
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

General Purpose Operating System Support for Multiple Page Sizes

Narayanan Ganapathy and Curt Schimmel
Silicon Graphics Computer Systems, Inc.

Abstract

Many commercial microprocessor architectures
support translation lookaside buffer (TLB) entries with
multiple page sizes. This support can be used to sub-
stantially reduce the overhead introduced by TLB
misses incurred when the processor runs an application
with a large working set. Applications are currently not
able to take advantage of this hardware feature because
most commercial operating systems support only one
page size. In this paper we present a design that pro-
vides general purpose operating system support that
allows applications to use multiple page sizes. The
paper describes why providing this support is not as
simple as it first seems. If not designed carefully, add-
ing this support will require significant modifications
and add a lot of overhead to the operating system. The
paper shows how our approach simplifies the design
without sacrificing functionality and performance. In
addition, applications need not be modified to make use
of this feature. The design has been implemented on
IRIX 6.4 operating system running on the SGI Origin
platform. We include some performance results at the
end to show how our design allows applications to take
advantage of large pages to gain performance improve-
ments.

1 Introduction

Most modern microprocessor architectures sup-
port demand paged virtual memory management. In
such architectures, a process address space is mapped to
physical memory in terms of fixed sizepagesand an
address translation is performed by the processor to con-
vert the virtual memory address to a physical memory
address. The translation is done by traversing apage
table. The processor performs the virtual to physical
address translation on every memory access and hence,
minimizing the translation time is of great importance.
This is especially true for processors with physically
tagged caches that reside on the chip because the
address translation has to be completed before data can
be retrieved from the cache. (A thorough treatment of

caches on uniprocessor and multiprocessor systems can
be found in [Schim94]). To achieve this goal, most
microprocessors store their recently accessed transla-
tions in a buffer on the chip. This buffer is called the
translation lookaside buffer(TLB). If a translation is
not found in the TLB, the processor takes aTLB miss.
Some processors like the i860 have built-in hardware to
walk the page tables to find the missing translation,
while others like the MIPS R10000 generate an excep-
tion and a TLB miss handler provided by the operating
system loads the TLB entries.

The number of entries in a TLB multiplied by the
page size is defined asTLB reach. The TLB reach is
critical to the performance of an application. If the TLB
reach is not enough to cover theworking set[Denn70]
of a process, the process may spend a significant portion
of its time satisfying TLB misses. The working set size
varies from application to application. For example, a
well tuned scientific application can have a small work-
ing set of a few kilobytes, while a large database appli-
cation can have a huge working set running into several
gigabytes. While the working set size can be reduced to
a certain extent by tuning the application, this is not
always possible, practical or portable. Hence, if a sys-
tem has to perform well running a variety of applica-
tions, it has to have good TLB reach. Modern processor
caches are getting large (> 4MB) and few microproces-
sors have a TLB reach larger than the secondary cache
when using conventional page sizes. If the TLB reach is
smaller than the cache, the processor will get TLB
misses while accessing data from the cache, which
increases the latency to memory.

One way to increase the TLB reach is to increase
the page size. Many microprocessors like the MIPS
R10000 [Mips94], Ultrasparc II [Sparc97] and PA8000
[PA-RISC] now use this approach. By supporting select-
able page sizes per TLB entry, the TLB reach can be
increased based on the application’s working set. For
example, the MIPS R10000 processor TLB supports
4K, 16K, 64K, 256K, 1M, 4M and 16M page sizes per

General Purpose Operating System Support for Multiple Page Sizes

Narayanan Ganapathy
Curt Schimmel

Silicon Graphics Computer Systems, Inc.
Mountain View, CA

{nar, curt}@engr.sgi.com

TLB entry, which means the TLB reach ranges from
512K if all entries use 4K pages to 2G if all entries use
16M pages. As a different page size can be chosen for
each TLB entry, a single process can selectively map
pages of different sizes into its address space. The oper-
ating system can choose pages of larger sizes for an
application based on its working set.

While many processors support multiple page
sizes, few operating systems make full use of this fea-
ture because providing such a feature has its challenges.
Current operating systems usually use a fixed page size.
The virtual memory subsystem is highly dependent on
the fact that the page size is constant. For convenience,
let us define this page size as thebase page sizeand
definebase pagesto be pages of base page size. Let us
also define pages larger than the base page size to be
large pages. The functions of the VM subsystem like
allocating virtual addresses, memory read/write access
protections, file I/O, the physical memory manager that
allocates memory, the paging process, the page tables,
etc., assume that there is only one page size which is the
base page size. Additionally, many VM and file system
policies like the page replacement policy, read ahead
policy, etc., also assume a fixed page size. The file sys-
tem manages all its in-core data in pages of the base
page size. As we shall see later, modifying the file sys-
tem and the I/O subsystem to support multiple page
sizes is a formidable task. The design is further compli-
cated by the fact that many processes typically share
physical memory when they map files using the UNIX
mmap() system call or when they use shared libraries.
This means that two processes might share the same
physical memory but may need to map them with differ-
ent page sizes. To complicate matters further, the pro-
cessor also adds several restrictions to the use of this
feature.

Due to the invasive nature of the operating sys-
tem modifications needed to support them, large pages
have been put to limited use. They have only been used
in special applications to map frame buffers, database
shared memory segments, and so on.

General purpose support for multiple page sizes
would go a long way in improving the performance of a
substantial number of applications that have large work-
ing sets. In this paper we present a design that provides
general purpose operating system support for multiple
page sizes. An important characteristic of the design is
that it adds no overhead to common operations and there
is no performance penalty for applications when not
using large pages. Another important feature of this
design is that the knowledge of various page sizes is
restricted to a small part of the VM subsystem. The file

system, the I/O system and other subsystems are not
aware of multiple page sizes. More importantly, large
pages are transparent to applications and they need not
be rewritten to take advantage of large pages.

The design has been implemented in SGI IRIX
6.4 running on the SGI Origin 2000 platform which uses
the MIPS R10000 microprocessor. The following sec-
tions concentrate on the details of MIPS R10000 and
IRIX 6.4, but the techniques presented here can be
applied to most commercial processors and operating
systems. Unless specified explicitly, the base page size
is assumed to be 4K bytes.

Section 2 describes some related work in the
area. Section 3 explains the microprocessor support for
multiple page sizes, specifically describing the MIPS
R10000 TLB. Section 4 describes the current IRIX VM
architecture. Section 5 describes our design goals. Sec-
tion 6 describes in detail our design and section 7 shows
performance results for some sample benchmarks.

2 Related Work

The paper by Khalidi et. al [Khal93] studies the
issues involved with providing multiple page size sup-
port in commercial operating systems. Although the
study finds that such a support is non-trivial to imple-
ment, it does not propose any methods or algorithms to
help provide this feature. The paper by Talluri et. al
[Tall94] describes a new hardware TLB architecture that
considerably reduces the operating system support. It
proposes a new feature calledsub-blockingand goes on
to show how a sub-blocking TLB simplifies the operat-
ing system work involved while providing performance
benefits similar to those provided by large pages. Sub-
blocking is not yet provided by popular commercial
microprocessors. The paper by Romer et. al [Romer95]
describes differenton-line page size promotionpolicies
and how effective they are in reducing the TLB miss
cost. For the policies to be effective, the operating sys-
tem should maintain TLB miss data per large page. The
cost of collecting the data in our implementation is sig-
nificantly higher than what is mentioned in the paper. In
addition, one of our important goals is to not penalize
applications that do not use large pages until we fully
understand the practical benefits of using large pages on
commercial applications. Collecting the TLB miss data
to do page promotion will affect the performance pen-
alty of all processes and does not meet our goal. We are
planning to do on-line page promotion in one of our
future releases.

3 Microprocessor Support

The MIPS R10000 processor [Mips94] TLB
supports 4K, 16K, 64K, 256K, 1M, 4M and 16M page
sizes. Figure 1 shows a sample TLB entry. The MIPS
R10000 TLB has 64 entries. Each TLB entry has two
sub-entries. The subentries are related to one another in
that they map adjacent virtual pages. Both pages must
be of the same size. Thus, each TLB entry maps a vir-
tual address range that spans twice the chosen page size.

The TLB entry also carries aTLB PID that iden-
tifies the process to which the TLB entry belongs. On a
TLB miss, the processor generates an exception. The
exception invokes the software TLB miss handler which
inserts the appropriate TLB entry. The software TLB
miss handler is part of the operating system.

Like most microprocessors, the R10000 TLB
restricts the alignment of the virtual addresses and phys-
ical addresses that can be mapped by a large page to the
large page size boundary. For example, a 64KB page
can be mapped only to a virtual address aligned to a
64KB boundary. The physical address of the large page
must also be aligned to a 64KB boundary. The virtual
address that maps the first of the two sub-entries in the
TLB, called the even sub-entry, must be aligned to a
2*pagesizeboundary. The virtual address range covered
by the large page must have the same protections and
cache attributes if the entire range is to be mapped by
one TLB entry.

4 Basic VM Structure

Almost all commercial operating systems pro-
vide virtual memory support [Cox94]. Most use pages
of only one page size and all major subsystems manage
their memory in pages of this size. These include the
memory management subsystem that maps virtual to
physical memory for a given process, the file system, the
I/O subsystem and the machine dependent portion of the
operating system kernel. The IRIX VM subsystem has
two main components:

A physical memory managerthat manages mem-
ory in terms of page frames of a fixed size. Each physi-
cal page frame in the system is represented by a kernel
data structure, called the page frame data structure or the
pfdat. The physical memory manager provides methods
for other systems to allocate and free pages.

A virtual memory managermanages the pro-
cess’s address space. An address space consists of sev-
eral segments calledregions. Each region maps a virtual
address range within the address space. The regions are
of different types. For example, thetext region maps a
process’s text and thestack region maps the process
stack. Each region is associated with a particular mem-
ory object. For example the text region’s memory object
is the file containing the process text. The data for the
text region is read from the file into physical memory
pages and they are mapped into the process address
space. Each memory object has a cache of its data in
physical memory. The cache is a list of pfdats that rep-
resent the physical pages containing that object’s data.
For this reason the cache is called thepage cache. Thus
the physical pages containing a file’s data are kept in the
file’s page cache. A memory object can be shared
across multiple processes. The file system also per-
forms its read and write requests in terms of pages. The
device drivers do their I/O in terms of pages.

The virtual address space is mapped to physical
page frames via page tables. There are numerous
choices for the page table formats and several have been
discussed in the literature [Tall95]. The page table for-
mat for IRIX is a simple forward mapped page table
with three levels. Each page table entry (PTE) maps a
virtual page to a physical page. The PTE contains the
page frame number (PFN) of the physical page that
maps the virtual page number. It also contains bits that
specify attributes for the page including the caching pol-
icy, access protections and of course, the page size.

The virtual memory manager supportsdemand
paging. The procedure of allocating the page and ini-
tializing it with data from a file or the swap device is
calledpage faulting.

5 Design Goals

The overall goal is to provide general purpose
multiple page size support. This includes dynamic allo-
cation of large pages, faulting them in to a process
address space, paging them out, and upgrading and
downgrading page sizes. Our emphasis is to make the
design simple and practical without compromising func-
tionality and performance.

VPN

PFN 1

PFN 2

Attributes

Attributes

TLB
PID

Page
Size

Figure 1: MIPS R10000 TLB Entry Format.

Applications should be able to use large pages
without any significant modifications to their code. Sys-
tem calls which depend on the page size should behave
the same way when using large pages as they would
when they use base pages.

Application performance should degrade grace-
fully under heavy memory load. They should at least
perform as well as they would when not using large
pages.

As indicated in the previous sections, blindly
making the extensions to all the OS subsystems that use
the knowledge of page size is an enormous task. It is
not only difficult to implement but also introduces per-
formance penalties in many key parts of the operating
system and slows down applications that do not use dif-
ferent page sizes. It is important to understand that large
pages only benefit applications with large working sets
and poor locality of reference. Not all applications will
need large pages. One of the fundamental goals of the
design is to not penalize the performance of applications
that do not use large pages. Another goal is to restrict
the extensions needed to as small a set of OS sub-
systems as possible.

6 Our Design

This section describes our approach in detail. We
decided to retain the original format of pfdat and PTE
data structures. As we see later, these two choices are
crucial to the success of our design. The remaining sec-
tions describe the TLB miss handler, the large page allo-
cator, the page fault handler, the page replacement
algorithm, the algorithms to upgrade and downgrade
page sizes and the policies we use with large pages.

6.1. Pfdat Structure
One of the first design decisions to be made is

how to handle the pfdat structures for large pages. A
simple-minded approach might be to make a pfdat rep-
resent a large page frame by adding a page size field to
the pfdat. But as we will soon see, this approach is
fraught with problems.

The pfdat structure is a very basic data structure
and is used widely by the VM, file system and the I/O
subsystem. It is the representation of a physical page
frame and tracks the state changes that happen to a page.
Changes to the pfdat structure will mean changes to all
the subsystems that use the data structure. Traditionally
pfdats are an array of small structures. Hence the con-
version functions from physical page frame numbers to

pfdats and vice versa are simple and fast. If pfdats rep-
resent pages of different sizes the conversion functions
become more complex.

There is an impact on the page cache data struc-
ture as well. The data structure is usually a hash table
and the pfdats are hashed into the table by a hash func-
tion that takes the memory object address and the offset
into the memory object. The hash function works well
if the pfdats are of fixed size since the pfdats will be dis-
tributed evenly across the hash buckets. If pfdats repre-
sent pages of different sizes, the simple hash functions
do not work very well. A more complicated hash func-
tion will slow down the search algorithms that are cru-
cial to system performance.

Another problem is that processes sharing a set
of physical pages would have to be able to map these
pages with different page sizes. For example, suppose
one pfdat represents a large page and it is shared by a set
of processes. If one of the processes decides to unmap
part of its virtual address space mapped by the large
page, the large page would have to be split into smaller
pages. In addition, the page table entries in all the pro-
cesses that map the large page would have to be down-
graded as well. If the large page belongs to a heavily
shared memory object like a library page, the downgrad-
ing operation would incur a significant performance
penalty.

From the preceding discussion, it is clear that the
disadvantages of having pfdats represent page frames of
different sizes are too great. Our design therefore
chooses to retain the original structure for pfdats i.e.,
pfdats represent pages of a fixed size (the base page
size). Large pages are treated as a set of base pages.
Thus if the base page size is 4K and we use a 64K page
to map a segment of a file, there will be sixteen pfdats in
the page cache to map that segment.

This essentially means that most subsystems that
interact with the pfdats do not have to know about large
pages. It enables us to avoid rewriting many parts of the
operating system kernel that deal with lists of pfdats.
These include the file system, the buffer cache, the I/O
subsystem and the various device drivers, considerably
simplifying the complexity of providing multiple page
size support. For example, if the contents of a 64K large
page has to be written to the disk, the device driver is
passed a buffer that contains 16 4K pfdats correspond-
ing to the large page. The device driver does not know
it’s a large page and handles the buffer just like it would
handle any other buffer that has a list of pages. Of

course for the large page case, the device driver can be
smart enough to recognize that the pages are contiguous
and can make a single DMA request.

This decision also means that the lowest page
size we can ever use in the system will be the base page
size. In practice, this is not such a severe restriction as
the base page size is usually the smallest page size sup-
ported by the processor. In the next section, we see how
a set of pfdats are treated as a large page even though the
pfdats themselves do not carry any page size informa-
tion.

6.2. Page Table Entry Format for Large
Pages
The next important decision we need to make is

regarding the format of the page table. The page table
entries (PTEs) need to contain the page size information
so that the TLB miss handler can load the right page size
into the TLB entry.

We decided to retain the existing page table lay-
out. At the page table level we have one PTE for each
base page of the large page. Figure 2 shows how the
PTEs would look for a 16K large page with a 4K base
page size.

In this format, we use all the PTEs that span the
large page range. The PTEs that map large pages look
similar to those that map base pages. For the large page
PTEs, the page frame numbers will be contiguous as
they all belong to the large page. In addition, all PTEs
have a field that contains the page size. The TLB miss
handler needs to look at only one PTE to get all the
information needed to drop in the TLB entry. As the
information is present in each PTE, the handler traverses
the page table just like it does for the base page size
case. It finds the appropriate PTE and drops the con-
tents into the TLB. As such, the large page TLB miss
handler performance is comparable to the performance

of the base page size TLB miss handler (described in
section 6.3). This approach also helps while upgrading
or downgrading the page size. Only the page size field
in the PTE needs to be changed.

One important benefit to this format is that the
subsystems that deal with PTEs need not be modified as
the PTE format remains the same. There is an additional
benefit to keeping the page size information only in the
PTEs. It allows different processes to map the same
large page with different page sizes. For example, sup-
pose two processes memory map the same file into their
address space. In this case they have to share the same
set of physical pages. Let us also assume that one pro-
cess maps the first 64K bytes of the file while the other
maps the first 48K bytes. The first process may choose
to map the file into a 64K page while the other process
may choose to use three 16K pages. Both processes
share the same physical pages but map them with differ-
ent sizes. The page size choices one process makes do
not affect others sharing the same file. Likewise, down-
grading this virtual address range for the first process is
completely transparent to the second process. This is
possible because the page size information is only kept
in the PTEs and hence private to a process.

This approach is not without its disadvantages.
It does not reduce the size of the page tables required if
one uses large pages. All the attributes and permissions
in the set of PTEs that encompass the large page have to
be kept consistent, although the number of cases where
we need to maintain this consistency is limited.

6.3. Software TLB Miss Handler
On MIPS processors, a TLB miss generates an

exception. The exception is handled by a TLB miss
handler. It traverses the page table for the given virtual
address and drops in the contents of the PTE into the
TLB. The TLB miss handler has to be very efficient and
is usually only a few instructions long. Otherwise the
time spent handling TLB miss exceptions can be a sig-
nificant fraction of the total runtime of the application.
The format of the PTE directly affects the performance
of the TLB miss handler. The more the PTE looks like a
TLB entry, the faster the TLB miss handler can drop the
entry into the TLB. As explained below, a TLB miss
handler that supports multiple page sizes has more over-
head compared to a single page size TLB miss handler
because the MIPS processor has a separate page mask
register [Mips94]. On a single page size system, the
page mask register is set once at system initialization
time to the fixed page size. On such systems, the TLB
miss handler does not modify the page mask register.
To support multiple page sizes, the TLB miss handler

.

16K

vaddr

vaddr + 16K

PFN

PFN + 4K
PFN + 8K

PFN + 12K

16K

16K
16K

16K

V

V
V

V

Attr

Attr
Attr

Attr

Figure 2: Multiple Page Table Entry Format.

.

has to set the page mask register in addition to other
entries during each TLB miss. So the single page size
TLB miss handler is much cheaper compared to the
multiple page size TLB miss handler. This means that if
we were to use the multiple page size TLB miss handler
for all processes in the system, then processes that did
not use large pages would have a performance impact.
To avoid this problem we use a feature of IRIX that
allows us toconfigure a TLB miss handler per-process.
Thus only processes that need large pages use the multi-
ple page size TLB miss handler. All other processes use
the fast single page size TLB miss handler. This sup-
ports one of our main goals: that processes not using the
large page feature are not burdened with additional
overhead.

6.4. Large Page allocator
This section discusses issues related to the allo-

cation of large pages. It describes a mechanism called
page migration to unfragment memory and also
describes a kernel thread called the coalescing daemon
that uses page migration to coalesce large pages.

6.4.1. Page allocation issues
Traditionally in single page size systems, pfdats

of free pages are kept in linked lists calledfree lists.
Allocating and freeing pages is done by simple removal
and insertion of pfdats into the free lists. To be able to
allocate pages of different sizes at runtime, the physical
memory manager should manage memory in variable
size chunks and handle external fragmentation. In busy
systems, the pattern of allocating and freeing pages
causes the free memory to be so fragmented that it is
difficult to find a set of contiguous free pages that can be
coalesced to form a large page. This problem of allocat-
ing chunks of different sizes has been very well studied
in literature. The problem can be divided into two parts.
One is to minimize fragmentation while allocating
pages and the other is to provide mechanisms to unfrag-
ment memory.

We have designed an algorithm that keeps the
overhead of the allocation and freeing procedures to a
minimum and leaves the work of unfragmenting mem-
ory to a background kernel thread. This allows better
control of the physical memory manager. For example,
if an administrator chooses not to configure large pages,
the background thread will not run and there will not be
any additional overhead compared to a system with one
base page size. Alternatively, the administrator can con-
figure large pages and make the background thread
aggressively unfragment memory.

To minimize fragmentation, the manager keeps
free pages of different sizes on different free lists, one
for each size. The allocation algorithm first tries to allo-
cate pages from the free list for the requested page size.
If a free page cannot be found, the algorithm tries to
split a page of the next higher size.

The manager also uses abitmapto keep track of
free pages. For every base sized page in the system,
there is a bit in the bitmap. The bit is set if the page is
free and is cleared if the page is not free. This helps in
coalescing a set of adjacent pages to form a large page
as we can determine if they are free by scanning the bit-
map for a sequence of bits that are set. When a page is
freed, the bitmap is quickly scanned to see if a large
page can be formed and if so pages corresponding to the
bits in the bitmaps are removed from their free lists and
the first pfdat of the newly formed large page is inserted
into the large page free list. Note that the manager must
also ensure that the processor alignment restrictions are
met (the physical address of the large page should be
aligned to the page size boundary) when coalescing the
pages.

This algorithm uses high watermarks to limit the
coalescing activity. The watermarks provide a high
degree of control over the allocator and can be changed
by the system administrator, even while the system is
running. The high watermarks provide upper limits on
the number of free pages of a given page size. Coalesc-
ing activity stops once the high watermarks have been
reached.

6.4.2. Page Migration
As mentioned earlier, on a long running system a

mechanism tounfragmentmemory is needed, since
pages can be randomly allocated to the kernel, the file
system buffer cache and to user processes. It is very dif-
ficult in these cases to find a set of adjacent free pages to
form a large page even though there is a lot of free mem-
ory left in the system. To solve this problem we use a
mechanism calledpage migration. Page migration
transfers the identity and contents of a physical page to
another and can be used to create enough adjacent free
pages to form a large page.

For example, in Figure 3, assume a 16K chunk of
memory (A) has four adjacent 4K pages, three of which
are free and one (A4) is allocated to a process. By trans-
ferring the contents of the busy page A4 to a free page
B1 from another chunk B, we can free chunk A com-
pletely and thus use it to form a 16K large page.

The page migration algorithm that replaces page
A4 with page B1 works as follows.

a) It checks to see if the page A4 can be replaced.
Pages that are held by the kernel for DMA or
other purposes cannot be replaced. Pages that
are locked in memory using themlock() sys-
tem call are also not replaced.

b) The next step is to get rid of any file system
buffer references to page A4.

c) The page tables entries that map the page A4
are modified to point to page B1. The PTE
valid bits are turned off and a TLB flush is
done to force the processes that map page A4
to take a page fault. The pfdat of page B1 is
marked to indicate that its data is in transit.
This forces the processes to wait for page B1 to
be ready. PTEs that map page A4 are found
using its reverse mapstructure for page A4.
The reverse map structure is part of the pfdat
and contains a list of PTEs that map that page.
At the end, the reverse map structure itself is
transferred to page B1.

d) Page A4 is removed from the page cache and
page B1 is inserted in its place.

e) Page A4’s contents are copied to page B1.
Page B1 is marked ready and the processes (if
any) that were sleeping waiting for page B1 to
be ready are woken up.

In practice a set of pages are migrated together to
minimize the number of global TLB flushes.

6.4.3. Coalescing Daemon
The mechanisms to unfragment memory is

implemented by a background thread called thecoa-
lesce daemon. The daemon scans memory chunks of
different sizes. It goes through several passes each with
a differentlevel of aggressiveness. There are three lev-
els. In the first level or theweak level, it does not do
page migration. The daemon cycles through all the
pages looking for free contiguous pages and tries to coa-
lesce them into a large page. In the second level or the
mild level, it limits the number of page migrations per
chunk. The daemon examines each chunk and com-
putes the number of page migrations needed to make
that chunk into a large page. The number of page
migrations should be equal to the number of clear bits in
the bitmap for that chunk. If the number is below a
threshold the daemon proceeds to migrate that page.
There is a threshold for every page size. The thresholds
have been chosen by experimentation. The third or the
stronglevel uses page migration very aggressively. For
every chunk, the daemon tries to migrate all the pages
that are not free. For most of the passes the daemon
uses the first two levels. If after several passes the dae-
mon is still not able to meet the high watermark it uses
the strong level.

If a process wants to allocate a large page but the
request cannot be satisfied immediately, it can choose to
wait (by setting a special policy as described in the next
section). If a process is waiting for a large page, the
coalesce daemon uses the strong level of aggressiveness.
This allows the daemon to quickly respond to the pro-
cess’s large page needs.

6.4.4. Minimizing Fragmentation
There are limitations to the page migration tech-

nique. Pages that have been allocated to the kernel or
have been locked in memory cannot be migrated. The
reason is that pages allocated to the kernel are generally
not mapped via page tables and the TLB. For example,
IRIX kernel memory is directly mapped through the
K0SEG segment of the virtual address space of the
R10000. Such pages cannot be migrated since many
kernel subsystems have direct pointers to such pages.
Pages that have been locked for DMA or locked using
the mlock(2) system call cannot be migrated either,

Chunk A

Chunk B

A1 A2 A3 A4

B1 B2 B3 B4

Free Free Free Busy

Free Busy Busy Busy

A1 A2 A3 A4

B1 B2 B3 B4

Free Free Free Free

Busy Busy Busy Busy

Before Page Migration

After Page Migration

Figure 3: Page Migration Example.

since the callers assume that the underlying physical
page does not change. Consequently the coalescing
daemon performs well if most chunks contain pages that
can be migrated. This is the case with many supercom-
puting applications which have large data segments
whose pages can be migrated easily. In such systems
the percentage of memory taken up by the kernel is very
low and hence most of the memory is migratable. This
is not true for desktop workstations running graphics
applications. They usually have a limited amount of
physical memory and a significant percentage of it is
used by the kernel or locked for doing DMA. For these
machines, we have extended the physical memory allo-
cator to keep track of migratable pages. The physical
memory manager is notified at the time of page alloca-
tion whether the page will be migratable. The manager
keeps track of the number of migratable pages per
chunk. If the manager wants to allocate a page for the
kernel, it chooses a page from the chunk which has the
least number of migratable pages. On the other hand, if
the manager wants to allocate a migratable page it
chooses a page from the chunk with the most number of
migratable pages. This algorithm has the advantage of
maximizing the number of chunks whose pages can be
migrated although it adds overhead to the page allocat-
ing and freeing algorithms by keeping track of a list of
chunks sorted by the number of migratable pages per
chunk. This algorithm is used in low end workstations,
where the advantage of being able to allocate large
pages under conditions of severe fragmentation out-
weigh the disadvantage of the overhead incurred while
allocating and freeing pages.

6.5. Policies Governing Page Sizes
IRIX provides a facility by which application can

choose specific VM policies to govern each part of its
address space. It provides system calls [IRIX96] to cre-
ate policies and attach them to a virtual address range of
a given process. Thepm_create(2) system call
allows an application or a library to create a policy mod-
ule descriptor. The system call takes several arguments
which specify the policy as well as some parameters
needed by the policy. Thepm_attach(2) system call
allows an application to attach a policy module descrip-
tor to a virtual address range.

The application can choose among a variety of
policies provided by the kernel. Policies fall into several
categories. Thepage allocationpolicies specify how a
physical page should be allocated for a given virtual
address. For example on a NUMA system, the applica-
tion can specify that pages for a given virtual address
range should be allocated from a node passed as a
parameter to the policy. Another policy decides whether

allocating a page of the right cache color takes prece-
dence over allocating a page from the closest node. The
migration policies allow the application to specify
whether the pages in a given virtual address range can
be migrated to another NUMA node if there are too
many remote references to that page. It can also be used
to set the threshold that triggers the migration.

Page size hints for a given virtual range can be
specified via a policy parameter.pm_create() takes
the page size as an argument. Thus the application or a
runtime library can specify which page size to use for a
given virtual address range. The kernel tries to allocate
a page of the specified page size as described in the next
section. The page size parameter works in conjunction
with other page allocation policies. For example, the
page allocation policy can specify that a page has to be
allocated from a specific NUMA node and that it should
be a large page. There are currently two large page spe-
cific policies:

a) On NUMA systems, if large pages are not
available on an application’s home node, the
kernel can either borrow large pages from adja-
cent nodes or use lower sized pages on the
home node. By default the kernel borrows a
large page from an adjacent node but the appli-
cation can indicate that locality is more impor-
tant using this policy.

b) If a large page of the requested size is not avail-
able, the application can wait for the coalesce
daemon to run and coalesce a large page.
Sometimes the wait time is not acceptable and
in that case the application can choose to use a
lower page size (even the base page size). The
application can specify if it wants to wait for a
large page and also the time period for which it
wants to wait before using a lower page size.
The coalescing daemon runs aggressively
when a process is waiting for large pages.

These policies will be refined and new ones will
be added as we learn more about applications and how
they behave with large pages. In the future, we want to
be able to automatically detect TLB miss rates using the
performance counters provided by the processor and
upgrade a virtual address range of a process to a specific
page size. We decided not to do on-line page size
upgrade initially as it was not clear the performance
benefits would outweigh the cost of collecting the TLB
miss data and the page size upgrade. The kernel always
uses the base page size unless the application or a runt-
ime library overrides the default.

Currently the page size hints are provided by the
application or special runtime libraries like the parallel-
izing Fortran compiler runtime, MPI runtime, etc.
These runtime libraries usually have a better under-
standing of the application’s behavior and can monitor
the performance of the application.

6.5.1. Tools to Specify Page Size Hints
Without Modifying Binaries

Applications need not be modified or recompiled
to be able to use large pages. IRIX has a tool called
dplace(1) [IRIX96] that can be used to specify poli-
cies for a given application without modifying the appli-
cation. The tool inserts a dynamic library that gets
invoked before the application starts. The library reads
configuration files or environment variables and uses
them to set up the page size and NUMA placement poli-
cies for a given virtual address range. For example the
following command,

dplace -data_pagesize 64k ./a.out

sets the policies for the address space of a.out such that
its data section uses 64K page size.

IRIX provides a valuable tool calledperfex(1)

[Marco96] that allows a user to measure the number of
TLB misses incurred by a process. It gets the data from
the performance counters built into the R10000 proces-
sor.

Another tool calleddprof(1) analyzes memory
reference patterns of a program and can be used to
determine which parts of an application’s address space
encounters the most TLB misses and hence will benefit
from large pages.

The parallelizing fortran compiler runtime also
takes page size hints via environment variables and can
be used to set up page size hints for applications that
have been compiled with that library.

6.6. Page Faulting
The page fault handler is invoked whenever a ref-

erence is made to a virtual address for which the PTE is
not marked as valid. The page fault handler allocates
and initializes a page and sets up the PTE for the virtual
address that generated the TLB miss. Initializing the
page can involve finding the page in the page cache for
the memory object, reading in the data from a disk file
or a swap device, or just zeroing the page. Page faults
usually happen when a process accesses the virtual
address for the first time as the page tables will not yet
be initialized. The fault handler’s functionality must be

extended to handle large pages. In particular, the han-
dler should be able to allocate and initialize large pages,
ensure that the processor restrictions are not violated
and set up the PTEs.

Adding these extensions to the handler is simpli-
fied by our choice of data structures for the pfdats and
the PTEs. The extensions are minimal and the majority
of the fault handler remains the same as the base page
size fault handler. The large page fault handler is writ-
ten as a layer on top of the standard page fault handler
for base pages. The fault handler is described below.
Let us assume that the virtual address isva.

a) The first step is to consult the policy module
(described above) to determine the page size
that should be mapped. The virtual address is
then aligned to this page size. Let us call the
aligned virtual addressava .

b) The next step is to verify that the virtual
address range[ava, ava + page_size)

has the same protections and other attributes.
As discussed earlier, since there is only one
TLB entry per large page, the protections and
the attributes have to be the same for the entire
virtual address range mapped by the TLB
entry. It also verifies that no pages of a differ-
ent size are already present in the range[ava,

ava + page_size) .

c) The handler verifies that both sub-entries in a
TLB entry that maps this address range have
the same page size. This satisfies the MIPS
R10000 processor restriction.

d) The handler then allocates a large page. If a
large page cannot be allocated and the process
has chosen to wait (specified via a policy) for a
large page, it waits for a large page. If a large
page of the required page size can be obtained
it retries the algorithm. If after a timeout
period it cannot get a large page or the process
chose not to wait, the handler retries the algo-
rithm with a lower page size.

e) The handler enters a loop and faults each base
page in the large page one at a time. Thus for a
64K page, the handler has to loop 16 times.
The fault algorithm is identical to the base page
fault algorithm. This is where the page is ini-
tialized, read from a file, swapped in from disk,
etc. We can do this because the large page
pfdats and PTEs look identical to those of base
page pfdats and PTEs.

f) Once the pages have been faulted, the page size
field is set in the PTEs and they are made valid.
Note that a large page is mapped by many adja-
cent PTEs. The handler also drops in a TLB
entry forva .

6.7. Downgrade Mechanism
The motivation behind downgrading comes from

system calls whose behavior is highly tied to the base
page size. UNIX system calls likemmap() , munmap()

and mprotect() work on virtual address ranges at the
granularity of the base page size. If we map a large page
to a virtual address range and the application makes a
system call to change the protections for part of the
address range, we can either return a failure to the sys-
tem call or downgrade the large page to a lower size
small enough to enforce the protection criteria. Down-
grading allows the operating system to not change the
system API and ABI, while internally using different
page sizes. This is a huge advantage as it allows appli-
cations to run unmodified.

The downgrade algorithm allows us to have no
restrictions on which parts of the address space can be
mapped with large pages. For example, there is no
restriction that one region or segment of the address
space should be of the same page size. Pages of differ-
ent sizes can be stacked one on top of the other.

Figure 4 shows an example where a large page is
downgraded automatically by the kernel to satisfy an
munmap() system call. The virtual address range
[vaddr, vaddr+64K) has been mapped with a 64K
page. Suppose the application wants to unmap the last

4K bytes of that address range (as indicated in Figure 4)
using themunmap() system call. In this case, we have
to downgrade the 64K page into smaller page sizes. The
downgrade algorithm also has to obey the R10000 pro-
cessor restriction that page sizes of the pages at the even
and odd address boundaries must be the same. For
example, sincevaddr is guaranteed to be aligned at a
64K boundary,vaddr is also aligned at an even 16K
boundary. The downgrade algorithm downgrades the
page size of the PTEs mapping the range[vaddr,

vaddr+32K) to 16K. The address range[vaddr+32K,

vaddr+64K-16K) cannot be mapped by two 16K pages
as the range is not big enough. Nor can a single 16K
page be used in the range[vaddr+32K,

vaddr+32K+16K) because of the hardware restriction
that even and odd pages must be the same size. So the
algorithm downgrades the range to the next lower page
size (4K) which happens to the base page size.

The downgrade algorithm is quite simple. It first
clears the valid bit of all the PTEs that map the large
page and then flushes the TLB. The TLB flush only
flushes those TLB entries which map the given virtual
address range of the process. The invalidation is neces-
sary to make the update of the page size atomic. Once
the TLB has been flushed, the page size fields in all the
PTEs are updated to reflect the new page size. The new
page size is the next lower page size to which the
address range can be downgraded without violating the
MIPS processor restrictions.

In practice, downgrades rarely happen for large
supercomputing and database applications, as they do
not spend much time mapping and unmapping their
address spaces.

6.8. Upgrade Mechanism
An upgrading mechanism is useful to dynami-

cally increase the page size of an application based on
feedback from other parts of the operating system. Pro-
cessors like the MIPS R10000, provide counters that
track the TLB misses incurred by a process. This
counter can provide feedback to the VM manager to
upgrade the page size. As said earlier, we have decided
not to do on-the-fly page upgrade based on feedback
from the process’s TLB miss profile. Currently an
application or the runtime can advise the operating sys-
tem to upgrade the page size for a given virtual address
range that corresponds to a key data structure using a
new command to themadvise() system call.

The system call is particularly useful for upgrad-
ing text pages. Consider the case where an executable is
invoked and the base page size is used. The text file cor-

vaddr+60K

64K

16K

16K

4K
4K
4K
4K
4K
4K

4Kvaddr+32K

vaddrvaddr

vaddr+60K

vaddr+64K

4K Page
to be

Unmapped Page

Before After

Figure 4: Downgrading a 64K Page.

responding to the executable is faulted into base pages
and the pages become part of the file’s page cache. If
the same executable is now run a second time with large
page size hints, it is quite unlikely that the kernel will be
able to use large pages as the pages for the text are
already in the page cache and hence it has to reuse them.
In this situation the application can invoke themad-

vise() system call to upgrade its existing text pages to
the large page size. The algorithm to upgrade a page
from its old size to a new size is described below.

a) The first step clears the valid bit for the PTEs
that span the large page and performs a TLB
flush.

b) Next a large page of the requested size is allo-
cated.

c) We use the page migration algorithm
(described in section 6.4.2) to replace the old
pages in the virtual address range with the large
page.

d) The PTE size fields are updated to reflect the
new size and they are validated.

6.9. Page Replacement Algorithm
Extensions
Most page replacement algorithms (like the BSD

clock algorithm [BSD89]) usually use reference bits in
the PTEs to keep track of recently referenced pages for a
given process. Pages which are not recently referenced
are usually paged out to disk. The memory reference
patterns are tracked for the entire large page. The
default paging policy for large pages is simple. If part
of a large page is chosen to be swapped out we down-
grade the large page. We try to minimize downgrades
and improve performance by swapping out entire large
pages.

7 Performance

Figures 5 and 6 show the performance improve-
ments obtained when using large pages on some stan-
dard benchmarks. The benchmarks were performed on
an SGI Origin 2000 running IRIX 6.4. The base page
size for that system is 16K. The benchmarks were run
with 16K, 64K, 256K and 1M page sizes.turb3d, vor-
tex and tomcatvare from the Spec 95 suite [Spec95].
Fftpdeandappspare from the NAS parallel suite. The
benchmarks were not modified. All of them were single
threaded runs. The same binaries were used for all the
runs. Figure 5 shows the percentage reduction in the
number of TLB misses and Figure 6 shows the percent-
age performance improvement at different page sizes

with respect to the base page size (16K). The page size
hints were given usingdplace(1) . From Figure 6 we
can see that some applications get 10 to 20% improve-
ment with large pages. The improvements will be even
greater for larger problem sizes.

The TLB miss overhead(defined as the ratio of
the time spent handling TLB misses to the total runtime
of the application) is a significant part of the runtime for
vortex, turb3d and appsp. The overhead is minor for
tomcatv. We can deduce this by looking at Figures 5

0

20

40

60

80

100

16 64 256 1024

P
er

ce
nt

ag
e

re
du

ct
io

n
in

 T
L

B
M

IS
S

E
S

Page Size in Kbytes

NAS Fftpde
Specfp turb3d
Specfp vortex

Specfp tomcatv
NAS appsp

Figure 5: Percentage Reduction in TLB Misses
with Large Pages.

0

5

10

15

20

25

30

16 64 256 1024

P
er

ce
n

ta
g

e
im

p
ro

v
m

en
t

in
 p

er
fo

rm
an

ce

Page Size in Kbytes

NAS Fftpde
Specfp turb3d
Specint vortex

Specfp tomcatv
NAS appsp

Figure 6: Percentage Improvement in Perfor-
mance with Large Pages.

and 6. We can see that forturb3dandvortex, the perfor-
mance improves significantly with reduction in TLB
misses. For example, vortex gives a 20% improvement
in performance when using 1MB pages. On the other
hand althoughtomcatv’s TLB misses were significantly
reduced with 64K pages (Figure 5), the performance
improvement (Figure 6) is negligible for the same page
size.

Once the TLB miss overhead has been reduced
by about 98%, further increases in page sizes provide
diminishing returns. For example,turb3ddoes not show
much improvement beyond 64K pages. Some times at
higher page sizes, the operating system cannot map
large pages for the entire address space range due to
alignment restrictions. So it may be forced to use base
pages. This causes the performance to drop due to
higher TLB misses. We can see this behavior withfft-
pde when using 1MB pages.

Figure 7 shows how large pages perform under
contention. The experiment measures the performance
of the fftpdeNAS benchmark using 64K pages on a sin-
gle CPU Origin 200 system with a variety of threads
running in the background. Three kinds of background
threads were used to simulate different TLB and cache
usages. In one case the background thread is a simple
spinner program. The program is an extremely small
tight loop that is completely CPU bound and fits into the
CPU’s cache and TLB and should not cause too many
TLB misses. In the second case, the background thread
is another invocation of thefftpde program using 16K
pages. This should cause considerable thrashing of the
TLB and the cache. The third case also usesfftpdepro-

gram as the background thread but this time with 64K
pages. This should reduce the TLB thrashing as the
working set can fit into fewer TLB entries. The perfor-
mance improvement was measured with an increasing
number of background threads. As we can see, the per-
formance degrades with contention but the drop is not so
steep if the background thread is a spinner or afftpde
program with 64K pages. When the background thread
is anfftpdeprogram with 16K pages, more TLB entries
are replaced by the background threads and hence the
performance degradation is more. The benefits pro-

0

2

4

6

8

10

16 64 256 1024 4096 16384

P
er

ce
n
ta

g
e

im
p
ro

v
m

en
t

in
 p

er
fo

rm
an

ce

Page Size in Kbytes

Sybase TPC-C performance improvement

0

20

40

60

80

100

16 256 1024 4096 16384

P
er

ce
n
ta

g
e

re
d
u
ct

io
n
 i

n
 T

L
B

M
IS

S
E

S

Page Size in Kbytes

Sybase TPC-C tlbmiss reduction

Figure 8: Large Page Size Performance Improvement for a Commercial Benchmark.

0

5

10

15

20

25

0 1 2 3 4

P
er

ce
n
ta

g
e

im
p
ro

v
m

en
t

in
 p

er
fo

rm
an

ce

Number of background threads

Background = Spinner
Background = Fftpde using 16k pages
Background = Fftpde using 64k pages

Figure 7: Large Page Size Performance
Improvement under Contention.

vided by large pages decrease with increase in number
of background threads as fewer TLB entries are avail-
able and more TLB entries have to be replaced.

Figure 8 shows an example of how large pages
can benefit a real business application. It shows the per-
centage reduction in TLB misses and the percentage
improvement in performance at various page sizes for
the TPC-C benchmark run on a two processor Origin
200QC using the Sybase Adaptive Server Enterprise
database program. The program has very poor locality
of reference and very large working set and conse-
quently suffers from a high TLB miss overhead. As
seen from the graph, we need very large pages (16M) to
almost completely eliminate the TLB miss overhead.

8 Future Directions

One of our plans is to investigate the perfor-
mance benefits of providing on-line page size upgrade
based on feedback from the R10000 TLB miss counters.
We also have opportunities to improve the performance
of the large page allocator by minimizing page fragmen-
tation. Some new policies may be added based on feed-
back from users who have used large pages on
commercial applications.

9 Acknowledgments

We would like to thank Paul Mielke, Luis
Stevens and Bhanu Subramanya for the many discus-
sions we had during the course of this project. We also
thank William Earl, Brad Smith and Scott Long for pro-
viding insight on the mechanisms to minimize fragmen-
tation on workstations. We thank Marco Zagha for
providing us with performance data for a commercial
database application.

10 References

[BSD89] Samuel Leffler, Kirk McKusick, Michael
Karels, John Quarterman, The Design and
Implementation of the 4.3BSD Unix Oper-
ating System, Addison-Wesley, ISBN 0-
201-06196-1, 1989.

[Cox94] Berny Goodheart, James Cox. The Magic
Garden Explained: The Internals of Unix
System V Release 4,Prentice Hall, ISBN:
0132075563, 1994.

[Denn70] Peter J. Denning. Virtual Memory, Com-
puting Surveys, 2(3):153-189,September
1970.

[IRIX96] IRIX 6.4 man pages fordplace(1) ,
dprof(1) , pm(3) , madvise(2) , Silicon

Graphics,1996.

[Khal93] Yousef Khalidi, Madhusudhan Talluri,
Michael N. Nelson, Dock Williams. Vir-
tual memory support for multiple page siz-
es. InProc. of the Fourth Workshop on
Workstation Operating Systems,pages
104-109, October 1993.

[Marco96] Marco Zagha, Brond Larson, Steve Turner
and Marty Itzkowitz. Performance Analy-
sis Using the MIPS R10000 Performance
Counters. InProc. of Supercomputing
‘96, Nov ‘96.

[Mips94] Joe Heinrich. MIPS R10000 Microproces-
sor User’s Manual,MIPS Technologies,
Inc., 1994.

[PA-RISC] Ruby Lee and Jerry Huck, 64-bit and Mul-
timedia Extensions in the PA-RISC 2.0
Architecture. On-line documentation.ht-
tp://www.hp.com/wsg/strategies/pa2go3/
pa2go3.html.

[Romer95] Theodore H.Romer, Wayne H.Ohlrich,
Anna R.Karlin and Brian N. Bershad. Re-
ducing TLB and Memory overhead Using
On-line Superpage Promotion. InProc. of
the 22nd Annual International Symposium
on Computer Architecture, 1995.

[Schim94] Curt Schimmel, UNIX Systems for Mod-
ern Architectures: Symmetric Multipro-
cessing and Caching for Kernel
Programmers,Addison-Wesley, ISBN 0-
201-63338-8, 1994.

[Spec95] SPEC news letter. On-line documentation
at http://www.spec.org/osg/news/articles/
news9509/cpu95descr.html, September,
1995.

[Sparc97] Ultrasparc II data sheet. On-line docu-
mentation at http://www.sun.com/micro-
electronics/datasheets/stp1031/.

[Tall94] Madhusudhan Talluri and Mark D. Hill.
Surpassing the TLB Performance of Su-
perpages with Less Operating System
Support. InProc. of the Sixth Internation-
al Conference on Architectural Support for
Programming Languages and Operating
Systems, pages 171-182, October, 1994.

[Tall95] Madhusudhan Talluri, Mark D. Hill and
Yousef A. Khalidi. A new page table for
64-bit address spaces. InProc. of Sympo-
sium of Operating System Principles
(SOSP),Dec 1995.

