This paper presents the design of a new Web server architecture called the asymmetric multi-process event-driven (AMPED) architecture, and evaluates the performance of an implementation of this architecture, the Flash Web server. The Flash Web server combines the high performance of single-process event-driven servers on cached workloads with the performance of multi-process and multi-threaded servers on disk-bound workloads. Furthermore, the Flash Web server is easily portable since it achieves these results using facilities available in all modern operating systems.
The performance of different Web server architectures is evaluated in the context of a single implementation in order to quantify the impact of a server's concurrency architecture on its performance. Furthermore, the performance of Flash is compared with two widely-used Web servers, Apache and Zeus. Results indicate that Flash can match or exceed the performance of existing Web servers by up to 50% across a wide range of real workloads. We also present results that show the contribution of various optimizations embedded in Flash.