceedings of USENIX Techni-
cal Conference, June 2000.

S. Bailey, J. Chase, J. Pinkerton, A. Romanow, C. Sa-
puntzakis, J. Wendt, and J. Williams. Internet Engineer-
ing Task Force, Internet draft: TCP ULP Framing Protocol
(TUF), November 2001.

H. Balakrishnan, H. S. Rahul, and S. Seshan. An in-
tegrated congestion management architecture for Internet
hosts. In Proceedings of the ACM Conference on Com-
munications Architectures and Data Communication (SIG-

COMM), September 1999.

B. Braden. Internet Engineering Task Force, Network
Working Group, RFC 1122: Requirements for Internet
hosts — communication layers, 1989.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle. Managing energy and server resources in
hosting centers. In Proceedings of the 18th ACM Sympo-
sium on Operating System Principles (SOSP), pages 103—
116, October 2001.

D. D. Clark and D. L. Tennenhouse. Architectural con-
siderations for a new generation of protocols. In Proceed-
ings of SIGCOMM Symposium on Communications Archi-
tectures and Protocols, pages 200-208, Philadelphia, PA,
1990.

A. Cohen, S. Rangarajan, and H. Slye. The performance of
TCP splicing for URL-aware redirection. In Proceedings
of the 2nd USENIX Symposium on Internet Technologies
and Systems (USITS), October 1999.

M. DeBergalis, P. Corbett, S. Kleiman, A. Lent,
D. Noveck, T. Talpey, and M. Wittle. The Direct Access
File System. In Proceedings of the 2nd USENIX Con-
ference on File and Storage Technologies (FAST), March
2003.

D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner.
Router plugins — a modular and extensible software frame-
work for modern high performance integrated services
routers. In Proceedings of the ACM Conference on Com-
munications Architectures and Data Communication (SIG-

COMM), September 1998.

R. P. Doyle, J. S. Chase, S. Gadde, and A. M. Vahdat. The
trickle-down effect: Web caching and server request distri-
bution. Computer Communications: Selected Papers from
the Sixth International Workshop on Web Caching and
Content Delivery (WCW), 25(4):345-356, March 2002.

K. Fall and J. Pasquale. Exploiting in-kernel data paths to
improve I/O throughput and CPU availability. In Proceed-
ings of USENIX Technical Conference, pages 327-334,
January 1993.

S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and
L. Zhang. A reliable multicast framework for light-weight
sessions and application level framing. IEEE/ACM Trans-
actions on Networking, 5(6):784-803, 1997.

A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer.
Cluster-based scalable network services. In Proceedings
of the 16th ACM Symposium on Operating Systems Prin-
ciples (SOSP), Saint-Malo, France, October 1997.

G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel,
D. Rochberg, and J. Zelenka. File server scaling with
network-attached secure disks. In Proceedings of ACM
International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS 97), June 1997.

S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, distributed data structures for Internet
service construction. In Proceedings of the Fourth Sym-
posium on Operating System Design and Implementation
(OSDI), pages 319-332, October 2000.

M. F. Kaashoek and A. S. Tanenbaum. Group com-
munication in the Amoeba distributed operating system.

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

In Proceedings of the 11th International Conference on
Distributed Computing Systems (ICDCS), pages 220-230,
May 1991.

S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer.
TCP rate control. ACM SIGCOMM Computer Communi-
cation Review, 30(1), January 2000.

P. Karbhari, E. W. Zegura, and M. H. Ammar. Multipoint-
to-point session fairness in the Internet. In Proceedings of
IEEE Infocom, 2003.

E. Kohler, M. Handley, S. Floyd, and J. Padhye. Internet
Engineering Task Force, Internet draft: Datagram Conges-
tion Control Protocol(DCCP), November 2001.

J. Mogul. The case for persistent HTTP connections.
In Proceedings of the ACM Conference on Communi-
cations Architectures and Data Communication (SIG-
COMM), pages 299-313, September 1995.

R. Morris, E. Kohler, J. Jannotti, and M. Kaashoek. The
Click modular router. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles, pages 217—
231, December 1999.

D. Ott and K. Mayer-Patel. A mechanism for TCP-friendly
transport-level protocol coordination. In Proceedings of
USENIX Technologies Conference, June 2002.

V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenopoel, and E. Nahum. Locality-aware request
distribution in cluster-based network servers. In Proceed-
ings of the Eighth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, October 1998.

A. E. Papathanasiou and E. V. Hensbergen. KNITS:
Switch-based connection handoff. In Proceedings of IEEE
Infocom, June 2002.

C. Partridge, T. Mendez, and W. Milliken. Internet Engi-
neering Task Force, RFC 1546: Host anycasting service,
November 1993.

L. Peterson, Y. Gottlieb, S. Schwab, S. Rho, M. Hibler,
P. Tullmann, J. Lepreau, and J. Hartman. An OS inter-
face for active routers. IEEE Journal on Selected Areas in
Communications, 19(3):473-487, March 2001.

L. Rizzo. Dummynet: A simple approach to the evaluation
of network protocols. ACM SIGCOMM Computer Com-
munication Review, 27(1):31-41, January 1997.

Y. Saito, B. N. Bershad, and H. M. Levy. Manageability,
availability and performance in Porcupine: a highly scal-
able cluster-based mail service. In Proceedings of the 17th
ACM Symposium on Operating Systems Principles, pages
1-15, Kiawah Island, December 1999.

A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-
grained failover using connection migration. In Proceed-
ings of the 3rd USENIX symposium on Internet Technolo-
gies and Systems (USITS), March 2001.

T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Build-
ing a robust software-based router using network proces-

sors. In 18th ACM Symposium on Operating Systems Prin-
ciples, October 2001.

[39]

[40]

[41]

[42]

[43]

[44]

(45]

[46]

O. Spatscheck, J. Hansen, J. Hartman, and L. Peter-
son. Optimizing TCP forwarder performance. IEEE/ACM
Transactions on Networking, 2(8):146—157, 2000.

R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, and
L. Zhang. Internet Engineering Task Force, RFC 2960:
Stream Control Transmission Protocol, October 2000.

1. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. In Proceedings of the
ACM SIGCOMM 2002 Conference on Communications
Architectures and Protocols, August 2002.

I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair
queueing: a scalable architecture to approximate fair band-
width allocations in high speed networks. In Proceedings
of the ACM Conference on Communications Architectures
and Data Communication (SIGCOMM), September 1998.

A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Ac-
tive names: Flexible location and transport of wide-area
resources. In Proceedings of USENIX Symposium on In-
ternet Technologies and Systems (USITS), October 1999.

D. Wetherall. Active network vision and reality: Lessons
from a capsule-based system. In Proceedings of 17th ACM
Symposium on Operating System Principles (SOSP), De-
cember 1999.

C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Ander-
son, and D. Culler. Using smart clients to build scalable

services. In Proceedings of USENIX Technical Confer-
ence, January 1997.

L. Zhang, S. Floyd, and V. Jacobson. Adaptive web
caching. In Proceedings of the NLANR Web Cache Work-
shop, June 1997.

