
USENIX Association

Proceedings of
USITS ’03:

4th USENIX Symposium on
Internet Technologies and Systems

Seattle, WA, USA
March 26–28, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Using Fault Injection and Modeling to Evaluate the
Performability of Cluster-Based Services�

Kiran Nagaraja, Xiaoyan Li, Ricardo Bianchini, Richard P. Martin, Thu D. Nguyen
Department of Computer Science, Rutgers University

110 Frelinghuysen Rd, Piscataway, NJ 08854
fknagaraj, xili, ricardob, rmartin, tdnguyeng@cs.rutgers.edu

Abstract. We propose a two-phase methodology for
quantifying the performability (performance and avail-
ability) of cluster-based Internet services. In the first
phase, evaluators use a fault-injection infrastructure to
measure the impact of faults on the server’s performance.
In the second phase, evaluators use an analytical model
to combine an expected fault load with measurements
from the first phase to assess the server’s performabil-
ity. Using this model, evaluators can study the server’s
sensitivity to different design decisions, fault rates, and
environmental factors. To demonstrate our methodology,
we study the performability of 4 versions of the PRESS
Web server against 5 classes of faults, quantifying the
effects of different design decisions on performance and
availability. Finally, to further show the utility of our
model, we also quantify the impact of two hypothetical
changes, reduced human operator response time and the
use of RAIDs.

1 Introduction

Popular Internet services frequently rely on large clus-
ters of commodity computers as their supporting infras-
tructure [5]. These services must exhibit several char-
acteristics, including high performance, scalability, and
availability. The performance and scalability of cluster-
based servers have been studied extensively in the liter-
ature, e.g., [2, 5, 7]. In contrast, understanding designs
for availability, behavior during component faults, and
the relationship between performance and availability of
these servers have received much less attention.

Although today’s service designers are not oblivious
to the importance of high availability, e.g., [5, 12, 28],
the design and evaluation of availability is often based
on the practitioner’s experience and intuition rather than
a quantitative methodology.

In this paper, we advance the state-of-the-art by de-
veloping a 2-phased methodology that combines fault-
injection and analytical modeling to study and quantify
the performability – a metric combining performance

�This work was supported in part by NSF grants EIA-0103722 and
EIA-9986046

and availability – of cluster-based servers. In the first
phase of our methodology, the server is benchmarked
for performance and availability both in the presence
and absence of faults. To support systematic fault-
injection, we introduce Mendosus, a fault-injection and
network emulation infrastructure designed specifically to
study cluster-based servers. While evaluators using our
methodology are free to use any fault-injection frame-
work, Mendosus provides significant flexibility in emu-
lating different LAN configurations and is able to inject a
wide variety of faults, including link, switch, disk, node,
and process faults.

The second phase of our methodology uses an analyt-
ical model to combine an expected fault model [23, 32],
measurements from the first phase, and parameters of the
surrounding environment to predict performability. De-
signers can use this model to study the potential impact
of different design decisions on the server’s behavior. We
introduce a single performability measure to enable de-
signers to easily characterize and compare servers.

To show the practicality of our methodology, we use
it to study the performability of PRESS, a cluster-based
Web server [7]. A significant benefit of analyzing PRESS
is that, over time, the designers of PRESS have accu-
mulated different versions with varying levels of perfor-
mance. Using our methodology, we can quantify the im-
pact of changes from one version to another on avail-
ability, and therefore, performability, producing a more
complete picture than just the previous data on perfor-
mance. For example, a PRESS version using TCP for
intra-cluster communication achieves a higher overall
performability score even though it does not perform
as well as a version using VIA. We also show how our
model can be used to predict the impact of design or en-
vironmental changes; in particular, we use our model to
study PRESS’s sensitivity to operator coverage and using
RAIDs instead of independent SCSI disks.

We make the following contributions:

� We propose a methodology that combines fault in-
jection, experimentation, and modeling to quantify
a server’s availability as well as its performance.

� We demonstrate the power of our methodology by



using it to evaluate four different versions of a so-
phisticated cluster-based server. We also quantita-
tively evaluate design and environmental tradeoffs
on the server’s performability.

� We use results from our study to derive sev-
eral guidelines on how to design highly available
cluster-based servers.

The remainder of the paper is organized as fol-
lows. The next section describes our methodology and
performability metric. Section 3 describes our fault-
injection infrastructure. Section 4 describes the basic ar-
chitecture of the PRESS server and its different versions.
Section 5 presents the results of our fault-injection ex-
periments into the live server. Section 6 describes the
results of our analytical modeling of PRESS. We discuss
the lessons we learned in Section 7. Section 8 describes
the related work. Finally, in Section 9 we draw our most
important conclusions.

2 Methodology and Metric

Our methodology for evaluating servers’ performability
is comprised of two phases. In the first phase, the eval-
uator defines the set of all possible faults, then injects
them (and the subsequent recovery) one at a time into
a running system. During the fault and recovery peri-
ods, the evaluator must quantify performance and avail-
ability as a function of time. We currently equate per-
formance with throughput,the number of requests suc-
cessfully served per second, and define availability asthe
percentage of requests served successfully. In the second
phase, the evaluator uses an analytical model to compute
the expected average throughput and availability, com-
bining the server’s behavior under normal operation, the
behavior during component faults, and the rates of fault
and repair of each component.

2.1 Phase 1: Measuring Performance Un-
der Single-Fault Fault Loads

There are two tricky issues when injecting faults. First,
when measuring the server’s performance in the pres-
ence of a particular fault, the fault must last long enough
to allow all stages in the model of phase 2 to be ob-
served and measured. The one exception to this guide-
line is that a server may not exhibit all model stages
under certain faults. In these cases, the evaluator must
use his understanding of the server to correctly determine
which stages are missing (and later setting the time of the
stage in the abstract model to 0). Second, a benchmark
must be chosen to drive the server such that the deliv-
ered throughput is relatively stable throughout the obser-

Throughput

CBAPhase

2. Detect fault

(not detected)

5. Server stabilizes

6. Operator Reset

4. Component recovers

Events

3. Server stabilizes

7. All components back up

Time

8. Normal operation

D E F G

1. Component fault occurs
5 6 71 2 3 4 8

Figure 1:The 7-stage piece-wise linear model specified
by our methodology for evaluating the performability of
cluster-based servers.

vation period (except for transient warm up effects). This
is necessary to decouple measured performance from the
injection time of a fault.

2.2 Phase 2: Modeling Performability Un-
der Expected Fault Loads

Our model for describing average performance and avail-
ability is built in two parts. The first part of the model
describes the system’s response to each fault in 7 stages.
The second part combines the effects of each fault along
with the MTTF (Mean Time To Failure) and MTTR
(Mean Time To Recovery) of each component to arrive
at an overall average availability and performance.

Per-Fault Seven-Stage Model. Figure 1 illustrates our
7-stage model of service performance in the presence of
a fault. Time is shown on the X-axis and throughput
is shown on the Y-axis. Stage A models the degraded
throughput delivered by the system from the occurrence
of the fault to when the system detects the fault. Stage B
models the transient throughput delivered as the system
reconfigures to account for the fault; the system may take
some time to reach a stable performance regime because
of warming effects. We model the throughput during this
transient period as the average throughput for the period.
After the system stabilizes, throughput will likely remain
at a degraded level because the faulty component has not
yet recovered, been repaired or replaced. Stage C mod-
els this degraded performance regime. Stage D models
the transient performance after the component recovers.
Stage E models the stable performance regime achieved
by the service after the component has recovered. Note
that in the figure, we show the performance in E as being
below that of normal operation; this may occur because
the system is unable to reintegrate the recovered compo-
nent or reintegration does not lead to full recovery. In
this case, throughput remains at the degraded level un-
til an operator detects the problem. Stage F represents
throughput delivered while the server is reset by the oper-
ator. Finally, stage G represents the transient throughput
immediately after reset.



For each stage, we need two parameters: (i) the length
of time that the system will remain in that stage, and
(ii) the average throughput delivered during that stage.
The latter is measured in phase 1. The former is either
measured, or is a parameter that must be supplied. For
example, the time that a service will remain in stage B
assuming that the fault last sufficiently long is typically
measured; the time a service will remain in stage E is
typically a supplied parameter.

Sometimes stages may not be present or may be cut
short. For example, if there are no warming effects, then
stages B, D, and G would not exist. In practice, we set
the length of time the system is in such a state to zero. If
the assumed MTTR of a component is less than the mea-
sured time for stages A and B, then we assume that B is
cut short when the component recovers. The evaluator
must analyze the measurements gathered in phase 1, the
assumed parameters of the fault load, and the environ-
ment carefully to correctly parameterize the model.

Modeling Overall Availability and Performance. Hav-
ing defined the server’s response to each fault, we now
must combine all these effects into an average perfor-
mance and average availability metric. To simplify the
analysis, we assume that faults of different components
are not correlated, fault arrivals are exponentially dis-
tributed, and faults queue at the system so that only a
single fault is in effect at any point in time. These as-
sumptions allow us to add together the various fractions
of time spent in degraded modes. IfTn is the server
throughput under normal operation,c is the faulty com-
ponent,T sc is the throughput of each stages when faultc
occurs, andDs

c is the duration of each stage, our model
leads to the following equations for average throughput
(AT) and average availability (AA):

AT = (1�
X

c

Wc)Tn +
X

c

GX

s=A

(
Ds
c

MTTFc
T sc )

AA =
AT

Tn

whereWc = (
PG

s=AD
s
c)=MTTFc. In plain English,

Wc is the expected fraction of the time during which
the system operates in the presence of faultc. Thus,
the(1�

P
cWc)Tn factor above computes the expected

throughput when the system is free of any fault, whereas
the
PG

s=A(
Ds

c

MTTFc
T sc ) factor computes the expected av-

erage throughput when the system is operating with a
single fault of typec. Note thatTn represents the offered
load assuming that the server is not saturated under nor-
mal operation, soAT=Tn computes the expected frac-
tion of offered requests that are successfully served by
the system.

It is interesting to consider why the denominator of
Wc is justMTTFc instead ofMTTFc+MTTRc. The
equation forWc is correct as it is because the assump-
tions listed above imply that when a fault occurs and
is on-going, any other fault could arrive and queue at
the system, including a fault to the same component.
The impact on our model is that we compute the frac-
tion of downtime asMTTR

MTTF
, not as the more typical

MTTR
MTTF+MTTR

. In practice, the numerical impact of this
difference is minimal, becauseMTTF >> MTTR.

Limitations. A current limitation of our model is that
it does not capture data integrity faults; that is, faults
that lead to incorrect data being served to clients. Rather
it assumes the only consequence of component faults is
degradation in performance or availability. While this
model is obviously not general enough to describe all
cluster-based servers, we believe that it is representative
of a large class of servers, such as front-end servers (in-
cluding PRESS) and other read-only servers.

Another limitation of our model is that it is based
on the measured response to single faults; the model
can thus only capture multiple simultaneous faults as
a sequence of non-overlapping faults. If we assume
that faults are independent, then the introduced error is
bounded by the probability of there being two or more
jobs in a single multi-class server queue when the fault
arrival andrepair processes are viewed in a queuing-
theoretic framework. Intuition tells us that the proba-
bility of seeing multiple simultaneous faults for practical
MTTFs and MTTRs should be extremely low. Deter-
mining the probability of simultaneous faults exactly is
not straightforward, but our initial approximations (as-
suming the rates in this paper) show that we can expect
around 2 multi-fault events per year. On the other hand,
there are indications that failures are not always indepen-
dent [22, 35], as well as anecdotal evidence that baroque,
complex failures are not uncommon [14]. These ob-
servations imply that the independence assumptions in
our model will result in optimistic predictions for the
frequency of multi-fault scenarios [33]. Unfortunately,
there is no study that quantifies such correlations for
cluster-based Internet services. In the future, we may ex-
tend our methodology for designers to test their service’s
sensitivity to sets of potentially correlated faults.

2.3 Performability Metric

Despite much work that studies both performance and
availability (e.g., [21, 30]), there is arguably nosingle
performability metric for comparing systems. Thus, we
propose a combinedperformability metric that allows di-
rect comparison of systems using both performance and
availability as input criteria. Our approach is to multiply
the average throughput by an availability factor; the chal-



lenge, of course, is to derive a factor that properly bal-
ances both availability and performance. Because avail-
ability is often characterized in terms of “the number of
nines” achieved, we believe that a log-scaled ratio of how
each server compares to an ideal system is an appropriate
availability measure, leading to the following equation
for performability:

P = Tn �
log(AI )

log(AA)

whereAI is an ideal availability,Tn is the throughput
under normal operation,AA is the average availability,
andP is the performability of the system.AI must be
less than 1 but can otherwise be chosen by the service
designers to represent the availability that is desired for
the service, e.g., 0.99999.

This metric is an intuitive measure for performabil-
ity because it scales linearly with both performance and
unavailability. Obviously, if performance doubles, our
performability metric doubles. On the other hand, if the
unavailability decreases by a factor of 2, then performa-
bility also roughly doubles. The intuition behind this re-
lationship between unavailability (u) and performability
is that we can approximatelog(1 � u) as�u whenu is
small. Further, if the service designers wish to weigh one
factor more heavily than the other, their importance can
easily be adjusted by multiplying each term by a separate
constant weight.

3 Mendosus

Mendosus is a fault injection and network emulation in-
frastructure designed to support phase 1 of our method-
ology. Mendosus addresses two specific problems that
service designers are faced with today: (1) how to assem-
ble a sufficiently representative test-bed to test a service
as it is being built, and (2) how to conveniently introduce
faults to study the service’s behavior under various fault
loads. In this section, we first briefly describe Mendo-
sus’s architecture and then discuss the fault models used
by the network, disk, and node fault injection modules,
which are used extensively in this work, in more detail.

3.1 Architecture

Mendosus is comprised of four software components
running on a cluster of PCs physically interconnected by
a Giganet VIA network: (1) a central controller, (2) a
per-node LAN emulator module, (3) a set of per-node
fault-injection kernel modules, and (4) a per-node user-
level daemon that serves as the communication conduit
between the central controller and the kernel modules.

The central controller is responsible for deciding when
and where faults should be injected and for maintaining
a consistent view of the entire network. When emula-
tion starts, the controller parses a configuration file that
describes the network to be emulated and components’
fault profiles. It forwards the network configuration to
the daemon running at each node of the cluster. Then,
as the emulation progresses, it uses the fault profiles to
decide what faults to inject and when they should be in-
jected. It communicates with the per-node daemons as
necessary to effect the faults (and subsequent recovery).
Note that while there is one central controller per emu-
lated system, it does not limit the scalability of Mendo-
sus: the controller only deals with faults and does not
participate in any per message operations.

The per-node emulation module maintains the topol-
ogy and status of the virtual network to route messages.
To emulate routing in Ethernet networks, a spanning tree
is computed for the virtual network. Each emulated NIC
is presented as an Ethernet device; a node may have
multiple emulated NICs. When a packet is handed to
the Ethernet driver from the IP layer, the driver invokes
the emulation module to determine whether the packet
should be forwarded over the real network (and which
node it should be forwarded to). The emulation mod-
ule determines the emulated route that would be taken
by the packet. It then queries the network fault-injection
module whether the packet should be forwarded. If the
answer is yes, the packet is forwarded to the destination
over the underlying real network. The emulation module
uses multiple point-to-point messages to emulate Ether-
net multicast and broadcast. A leaky bucket is used to
emulate Ethernet LANs with different speeds.

Finally, the set of fault-injection kernel modules effect
the actual faults as directed by the central controller. Cur-
rently, we have implemented 3 modules, allowing faults
to be injected into the network, SCSI disk subsystems,
and individual nodes. The challenge in implementing
these subsystems is to accurately understand the set of
possible real faults and the fault reporting that percolates
from the device through the device drivers, operating sys-
tems, and ultimately, up to the application. We describe
the fault models we have implemented in more details in
the next several sections.

3.2 Network Fault Model

The network fault model includes faults possible for net-
work interface cards, links, hubs, and switches. For each
component, a fault can lead to probabilistic packet loss
or complete loss of communication. In addition, for
switches and hubs, partial failures of one or more ports
are possible. All faults are transient although a perma-
nent fault can be injected by specifying a down time that



Fault Characteristic OS Masking of Fault
Disk hang Sticky Unmasked
Disk offline Sticky Unmasked
Power failure Sticky Unmasked
Read fault Sticky Unmasked in Linux
Write fault Sticky Unmasked in Linux
Timeout Transient Unmasked
Parity errors Transient Masked
Bus busy Transient Masked
Queue full Transient Masked

Table 1:SCSI faults that Mendosus can currently inject.

is greater than the time required to run the fault-injection
experiment.

Our fault-injection module is embedded within an em-
ulated Ethernet driver. Recall that the emulated driver
also includes our LAN emulator module, which contains
all information needed to compute the route that each
packet will take. Fault injection for the network subsys-
tem is straightforward when the communication protocol
already implements end-to-end fault detection. Faults are
effected simply by checking whether all components on
the route are up. If any are down, the packet is simply
dropped. If any components are in an intermittent faulty
state, then the packet is dropped (or sent) according to
the specified distribution.

Recall that the central controller is responsible for in-
structing the network fault injection modules on when,
where, and what to inject dynamically. Instructions from
the central controller are received by the local daemon
and passed to the injection module through the ioctl in-
terface. The fault-injection and emulation modules must
work together in that faults may require the emulation
module to recompute the routing spanning tree. The cen-
tral controller is responsible for determining when a set
of faults leads to network partition. When this occurs, the
controller must choose a root for each partition so that
the nodes within the partition can recompute the routing
spanning tree.

3.3 SCSI Disk Fault Model

The SCSI subsystem is comprised of the hard disk de-
vice, the host adaptor, a SCSI cable connecting the two,
and a hierarchy of software drivers. Higher layers in the
system try to mask faults at lower levels and only the fatal
faults are explicitly passed up the hierarchy. We model
faults that are noticeable by the application either by ex-
plicitly forcing error codes reported by the operating sys-
tem, or implicity by extended delays in the completion of
disk operations.

We broadly classify possible faults into two cate-
gories:transient andsticky (non-transient). For transient
faults, the disk system recovers after a small finite in-

terval (on order of a few seconds in most cases); sticky
faults require human intervention for correction. Exam-
ples of transient faults are SCSI timeouts, and recover-
able read and write faults, whereas disk hang, external
SCSI cable unplugging and power failures (to external
SCSI housing) are sticky failures.

The impact of these faults on the system depends on
whether the OS can and does attempt to mask the fault
from the application through either a retry or some other
corrective action. For example, a parity error in the
SCSI bus is typically masked by the OS through a retry,
whereas the OS does not attempt to mask a disk hang due
to a firmware bug because this error likely requires ex-
ternal intervention. Masked faults may introduce tolera-
ble delays, whereas unmasked faults may lead to stalling
of execution. However, some unmasked faults, if recog-
nized, can be handled by using alternate resources. This
involves implementing smarter, fault-aware systems.

Table 1 shows the faults that we can inject into the
SCSI subsystem. The fault injection module is inter-
posed between the adapter-specific low-level driver and
the generic mid-level driver. Instructions for injecting
faults received from the central controller by the local
daemon are communicated to the fault injection module
through the proc filesystem. To effect faults, the fault
injection module traps the queuing of disk operation re-
quests to the low-level driver and prevents or delays the
operation that should be faulty from reaching the low-
level driver. In the former case, the module must return
an appropriate error message.

The mid-level driver implements an error handler
which diagnoses and corrects rectifiable faults reported
by the low-level driver, either by retrying the command
or by resetting the host, bus, device, or a combination of
these. The unmasked read and write faults, caused by bad
sectors unremappable by the disk controller are not han-
dled by the upper drivers or the file system in Linux. This
causes read and write operations to the bad sector to fail
forever. The disk can be taken offline by the new error
handler code introduced in 2.2+ Linux kernels when all
efforts to rectify an encountered error fail. The disk can
also be offline if it has been taken out for maintainence
or replacement.

3.4 Node and Process Fault Models

Currently, our node and process fault model is simple.
Mendosus can inject three types of node faults: hard re-
boot, soft reboot, and node freeze. All can be either tran-
sient or permanent, depending on the specified fault load.
In the application process fault model, Mendosus can in-
ject an application hang or crash. We may consider more
subtle node/process faults such as memory corruption in
the future.



This fault model is implemented inside the user-level
daemon at each node. For our study of PRESS, the server
process on each node is started by the daemon. An ap-
plication hang is injected by having the daemon send
a SIGSTOP to the server process. The process can be
restarted if the fault is transient by sending a SIGCTN to
it. A process crash is injected by killing the process.

Node faults are introduced using an APC power man-
agement power strip. Reboot faults are introduced by
having the daemon on the failing node contact the APC
power strip to power cycle that node. In the case of a
soft reboot, the daemon can ask the APC for a delayed
power cycle and then run a shutdown script. For a node
freeze, the daemon directs a small kernel module to spin
endlessly to take over the CPU for some amount of time.

4 The PRESS Server

PRESS is a highly optimized yet portable cluster-based
locality-conscious Web server that has been shown to
provide good performance in a wide range of scenar-
ios [7, 8]. Like other locality-conscious servers [27, 2, 4],
PRESS is based on the observation that serving a request
from any memory cache, even a remote cache, is sub-
stantially more efficient than serving it from disk, even
a local disk. In PRESS, any node of the cluster can re-
ceive a client request and becomes theinitial node for
that request. When the request arrives at the initial node,
the request is parsed and, based on its content, the node
must decide whether to service the request itself or for-
ward the request to another node, theservice node. The
service node retrieves the file from its cache (or disk) and
returns it to the initial node. Upon receiving the file from
the service node, the initial node sends it to the client.

To intelligently distribute the HTTP requests it re-
ceives, each node needs locality and load information
about all the other nodes. Locality information takes the
form of the names of the files that are currently cached,
whereas load information is represented by the number
of open connections handled by each node. To dissemi-
nate caching information, each node broadcasts its action
to all other nodes whenever it replaces or starts caching a
file. To disseminate load information, each node piggy-
backs its current load onto any intra-cluster message.

Communication Architecture. PRESS is comprised of
onemain coordinating thread and a number of helper
threads used to ensure that themain thread never blocks.
The helper threads include a set ofdisk threads used
to access files on disk and a pair ofsend/receive
threads for intra-cluster communication.

PRESS can use either TCP or VIA for intra-cluster
communication. The TCP version basically has the same
structure of its VIA counterpart; the main differences are

the replacement of the VI end-points by TCP sockets and
the elimination of flow control messages, which are im-
plemented transparently to the server by TCP itself.

Reconfiguration. PRESS is often used (as in our ex-
periments) without a front-end device, relying on round-
robin DNS for initial request distribution to nodes. Some
versions of PRESS have been designed to tolerate node
(and application process) crashes, removing the faulty
node from the cooperating cluster when the fault is de-
tected and re-integrating the node when it recovers. The
detection mechanism when TCP is used for intra-cluster
communication employs periodic heartbeat messages.
To avoid sending too many messages, we organize the
cluster nodes in a directed ring structure. A node only
sends heartbeats to the node it points to. If a node does
not receive three consecutive heartbeats from its prede-
cessor, it assumes that the predecessor has failed.

Fault detection when VIA is used for intra-cluster
communication is simpler. PRESS does not have to send
heartbeat messages itself since the communication sub-
system promptly breaks a connection on the detection of
any fault. Thus, a node assumes that another node has
failed if the VIA connection between them is broken. In
this implementation, nodes are also organized in a di-
rected ring, but only for recovery purposes.

In both cases, temporary recovery is implemented by
simply excluding the failed node from the server. Mul-
tiple node faults can occur simultaneously. Every time a
fault occurs, the ring structure is modified to reflect the
new configuration.

The second and final step in recovery is to re-integrate
a recovered node into the cluster. When using TCP,
the rejoining node broadcasts its IP address to all other
nodes. The currently active node with lowest id responds
by informing the rejoining node about the current clus-
ter configuration and its node id. With that information,
the rejoining node can reestablish the intra-cluster con-
nections with the other nodes. After each connection is
reestablished, the rejoining node is sent the caching in-
formation of the respective node. When the intra-cluster
communication is done with VIA, the rejoining node
simply tries to reestablish its connection with all other
nodes. As connections are reestablished, the rejoining
node is sent the caching information of the respective
nodes.

Versions. Several versions of PRESS have been devel-
oped in order to study the performance impact of differ-
ent communication mechanisms [8]. Table 2 lists the ver-
sions of PRESS that we consider in this paper. The base
version of PRESS, I-PRESS, is comprised of a number
of independent Web servers (based on the same code as
PRESS) answering client requests. This is equivalent to
simply running multiple copies of Apache, for example.



Version Main Features

I-PRESS Independent servers
TCP-PRESS Cooperative caching servers using TCP

for intra-cluster communication
ReTCP-PRESS Cooperative caching servers using TCP

for intra-cluster communication and dy-
namic reconfiguration

VIA-PRESS Cooperative caching servers using VIA
for intra-cluster communication and dy-
namic reconfiguration

Table 2:Versions of PRESS available for study.

The other versions cooperate in caching files and differ
in terms of their concern with availability, and the per-
formance of their intra-cluster communication protocols.

5 Case Study: Phase 1

We now apply the first phase of our methodology to eval-
uate the performability of PRESS. We first describe our
experimental testbed, then show a sampling of PRESS’s
behavior under our fault loads. Throughout this sec-
tion, we do not show results for I-PRESS as they entirely
match expectation: the achieved throughput simply de-
pends on how many of the nodes are up and able to serve
client requests.

5.1 Experimental Setup

In all experiments, we run a four-node version of PRESS
on four 800 MHz PIII PCs, each equipped with 206 MB
of memory and 2 10,000 RPM 9 GB SCSI disks. Nodes
are interconnected by a 1 Gb/s cLAN network. We
can communicate with TCP or VIA over this network.
PRESS was allocated 128 MB on each node for its file
cache; the remainder of the memory was sufficient for
the operating system. In our experiments, PRESS only
serves static content and the entire set of documents is
replicated at each node on one of the disks. PRESS was
loaded at 90% of saturation and set to warm up to this
peak throughput over a period of 5 minutes. Note that,
because we are running so close to saturation and PRESS
already implements sophisticated load balancing, we do
not apply a front-end load distributor. Under such high
load and little excess capacity, the front-end would not
prevent the loss of requests in the event of a fault.

The workload for all experiments is generated by a set
of 4 clients running on separate machines connected to
PRESS by the same network that connects the nodes of
the server. The total network traffic does not saturate any
of the cLAN NICs, links, and switch, and so the interfer-
ence between the two classes of traffic is minimal in our

Subsystem Fault Characteristics

Network Link down Transient - 5, 180 secs
Switch down Transient - 5, 180 secs

Disk SCSI timeout Transient - 120 secs
Disk hang Sticky
Read faults Sticky
Write faults Sticky

Node Hard reboot Transient - 180 secs
Node freeze Transient - 180 secs

Application Process crash Transient - 180 secs
Process hang Transient - 180 secs

Table 3:Fault loads for PRESS performability study. For
transient faults, the given times represent the duration of
the faults.

setup. Finally, Mendosus’s network emulation system al-
lows us to differentiate between intra-cluster communi-
cation and client-server communication when injecting
network-related faults. Thus, the clients are never dis-
turbed by faults injected into the intra-cluster communi-
cation.

Each client generates load by following a trace gath-
ered at Rutgers; we chose this trace from several that Car-
rera and Bianchini previously used to evaluate PRESS’s
performance because it has the largest working set [7].
Results for other traces are very similar. To achieve a par-
ticular load on the server, each client generates a stream
of requests according to a Poisson process with a given
average arrival rate. Each request is set to time out af-
ter 2 seconds if a connection cannot be completed and to
time out after 6 seconds if, after successful connection,
the request cannot be completed.

Finally, Table 3 lists the set of faults that we inject into
a live PRESS system to study its behavior. Faults fall
into four categories: network, disk, node, and applica-
tion. Note that these generic faults can be caused by a
wide variety of reasons for a real system; for example,
an operator accidentally pulling out the wrong network
cable would lead to a link failure. We cannot focus on
all potential causes because this set is too large. Rather,
we focus on the class of failures as observed by the sys-
tem, using an MTTF that covers all potential causes of a
particular fault. This set is comprehensive with respect
to PRESS in that it covers just about all resources that
PRESS uses in providing its service.

5.2 Network Faults

In this section, we study PRESS’s behavior under net-
work faults. Figure 2 shows the effects of a transient
switch fault. We first discuss what happened in each
case, then make an interesting general observation.

TCP-PRESS behaved exactly as expected: through-
put drops to zero a short time after the occurrence of the



0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

ReTCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

VIA-PRESS

Figure 2:Effects of transient switch faults. Pairs of vertical lines represent the start and end times of injected faults.

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

ReTCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

VIA-PRESS

Figure 3:Effects of transient SCSI time-out faults. Pairs of vertical lines represent the start and end times of injected
faults.

fault because the queues for intra-server communication
fill up as the nodes attempt to fetch content across the
faulty switch. Throughput stays at zero until the switch
comes back up. For ReTCP-PRESS, the first switch fault
leads to the same behavior as TCP-PRESS; the reconfig-
uration code does not activate because the fault is suffi-
ciently short that no heartbeat is lost. The longer switch
fault, however, triggers the reconfiguration code, leading
ReTCP-PRESS to reconfigure into 4 groups of single-
ton. The detection time is determined by the heartbeat
protocol, which uses a DEADTIME interval of 15 sec-
onds (3 heartbeats). For VIA-PRESS, the switch fault is
detected almost immediately by the device driver, which
breaks all VIA connections to unreachable nodes. This
immediately triggers the reconfiguration of VIA-PRESS
into four sub-clusters.

Interestingly, ReTCP-PRESS and VIA-PRESS do not
reconfigure back into a single cluster once the switch
returns to normal operation. This surprising behavior
arises from a mismatch between the fault model assumed
by the reconfigurable versions of PRESS and the ac-
tual fault. These versions of PRESS assume that nodes
fail but links and switches do not. Thus, reconfigura-
tion occurs at startup and on loss of 3 heartbeats, but re-
integration into a single group only happens at startup.
If a cluster is splintered as above, they never attempt to
rejoin. Return to full operation thus would require the
intervention of an administrator to restart all but one of
the sub-clusters. This, in effect, make these reconfig-

urable versionsless robust than the basic TCP-PRESS in
the face of relatively short transient faults, and points to
the importance of the accuracy of the fault model used in
designing a service.

Finally, we do not show results for the link/NIC fault
here because they essentially lead to the same behaviors
as above.

5.3 Disk Faults

Recall that each server machine contains two SCSI disks,
one holding the operating system and the second the file
set being served by PRESS. We inject faults into only the
second disk to minimize the interference from operating
system-related disk accesses (e.g., page swapping) while
observing the behavior of PRESS under disk faults.

Figure 3 shows PRESS’s behavior under SCSI time-
outs. TCP-PRESS and VIA-PRESS behave exactly as
one would expect. When the fault lasts long enough,
all disk helper threads become blocked and the queue
between thedisk threads and themain thread fills
up. When this happens, themain thread itself becomes
blocked when it tries to initiate another read. Once one
of the nodes grinds to a halt, then the entire server even-
tually comes to a halt as well. When the faulty disk re-
covers, the entire system regains its normal operation.

ReTCP-PRESS, on the other hand, interprets the long
fault as a node fault and so splinters into sub-clusters, one
with 3 nodes and one singleton. This splintering of the



0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

ReTCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

VIA-PRESS

Figure 4:Effects of a node crash. Pairs of vertical lines represent the start and end times of injected faults.

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

TCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

ReTCP-PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

400 500 600 700 800 900 1000 1100 1200

R
eq

ue
st

s/
se

c

Time in secs

VIA-PRESS

Figure 5: Effects of one PRESS process crash. Pairs of vertical lines represent the start and end times of injected
faults.

server cluster is caused by missing heartbeats. Similar to
the argument for TCP-PRESS and VIA-PRESS above,
when alldisk threads block because of the faulty disk,
themain thread also eventually blocks when it tries to
initiate yet one more read. In this case, however, themain
thread is also responsible for sending the heartbeat mes-
sages. Thus, when it blocks, its peers do not get any more
heartbeats and so assume that that node is down; at this
point, the reconfiguration code takes over, leading to the
splinter.

We do not show results for disk hang, read and write
faults because the behaviors are much as expected.

5.4 Node Faults

Figure 4 shows the effects of a hard reboot fault. Be-
cause it is not capable of reconfiguration, TCP-PRESS
grinds to a halt while the faulty node is down. When the
node successfully reboots, however, theopen TCP con-
nections of the three non-faulty nodes with the recovered
node break. At this point, the PRESS processes running
on these nodes realize that something has happened to
the faulty node and stop attempting to coordinate with
it. Thus, server operation restarts with a cluster of 3
nodes. When the faulty node successfully completes the
reboot sequence, Mendosus starts another PRESS pro-
cess automatically. However, since TCP-PRESS cannot
reconfigure, correct operation with a cluster of 4 nodes
cannot take place until the entire server is shutdown and

restarted.
ReTCP-PRESS and VIA-PRESS behave exactly as

expected. Operation of the server grinds to a halt until the
reconfiguration code detects a fault. The three non-faulty
nodes recover and operate as a cooperating cluster. When
the faulty node recovers and the PRESS process has been
restarted, it joins in correctly with the three non-faulty
processes and throughput eventually returns to normal.

We do not show results for a node freeze because they
are similar to those for a SCSI time-out. TCP-PRESS
and VIA-PRESS degrades to 0 throughput during the
fault but recovers fully. ReTCP-PRESS splinters and
cannot recover fully.

5.5 Application Faults

Figure 5 shows the effects of an application crash, which
are similar to those of a node crash. The one difference
is that TCP-PRESS recovers from 0 throughput more
rapidly because it can detect the fault quickly through
broken TCP connections. The effects of an application
hang are exactly the same as a node freeze.

6 Case Study: Phase 2

We now proceed to the second phase of our methodol-
ogy: using the analytical model to extrapolate performa-
bility from our fault-injection results. We first compare
the performance, availability, and performability of the



Throughput

0

1000

2000

3000

4000

5000

6000

7000

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

R
eq

u
es

ts
/s

ec

Unavailability by Component

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

U
n

av
ai

la
b

ili
ty

application crash

node crash

scsi timeout

internal switch

internal link

(a) (b)
Figure 6:(a) Average modeled throughput and (b) modeled unavailability (1 - availability).

Fault MTTF MTTR
Link down 6 months 3 minutes
Switch down 1 year 1 hour
SCSI timeout 1 year 1 hour
Hard reboot 2 weeks 3 minutes
Process crash 1 month 3 minutes

Table 4:Faults and their MTTFs and MTTRs.

Phase Switch Fault Application Crash
Thruput Duration Thruput Duration

(reqs/sec) (secs) (reqs/sec) (secs)
A 892.40 75 1889.10 10
B – 0 3143.55 145
C 1106.70 3525 4537.60 25
D – 0 4789.13 45
E 1209.60 300 – 0
F 0.0 300 – 0
G 3017.00 300 – 0

Table 5:Example throughput and duration of the phases
in our model for VIA-PRESS for two different faults.
Note that for some types of faults, some phases collapse
into a single phase or are not used.

different versions of PRESS. Then, we show how we
can use the model to evaluate design tradeoffs, such as
adding a RAID or increasing operator support.

6.1 Parameterizing the Model

We parameterize our model by using the data col-
lected in phase one, the fault load shown in Ta-
ble 4, and a number of assumptions about the en-
vironment. Since we cannot list all data extracted
from phase 1 here because of space constraints,
we refer the interested reader to http://www.panic-
lab.rutgers.edu/Research/mendosus/. Table 5 provides a
flavor of this data, listing the throughput and duration
of each phase of our 7-stage model for VIA-PRESS for
two types of faults. The MTTFs and MTTRs shown in
Table 4 were chosen based on previously reported faults
and fault rates [13, 16, 32]. Note that we do not model

all the faults that we can inject because there are no reli-
able statistics for some of them, e.g., application hangs.
Finally, our environmental assumptions are that operator
response time for stage E is 5 minutes and cluster reset
time for stage F is 5 minutes. Recall from Section 5.1
that G, the warm up period, was also set to 5 minutes.

6.2 Modeling Results

Figure 6(a) shows the expected average throughput in the
face of component faults for the 4 PRESS versions. As
has been noted in previous work, the locality-conscious
request distribution significantly improves performance.
The use of user-level communication improves perfor-
mance further.

Figure 6(b) shows the average unavailability of the dif-
ferent versions of PRESS. Each bar includes the con-
tributions of the different fault types to unavailability.
These results show that availability is somewhat disap-
pointing, on the order of 99.9%, or “three nines”. How-
ever, recall that the servers were operating near peak; any
loss in performance, such as losing a node or splintering,
results in an immediate loss in throughput (and in many
failed requests). A fielded system would reserve excess
capacity for handling faults. Exploring this tradeoff be-
tween performability and capacity is a topic for our fu-
ture research.

Comparing the systems, observe that I-PRESS
achieves the best availability because there’s no coor-
dination between the nodes. TCP-PRESS is almost an
order of magnitude worse than I-PRESS; this is per-
haps expected since TCP-PRESS does a very poor job
of tolerating and recovery from faults. More interest-
ingly, ReTCP-PRESS gives better availability than VIA-
PRESS. Looking at the bars closely, we observe that this
is because ReTCP-PRESS is better at tolerating SCSI
timeouts. This is fortuitous rather than by design: as
previously discussed, when a SCSI timeout occurs, the
heartbeats are delayed in ReTCP-PRESS, causing the
cluster to reconfigure and proceed without the faulty
node. VIA-PRESS does not reconfigure because the



Performability

0

10

20

30

40

50

60

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

P
er

fo
rm

ab
ili

ty

Figure 7:Performability of each version of PRESS when
AI = 0:99999 or “five nines availability.”

communication subsystem does not detect any fault.
Finally, Figure 7 shows the performability of the dif-

ferent PRESS versions. We can see that although the
locality-aware, cooperative nature of TCP-PRESS does
deliver increased performance, the lack of much, if any,
fault-tolerance in its design reduces availability signif-
icantly, giving it a lower performability score than I-
PRESS. The superior performance of the ReTCP and
VIA versions of PRESS make up for their lower avail-
ability over I-PRESS. Again, the fact that ReTCP gives
a better performability score than VIA-PRESS is the for-
tuitous loss of heartbeats on SCSI timeouts. Thus, we do
not make any conclusion based on this difference (rather,
we discuss the nature of heartbeats in Section 7).

Quantifying Design Tradeoffs. Analytical modeling of
faults and their phases enables us to explore the impact
of our server designs on performability. Thus, we exam-
ine two alternative design decisions to the ones we have
explored so far.

The first design change is to reduce the operator cover-
age. In the previous model, the mean time for an opera-
tor to respond when the server entered a non-recoverable
state was 5 minutes. This represents the PRESS servers
running under the watchful eyes of operators 24x7. How-
ever, as this is quite an expensive proposition, we re-
duced the mean response to 4 hours and observed the
performability impact.

Figure 6(b) suggests that disks are a major cause of
unavailability. In this second design change, we added
a much more reliable disk subsystem, e.g., a RAID.
We modeled the better disk subsystem by increasing the
mean time to failure of the disks by a factor of five, but
keeping the MTTR of the disks the same.

Figure 8 shows the performability impact of these two
design changes. The center bar represent the same “ba-
sic” results as in Figure 7. The left most bar is the basic
system with a 4-hour operator response, and the right is
the basic system enhanced with a RAID.

Our modeling results show that running the coopera-
tive versions in an environment with quick operator re-

Performability Tradeoffs

0

10

20

30

40

50

60

70

80

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

P
er

fo
rm

ab
ili

ty

4hour Operator
Normal
RAID

Figure 8:Impact of reducing the mean operator response
from 5 minutes to 4 hours and adding a more reliable
disk subsystem.

sponse is critical (unless fault recovery can be improved
significantly): the performability of all the cooperative
versions become less than that of I-PRESS. On the other
hand, our results show that I-PRESS is insensitive to op-
erator response time as expected.

The performability models also demonstrate the utility
of a highly-reliable disk subsystem. Figure 8 show that
by purchasing increasingly reliable disk subsystems, per-
formability of all versions of PRESS is enhanced, e.g.,
approximately 84% for VIA-PRESS. In fact, ReTCP-
PRESS and VIA-PRESS achieve virtually the same per-
formability in the presence of this more sophisticated
disk subsystem. These results suggest that the overall
system impact of redundant disk organizations, such as
RAIDs, is substantial.

Scaling to Larger Cluster Configurations. We now
consider how to scale our model to predict the performa-
bility of services running on larger clusters. Such scal-
ing may be needed because systems are typically not de-
signed and tested at full deployment scale. We demon-
strate the scaling process by scaling our measurements
collected on the 4-node cluster to predict PRESS’s per-
formability on 8 nodes, which is the largest configuration
we can achieve using our current testbed for validation.
We then compare these results against what happens if
the fault-injections and measurements were performed
directly on an 8-node system.

Essentially, our model depends on three types of pa-
rameters: the mean time to failure of each component
(MTTFc), the duration of each phase during the fault
(Dp

c ), and the (average) throughput under normal oper-
ation (Tn) and during each fault phase (T pc ). These pa-
rameters are affected by scaling in different ways.

Let us refer to theMTTFc in a configuration withN
nodes asMTTFNc . MTTFc in a configuration withS
times more nodes,MTTF SNc , isMTTFNc =S. Assum-
ing that the bottleneck resource is the same for the N-
node and the SN-node configurations, the durationsD p

c

should be the same under both configurations. Further



Unavailability by Component

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

U
n

av
ai

la
b

ili
ty

application crash

node crash

scsi timeout

internal switch

internal link

Unavailability by Component

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

U
n

av
ai

la
b

ili
ty

application crash

node crash

scsi timeout

internal switch

internal link

Unavailability by Component

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

U
n

av
ai

la
b

ili
ty

application crash

node crash

scsi timeout

internal switch

internal link

Performability

0

20

40

60

80

100

120

140

160

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

P
er

fo
rm

ab
ili

ty

Performability

0

20

40

60

80

100

120

140

160

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

P
er

fo
rm

ab
ili

ty

Performability

0

20

40

60

80

100

120

140

160

I-PRESS TCP-PRESS ReTCP-PRESS VIA-PRESS

PRESS Versions

P
er

fo
rm

ab
ili

ty

(a) (b) (c)

Figure 9:Unavailability and performability of PRESS on 8 nodes, when (a) scaling analytically from a 4-node config-
uration in which PRESS has 128 MB of memory on each node; (b) using measurements on 8 nodes, each of which has
64 MB of memory; and (c) using measurements on 8 nodes, each of which has 128 MB of memory.

assuming a linear increase in throughput for PRESS (in
general, designers using our methodology will need to
understand/measure throughput vs. number of nodes for
the service under study for scaling), we scale throughput
asTSNn = S � TNn . Unfortunately, the effect of scaling
on the throughput of each fault phase is not as straightfor-
ward. When the effect of the fault is to bring down a node
or make it unaccessible, for instance, the throughput of
phase C should approachT SNn � TSNn =SN underSN
nodes, whereas the average throughput of phases B and
G should approach(T SNn � TSNn =SN)=2 andT SNn =2
respectively. Just as underN nodes, the throughput of
phases A and F should approach 0 underSN nodes.

Finally, an important effect occurs as we scale up,
when the cluster-wide cache space almost eliminates ac-
cesses to disks. This reduces the impact of disk faults
on availability, because the duration of a fault may not
overlap with any accesses to cold files.

Figure 9 shows the scaled modeling results using the
above rules, as well as results using measurements taken
directly on PRESS running on 8-nodes. Observe that our
scaling results are very accurate compared to the mea-
sured results for 8 nodes, each with 64 MB of memory.
This is because the cluster-wide amount of cache mem-
ory was kept constant, thus, PRESS still depended on
the disk for fetching cold files. However, if each node
in the 8-node cluster has 128 MB, then the results are
significantly different. Because disk faults no longer im-
pact availability—the working set fits in memory—VIA-
PRESS now achieves the best performability. When we
eliminate the contribution of disk faults to unavailability
in our scaled modeling, we again achieve a close match
between modeling and measurements.

In summary, we observe that our methodology pro-

duces accurate results when scaling to larger configu-
rations than that available at design/testing time. How-
ever, the service designer must understand the system
well enough to account for effects of crossing bound-
aries, where some resource may become more or less
critical to system behavior.

7 Lessons Learned

Applying our 2-phased methodology to PRESS we
learned a few lessons. First, we found that the fault-
injection phase of our methodology exposed not only
implementation bugs, but more importantly conceptual
gaps in our reasoning about how the system reacts to
faults. For example, an intermittent VIA switch fault cre-
ated a network of singletons that was incapable of rejoin-
ing, even after the switch came back on-line. These ex-
periments demonstrated that some of the faults not orig-
inally considered in the PRESS design had a significant
impact on the behavior of the server. We also found the
second phase of the methodology to be extremely useful
for quantitatively reasoning about the impact of design
tradeoffs. For example, for all versions except I-PRESS,
operator response time is critical to overall performabil-
ity. While a designer may intuitively understand this, our
methodology allows us to quantify the impact of decreas-
ing or increasing operator support.

The second lesson is that runtime fault detection and
diagnosis is a difficult issue to address. Consider the
heartbeat system implemented in ReTCP-PRESS. What
should a loss of heartbeat indicate? Should it indicate a
node fault? Does it indicatesome failure on the node?
How can we differentiate between a node and a com-



munication fault? Should we differentiate between node
and application faults? Again, this implies that systems
must carefully monitor the status of all its components,
as well as have a well-defined reporting system, in which
each status indicator has a clearly defined semantic.

Finally, efforts to achieve high availability will only
pay off if the assumed fault model matches actual fault
scenarios well. Mismatches between PRESS’s fault
model and actual faults led to some surprising results.
A prime example of this is PRESS’s assumption that
the only possible faults are node or application crashes.
This significantly degrades the performability of ReTCP-
PRESS and VIA-PRESS because other faults that also
led to splintering of the cluster (e.g., link fault) eventu-
ally required the intervention of a human operator before
full recovery could occur.

One obvious answer to this last problem is to im-
prove PRESS’s fault model, which is currently very lim-
ited. However, the more complex the fault model, the
more complex the detection and recovery code, leading
to higher chances for bugs. Further, detection would
likely require additional monitoring hardware, leading to
higher cost as well. One idea that we have recently ex-
plored in [24, 26] is to define a limited fault model and
then to enforce that fault model during operation of the
server. We refer to this approach asFault Model En-
forcement (FME). As an example FME policy, in [24]
we enforced the node crash model in PRESS by forcing
any fault that leads to the separation of a process/node
from the main group to cause the automatic reboot of
that node. While this is an extreme example of FME, it
does improve the availability of PRESS substantially, as
well as reduces the need for operator coverage.

8 Related Work

There has been extensive work in analyzing faults and
how they impact systems [11, 31, 17]. Studies bench-
marking system behavior under fault loads include [15,
19]. Unfortunately, these works do not provide a good
understanding of how one would estimate overall system
availability under a given fault load.

There has also been a large number of system avail-
ability studies. Two approaches that are used most of-
ten include empirical measurements of actual fault rates
[3, 13, 20, 16, 23] and a rich set of stochastic process
models that describe system dependencies, fault likeli-
hoods over time, and performance [10, 21, 30]. Com-
pared to these complex stochastic models, our models
are much simpler, and thus more accessible to practition-
ers. This stems from our more limited goal of quanti-
fying performability to compare systems, as opposed to
reasoning about system evolution as a function of time.

A recent work [1] proposed that faults are unavoidable
and so systems should be built to recover rapidly, in ad-
dition to being fault-tolerant. While similar in viewpoint,
our proposed methodology concentrates more on evalu-
ating performability independently of the approach taken
to improve performance or availability.

Perhaps more similar to our work is that of [6],
which outlines a methodology for benchmarking sys-
tems’ availability. Other works have proposed robust-
ness [29] and reliability benchmarks [34] that quantify
the degradation of system performance under faults. Our
work here differs from these previous studies in that we
focus on cluster-based servers. Our methodology and
infrastructure seem to be the first directed to studying
these servers, although recent studies have looked at re-
sponse time and availability of a single-node Apache
Web server [18]. Though other previous work proposes
availability-improving strategies for applications span-
ning large configurations [9], we seem to be the first
group to quantify the performability and the design and
environmental tradeoffs of cluster-based servers.

Finally, we recently used the methodology introduced
here to quantify the effects of two different communica-
tion architectures on the performability of PRESS [25].

9 Conclusions

The need for appropriate methodologies and infrastruc-
tures for the design and evaluation of highly available
servers is rapidly emerging, as availability becomes an
increasingly important metric for network services. In
this paper, we have introduced a methodology that uses
fault-injection and analytical modeling to quantitatively
evaluate the performanceand availability (performabil-
ity) of cluster-based services. Designers can use our
methodology to studywhat if scenarios, predicting the
performability impact of design changes. We have also
introduced Mendosus, a fault-injection and network em-
ulation infrastructure designed to support our methodol-
ogy.

We evaluated the performability of four different ver-
sions of PRESS, a sophisticated cluster-based server, to
show how our methodology can be applied. In addition,
we also showed how our methodology can be used to
assess the potential impact of different design decisions
and environmental parameters. An additional benefit of
studying the various versions of PRESS is that our re-
sults provided insights into server design, particularly
concerning runtime fault detection and diagnosis.

References
[1] P. D. A., A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cut-

ler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Op-



penheimer, N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft.
Recovery-Oriented Computing (ROC): Motivation, Definition,
Techniques, and Case Studies. Technical Report UCB//CSD-02-
1175, University of California, Berkeley, March 2002.

[2] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scalable
Content-Aware Request Distribution in Cluster-Based Network
Servers. InProceedings of USENIX’2000 Technical Conference,
San Diego, CA, June 2000.

[3] S. Asami. Reducing the cost of system administration of a disk
storage system built from commodity components. Technical
Report CSD-00-1100, University of California, Berkeley, June
2000.

[4] R. Bianchini and E. V. Carrera. Analytical and Experimental
Evaluation of Cluster-Based WWW Servers.World Wide Web
Journal, 3(4):215–229, December 2000.

[5] E. Brewer. Lessons from Giant-Scale Services.IEEE Internet
Computing, July/August 2001.

[6] A. Brown and D. A. Patterson. Towards Availability Benchmarks:
A Case Study of Software RAID Systems. InProceedings of
the 2000 USENIX Annual Technical Conference, San Diego, CA,
June 2000.

[7] E. V. Carrera and R. Bianchini. Efficiency vs. Portability in
Cluster-Based Network Servers. InProceedings of the 8th Sym-
posium on Principles and Practice of Parallel Programming,
Snowbird, UT, June 2001.

[8] E. V. Carrera, S.Rao, L.Iftode, and R. Bianchini. User-Level
Communication in Cluster-Based Servers. InProceedings of the
Proceedings of the 8th IEEE International Symposium on High-
Performance Computer Architecture (HPCA 8), February 2002.

[9] A. Fox and E. Brewer. Harvest, Yield and Scalable Tolerant Sys-
tems. InProceedings of Hot Topics in Operating Systems (HotOS
VII), Mar. 1999.

[10] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. Analysis of
preventive maintenance in transactions based software systems.
IEEE Transactions on Computers, 47(1):96–107, Jan. 1998.

[11] J. Gray. A Census of Tandem System Availability Between 1985
and 1990.IEEE Transactions on Reliability, 39(4):409–418, Oct.
1990.

[12] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, Distributed Data Structures for Internet Service Con-
struction. InProceedings of the 4th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 2000), pages
319–332, Oct. 2000.

[13] T. Heath, R. Martin, and T. D. Nguyen. Improving Cluster Avail-
ability Using Workstation Validation. InProceedings of the ACM
SIGMETRICS 2002, Marina Del Rey, CA, June 2002.

[14] G. W. Herbert. Failure from the Field: Complexity Kills. InPro-
ceedings of the Second Workshop on Evaluating and Architecting
System dependabilitY (EASY), Oct. 2002.

[15] P. J. K. Jr., J. Sung, C. P. Dingman, D. P. Siewiorek, and T. Marz.
Comparing operating systems using robustness benchmarks. In
Symposium on Reliable Distributed Systems, pages 72–79, 1997.

[16] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer. Failure Data
Analysis of a LAN of Windows NT Based Computers. InPro-
ceedings of the 18th Symposium on Reliable and Distributed Sys-
tems (SRDS ’99), 1999.

[17] I. Lee and R. Iyer. Faults, symptoms, and software fault toler-
ance in the tandem guardian90 operating system. InInt. Symp.
on Fault-Tolerant Computing (FTCS-23), pages 20–29, 1993.

[18] L. Li, K. Vaidyanathan, and K. S. Trivedi. An Approach for Es-
timation of Software Aging in a Web Server. InProceedings of
the International Symposium on Empirical Software Engineering,
ISESE 2002, Nara, Japan, Oct. 2002.

[19] T. Liu, Z. Kalbarczyk, and R. Iyer. A software multilevel fault in-
jection mechanism: Case study evaluating the virtual interface ar-
chitecture. InSymposium on Reliable Distributed Systems, 1999.

[20] D. D. E. Long, J. L. Carroll, and C. J. Park. A Study of the Reli-
ability of Internet Sites. InProceedings of the Tenth Symposium
on Reliable Distributed Systems, pages 177–186, Pisa, Italy, Sept.
1991.

[21] J. F. Meyer. Performability evaluation: Where it is and what lies
ahead. InProceedings of the IEEE International Computer Per-
formance and Dependability Symposium, pages 334–343, Erlan-
gen, Germany, Apr. 1995.

[22] B. Murphy and T. Gent. Measuring System and Software Relia-
bility using an Automated Data Collection Process.Quality and
Reliability Engineering International, pages 341–353, 1995.

[23] B. Murphy and B. Levidow. Windows 2000 Dependability. Tech-
nical Report MSR-TR-2000-56, Microsoft Research, June 2000.

[24] K. Nagaraja, R. Bianchini, R. Martin, and T. D. Nguyen. Us-
ing Fault Model Enforcement to Improve Availability. InPro-
ceedings of the Second Workshop on Evaluating and Architecting
System dependabilitY (EASY), Oct. 2002.

[25] K. Nagaraja, N. Krishnan, R. Bianchini, R. P. Martin, and T. D.
Nguyen. Evaluating the Impact of Communication Architecture
on the Performability of Cluster-Based Services. InProceedings
of the 9th Symposium on High Performance Computer Architec-
ture (HPCA-9), Annaheim, CA, Feb. 2003.

[26] K. Nagaraja, N. Krishnan, R. Bianchini, R. P. Martin, and T. D.
Nguyen. Quantifying and Improving the Availability of Coop-
erative Cluster-Based Services. Technical Report DCS-TR-517,
Department of Computer Science, Rutgers University, Jan 2003.

[27] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-Aware Request Dis-
tribution in Cluster-based Network Servers. InProceedings of
the 8th ACM Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 205–216, San
Jose, CA, October 1998.

[28] Y. Saito, B. N. Bershad, and H. M. Levy. Manageability, Avail-
ability and Performance in Porcupine: A Highly Scalable Inter-
net Mail Service. InProceedings of the 17th ACM Symposium on
Operating Systems Principles, pages 1–15, Charlston, SC, Dec.
1999.

[29] D. Siewiorek, J. Hudakund, B. Suh, and Z. Segall. Development
of a benchmark to measure system robustness. InIn Proceedings
23rd International Symposium Fault-Tolerant Computing, pages
88–97, 1993.

[30] R. M. Smith, K. S. Trivedi, and A. V. Ramesh. Performabil-
ity Analysis: Measures, an Algorithm, and a Case Study.IEEE
Transactions on Computers, 37(4), April 1998.

[31] M. Sullivan and R. Chillarege. Software defects and their impact
on system availability - a study of field failures in operating sys-
tems. 21st Int. Symp. on Fault-Tolerant Computing (FTCS-21),
pages 2–9, 1991.

[32] N. Talagala and D. Patterson. An Analysis of Error Behaviour in a
Large Storage System. InThe 1999 Workshop on Fault Tolerance
in Parallel and Distributed Systems, 1999.

[33] D. Tang and R. K. Iyer. Analysis and Modeling of Correlated
Failures in Multicomputer Systems.IEEE Transactions on Com-
puters, 41(5):567–577, May 1992.

[34] T. K. Tsai, R. K. Iyer, and D. Jewitt. An Approach towards
Benchmarking of Fault-Tolerant Commercial Systems. InSym-
posium on Fault-Tolerant Computing, pages 314–323, 1996.

[35] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked Windows NT
System Field Failure Data Analysis. In1999 Pacific Rim Inter-
national Symposium on Dependable Computing, Dec. 1999.


