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Abstract

In this paper we present a couple of tools developed
by the author on FreeBSD, and available from the
author’s Web page in source format. The first one,
called dummynet, is a tool designed for the perfor-
mance evaluation of network protocols and appli-
cations. Despite its original design goal, there has
been a lot of interest on using dummynet as a band-
width manager in network servers. dummynet sim-
ulates the effect of finite queues, bandwidth limita-
tions, and queueing delays, and is embedded in the
protocol stack of the host, allowing even complex
experiments to be run on a single machine, using
existing applications and protocol implementations.

The second tool is a software implementation of an
erasure code especially suited for use in network pro-
tocols. Erasure codes are used in Forward Error
Correction (FEC) techniques to reduce or remove
the need for retransmissions in presence of commu-
nication errors. FEC has been rarely used in net-
work protocols, because of the encoding/decoding
overhead, and also because the underlying theory of
error correcting codes is generally not well known
to network researchers. In this paper we discuss
the theory behind a simple erasure code, and pro-
vide performance data to show that the encod-
ing/decoding overhead is acceptable for many ap-
plications even on low-end machines.

1 Introduction

With computer networks becoming more and more
widespread, there is an increasing number of dis-
tributed applications designed to run across net-
works with the most different features. This vari-
ability of operating conditions poses severe chal-
lenges to designer of applications, especially in the

testing phase, where the interaction of the appli-
cation with networks and communication protocols
must be studied to point out potential problems or
unexpected behaviours.

The first tool presented in this paper, called dum-
mynet, covers the need, that every designer has, to
evaluate the behaviour of a protocol, or an appli-
cation, in a real network environment. Simulation
is often not an option, because of the requirement
to build a simulation model of the system under
test, whose features might not be fully known. Ex-
periments on a real network might be problematic
as well, because of the unavailability of a suitable
testbed, or difficulties in configuring the testbed it-
self. dummynet solves many of these problems, by
merging the advantages of simulation and testing on
real networks, thus constituting a flexible and cheap
testing tool.

Another common problem in the development of
distributed applications is to recover from errors
and lost packets. This task is generally accom-
plished by retransmitting missing packets on de-
mand (this technique is called ARQ). There are sit-
uations where the use of ARQ is impractical: e.g.
with mobile equipment, sending the retransmission
requests to the base station drains precious power
from the battery; on unidirectional channels such as
broadcast satellite links, an uplink channel is sim-
ply not available; and in multicast communication,
ARQ might not scale as well as we would like, be-
cause of the presence of uncorrelated losses at dif-
ferent receivers.

An alternative to ARQ relies on encoding data in
a redundant way, such that the receiver can recon-
struct the original data even in presence of missing
packets. This technique, called FEC, is especially
useful for reliable multicast protocols, and/or for
highly asymmetric communication channels. How-
ever, FEC has been rarely used in networking proto-



cols [1], because the encoding/decoding procedures
are commonly believed to be very expensive, and
possibly also because the principles of operation of
such procedures are not well known to the the non-
specialist in coding theory.

The encoder/decoder presented in this paper shows
that FEC can be implemented in software with a
reasonable performance on today’s hardware, thus
opening the way to the design of protocols based on
FEC rather than pure ARQ. While we try to provide
enough details to let the designer fully understand
the operation of our encoder, it is also possible to
use our implementation as a black box in building
new applications.

The paper is structured as follows. In Section 2 we
present dummynet, starting with a brief description
of its principle of operation, followed by a discus-
sion of its implementation and possible applications.
Section 3 provides a description of our erasure code:
the theory behind the operation of erasure codes is
first presented in Sections 3.1 and 3.2, followed by
a discussion of various implementation issues. Per-
formance data of our implementation of the code
are shown in Sec. 3.3. Finally, Section 3.4 discusses
some applications of our code.

2 Dummynet

The study of implementations of network protocols
and application is often done by simulation or by
running experiments in a real network. Both ap-
proaches have their pros and cons. Simulations re-
quire the development of a simulation model of the
system under analysis. The unavoidable inaccura-
cies in the model might adversely affect the results
of experiments, and perhaps even prevent the de-
tection of features of the actual implementation (in-
cluding bugs). Experiments on a real network, on
the other hand, require the availability of a suitable
testbed, which might not exist or might be hard to
configure correctly.

To tackle the problem, some simplifications can
be made, e.g. considering all phenomena of inter-
est (queueing, delays, bandwidth constraints) con-
fined to one or a few bottleneck links, and trying
to run experiments or simulations on such topolo-
gies. Packet level simulators have been built to this
purpose[6, 4, 9], and successfully used in research.

As an alternative, experiments on real systems are
performed using modified routers acting as a “flake-
way”, and configured to introduce delay, losses and
other perturbations to the traffic. The tool pro-
posed in this paper acts much like a flakeway, ex-
cept that it operates within the protocol stack of
the system used for experiments, rather than in an
external router.

Application
/ R-queue
x
S}
8
i)
o
k=]
S P -queue
[a
Network
Figure 1: dummynet operates by intercepting traffic

in the protocol stack of the host system, and simulat-
ing the effects of queueing, bandwidth limitations and
propagation delays.

2.1 Principle of operation

The presence of a real network between communi-
cating processes affects traffic by one or more of the
following mechanisms:

e propagation delays;

e queueing delays, introduced by bandwidth-
limited communication channels;

e losses, due to the queue overflows and (to a
lesser extent, at least in wired networks) noise;

e packet reordering, due to the presence of multi-

ple paths between the sender and the receiver.

Most if not all of these phenomena can be replicated
by intercepting packets in their way in or out of



a protocol stack, and simulating delays, losses and
reordering.

In particular, the effects of bounded-size queues,
propagation delays, and bandwidth-limited chan-
nels can be simulated by passing packets through
a couple of queues, named R-queue and P-queue,
(see Fig. 1). The queues are inserted at a conve-
nient point in the protocol stack (in our implementa-
tion, this occurs at the upper interface of IP). They
implement what we call a pipe, characterised by a
bandwidth B, propagation delay tp, and queue size
S. The rules to move packets between queues are
the following:

e Packets are first put into the R-queue, which
simulates the effect of the bounded-size queues
that are usually found in front of a network in-
terface. Insertions in this queue will be done ac-
cording to the queueing policy of choice (FIFO
with tail-drop in our case, so at most S packets
can be in the R-queue at any time).

e Packets are extracted from the R-queue and
moved into the P-queue, at a maximum rate of
B bytes per second. This simulates the band-
width limitations of the communication link.

e Packets remain in the P-queue for ¢p seconds,
to simulate the propagation delay associated to
the link. After the delay, packets are delivered
to the next layer in the protocol stack.

Packet reordering can be conveniently simulated by
modifying the policy for insertions in the R-queue.
Losses due to noise or interference are similarly easy
to introduce, by dropping packets at random in their
flow through the queues.

The transitions of packets between queues are per-
formed by a periodic task run every T second. At
each run, the task moves at most BT bytes from the
R- to the P-queue, and extracts packets from the
P-queue after they have been there for tp/T cycles.
All queue operations require constant time, and this
permits running the periodic task at a conveniently
high frequency with limited overhead.

2.2 Implementation

dummynet, as presented in the previous Section, has
been originally developed in FreeBSD in late 1996

as a module to intercept TCP traffic [14], and has
been used by the author for research and didactical
purposes. The original tool only included a pair of
pipes, configured with the sysctl command.

The core of dummynet is made of about 400 lines of
code, implementing the R- and P- queues and the
procedures to move packets around. Each pipe is
described by a record containing the parameters of
the pipe, and pointers to the R- and P- queues. Ele-
ments of each queue are the packets to be passed to
ip_input () and ip_output(), plus any additional
argument required by these functions. The periodic
task to move packets between queues is only active
when there are packets in any pipe, and is run HZ
times per second (we often ran with HZ=1000 even
on 486-class machines). We have written the code in
such a way to reduce dependencies on other parts of
the operating system, so that the code can be easily
ported of other systems with little effort.

The simplicity and low overhead of dummynet soon
suggested its use as a general purpose bandwidth
manager/traffic shaper for network servers, and we
have received several requests of this kind since we
made our code publicly available. In order to trans-
form dummynet into a practical bandwidth man-
ager, a flexible configuration and packet filtering
mechanism was needed. Rather than writing a spe-
cial purpose module for packet filtering, we have
used for this purpose the ipfw firewall code already
present in FreeBSD. This gives us the advantage
of reusing existing code and configuration methods
that the user can be already familiar with, avoids
the duplication of functionalities in the system, and
allows us to benefit of future improvements to the
filtering code.

As a result of this integration work, dummynet now
supports multiple pipes, each of them configurable
independently from the others. Traffic is filtered
according to the rules of the ipfw packet filter, and
selected packets can be diverted to different pipes.
The ipfw rules allow a packet to be analysed multi-
ple times, so that arbitrary topologies of pipes can
be constructed if needed.

2.3 Configuration

Configuration of dummynet is done using the ipfw
command, which has been extended to allow config-
uration of dummynet. A new filtering rule has been



added:

ipfw add R pipe N ...
to forward matching packets to the specified pipe
(multiple rules can point to the same pipe). Each
pipe has a unique identifier (a 16-bit number). Con-
figuration of pipes is done using commands starting
with ipfw pipe ..., e.g.
ipfw pipe config N bw 100 delay 400 size 30
sets the parameters for pipe N to 100 Kbit/s,
400 ms, 30 buffers, whereas

ipfw pipe list

shows the configuration of currently defined pipes.

Typically, to make machine X appear behind a bot-
tleneck link, one can configure a couple of pipes (one
for each direction). It is not necessary that the pipes
have the same features, e.g. the following commands

ipfw add 1000 pipe O ip from any to X in
ipfw add 1010 pipe 1 ip from X to any out

ipfw pipe config O bw 100 delay 40
ipfw pipe config 1 bw 10 delay 100

simulate the behaviour of an asymmetric channel
between node X and the rest of the network.

Thanks to the packet filter, one can apply delays and
bandwidth limitations to part of the traffic, while
letting other traffic (e.g. NFS) run at full speed.
In this way, a diskless machine (like the one where
dummynet was initially developed and tested) can
be used for experiments in a very convenient way.

Extensions to the tool, and to the configuration
program, are relatively straightforward. As an ex-
ample, one can add the already mentioned random
losses and packet reordering, by adding parameters
to set the distribution of such events. Or, random
fluctuations of the bandwidth can be introduced to
simulate the effect of competing traffic without ac-
tually having to generate it with some other appli-
cation.

2.4 Applications

We implemented dummynet as a testing tool for
evaluating protocol implementations with the flexi-
bility of a simulator, and the simplicity of use of a
real testbed. This motivates its location inside the
kernel, and near the bottom of the protocol stack,
so that all layers above it could be tested.

We believe that the tool fulfills its design goals. Be-
ing able to run experiments on a real implemen-
tation has several advantages, because it saves the
need to build a model of the system for simulation
purposes, and it can also spot implementation bugs
which might go undetected otherwise. Operation on
a single machine is also useful, because it makes the
tool more convenient to use and also less subject to
interference from other network traffic.

We find especially convenient the ability to run real
applications, and to alter the features of the (sim-
ulated) network on the fly. With dummynet, ques-
tions like “how would this application work on a link
with 128Kbit/s and 500ms delay” can be answered
by setting up an experiment with a few keystrokes.
This is even more important when the performance
metrics are qualitative (e.g. user-perceived perfor-
mance) rather than quantitative, and simulation
could not produce useful results, while setting up
a suitable testbed might be not feasible.

3 Forward Error Correction

Loss of packets is a fact of life in computer net-
works, be it due to communication errors, or simply
to congestion phenomena. The usual approach to
recover from losses is to retransmit missing packets
on request (ARQ) [7]. There are however environ-
ments where this approach is not ideal. Classical
examples come from the telecommunication world,
where channels are often asymmetric or even uni-
directional. Such channels are becoming more and
more popular in computer networks, e.g. when data
is transferred to mobile equipment or over a wireless
channel.

ARQ has also limitations in multicast communica-
tions, because the possible lack of correlation be-
tween losses at different receivers can cause severe
scalability problems, both in the amount of retrans-
mitted traffic [5], and in the amount of feedback that
the source has to manage [12]. In such situations,
it might be convenient to devise an error recovery
mechanism that can anticipate a certain amount of
losses, and enable the receiver to recover all useful
data without sending explicit requests for missing
packets.

Such a mechanism can be implemented by applying
a redundant encoding to the source data, so that



even in presence of packet losses sufficient informa-
tion is conveyed to the receiver to allow successful
reconstruction of the original data. Such an encod-
ing is called an Erasure Code.
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Figure 2: The principle of operation of an erasure code.

3.1 Erasure codes

The key idea behind an erasure code is to encode
a set of k source data packets into a set of n > k
encoded data packets, in such a way that any sub-
set of k encoded packets allows the reconstruction
of the original sources (Fig. 2). Such a code is called
an (n, k) erasure code, and can be used in several
ways to recover from losses in a communication pro-
tocol, as it will be shown in Section 3.4. The issue
now is how to produce the encoded packets given
arbitrary values for & and n, and to make the encod-
ing/decoding procedure sufficiently fast for practical
use.

The problem is trivial to solve for special values of k&
and n. As an example, if n = k 4+ 1, a simple parity
computed over all packets will do the job. This is
fast to compute, but can tolerate only a single loss
per block of n packets. The case £k = 1 is even
simpler, because merely repeating packets solves the
problem, but in this case the usage of the channel’s
capacity would be very bad.

3.2 A simple erasure code

For arbitrary k and n, a solution to build an era-
sure code comes from linear algebra: we know, in
fact, that a polynomial of degree kK — 1 is com-
pletely specified by its value in k different points.
A simple encoding method is then to consider the
source data packets (we can think of them as in-
teger) as the coefficients of a polynomial P of de-
gree k — 1, and construct the encoded packets as
the values of P computed in n different points, e.g.
P(po),P(p1)-..P(pn—1)- At the receiver, standard
procedures (e.g. see [13, Sec.2.8]) can be used to
recover the coefficients of P given its values in k
points. This code is called a Vandermonde code for
reasons that will be clear in Section 3.2.3. There are,
however, a few difficulties in implementing erasure
codes (not only this one) in practice. We will de-
scribe them in the following sections, together with
the way they can be solved.

3.2.1 High precision arithmetic

If packets are large, computations should be per-
formed with high precision, and this is extremely
slow because it is not supported natively by the ar-
chitecture. This problem is relatively easy to solve,
because we can split packets in smaller data units,
e.g. bytes, and execute the same computations on
each set of data units taken from different packets.

3.2.2 Operand expansion

But at this point we hit another significant problem,
namely the expansion of operands: if the data (i.e.
the coeflicients of P) are represented on m bits, the
values of P(p;) require a larger number of bits to be
represented exactly if ordinary arithmetic is used.
The expansion is roughly of klogn bits, which is ex-
tremely high considering that operands are typically
small (32..64 bits at most). Luckily, also this prob-
lem can be solved, although the solution is trickier,
by performing computations in a Finite Field, also
called “Galois Field” or GF(p') [2].

A field is a mathematical structure, defined by a set
of field elements, and a sum and multiplication op-
eration defined on them and satisfying certain prop-
erties. We are well acquainted with the property of
a field, because the numbers we operate on everyday



also constitute a field. Most of properties of linear
algebra (including those related to polynomial in-
terpolation) also apply to finite field computations.
There exist finite fields with p’ elements, with p be-
ing a prime number.

A distinguishing feature of a Finite Field is that, un-
like Integers or Reals, the number of field elements
is finite. The finite size of the field is important for
our purposes because, no matter what computations
we do, we know how many bits we need at most to
represent the results of our computations; in other
words, there is no operand expansion.

One might wonder at this point how to do computa-
tions in a finite field, because the rules for sum and
multiplication (see [2]) are complex at first sight.
However, it turns out that for certain Finite Fields
(e.g. when p = 2), the sum reduces to the exclu-
sive OR, whereas multiplication can be implemented
using a simple lookup table (because the field has
a finite number of elements). This means that we
can forget the intricacies of finite field computations,
and assume that operations in a finite field have at
most roughly the cost of a table lookup. More de-
tails on an efficient way to perform finite field com-
putations are provided in [15].

3.2.3 Systematic codes

In some cases we would like the transmission to in-
clude a verbatim copy of the source data. Such an
encoding is called systematic, and has the advan-
tage that no decoding effort is necessary in absence
of errors. The code proposed in Sec. 3.2 is not sys-
tematic, however it can be turned into a systematic
code by simple algebraic manipulations, as follows.

We can look at the Vandermonde code by writing
down the relation between the coefficients, z;’s, and
the values of the polynomial, y; = P(p;), as follows:

k—1

Yo = poxo+piEi + ...+ Dy Tp—a
Y1 = plzo+piz +... +p1{_1$k71
Yn-1 = Py _1To+Pp_1T1+ ... +Pﬁ:11$k71

It turns out that the matrix, V, relating z;’s and
yi’s is a Vandermonde matrix [13, Sec.3], and as
such has the property that any minor of degree k
extracted from V is invertible. This property still
holds if we do linear combinations of the columns
of V; thus, we can manipulate the matrix, using

a Gaussian elimination procedure, in such a way
that the upper k rows of the matrix become the
identity matrix. After the transformation, we have
that y; = z;,7 = 0...k — 1, which means that we
have obtained a systematic code.

3.3 Performance

We have written a C implementation of the Van-
dermonde code described in this paper. Our code
operates in GF(2'), the finite field with 2' elements
(with 1 ranging from 2 to 16). Field operations have
been implemented using a lookup table for ¢ < 8
(the table takes about 64 KB), or using the proper-
ties of logarithms for larger fields (in this case per-
formance decreases by about a factor of 4). The
performance data we provide in the following refer
to GF(2®) which is a very convenient size for prac-

tical purposes!.

Our code implements both encoding and decoding
using a systematic matrix, operating on packets of
user-defined size. It can produce redundancy pack-
ets one at a time, which is a convenient feature for
some applications where the amount of redundancy
is not fixed a-priori. The code is extremely com-
pact and has a relatively small memory footprint,
permitting its use even on small memory machines,
and allowing a good interaction with cache memo-
ries.

The encoding and decoding speeds can be roughly
expressed as ¢/[, where [ is the number of non-source
packets produced by the encoder, and the number of
source packets missing at the decoder, respectively.
The value of the constant ¢ varies widely depending
on the architecture, CPU speed, and especially, the
memory bandwidth. Table 1 presents performance
data for a number of different architectures, rang-
ing from an HP100LX (a small 8086-based palmtop)
to high end workstations using Pentium, Sparc and
Alpha processors. From these results, we see that
encoding/decoding can be done at high speed (with
the constant ¢ as high as 10 MBytes/s even on a
Pentium133), thus suggesting that FEC-based error
recovery can be implemented effectively on modern
machines.

Ithe choice of the field size affects the parameter n of the
code: recall from Sec. 3.2 that we compute the polynomial
in n different points, so the field must have at least pt > n
elements.



| CPU | MHz | ¢ (MBytes/s) |
SPARC | 167 21.2
SPARC | 143 18.8
Alpha | 255 12.6
PA7000 | 100 10.3
Pentium | 133 9.6
1486 66 3.4
1386 25 37
8086 8 .070

Table 1: Speed of operation of our decoder on dif-
ferent machines.

3.4 Applications

There are several application of an erasure code in
computer communications. The first one that comes
to mind is to use a pure FEC approach to improve
the resilience to losses in unicast protocols: assum-
ing we have to deliver k packets to a receiver, and we
expect some amount of losses, we can send uncon-
ditionally a suitable number n > k of packets that
guarantees successful reception of at least k packets
with high probability.

By using the same approach, and a multicast com-
munication infrastructure, we can easily accommo-
date multiple receivers for the same data, even in
presence of different or uncorrelated loss patterns at
the different receivers. All we have to do is to tune
the amount of redundancy according to the features
of the worst receiver.

The scalability of reliable multicast protocols based
on FEC is often much better than those based on
ARQ for loss recovery. As an example, Figure 3
shows the average number of transmissions for each
packet in a multicast application where receivers are
subject to random independent losses, with ARQ
or with FEC and different values of k. The advan-
tages of using FEC, even with moderate blocksizes
or small number of receivers, is evident from the
graph. A more detailed discussion of scalability is-
sues is present in [11].

Pure FEC is interesting in that it requires no feed-
back at all from the receivers, but has the drawback
of adapting badly to variable network conditions.
In these cases, a hybrid FEC+ARQ approach can

5.5 T T

k=1 (ARQ)
5l k=4 -
k=8 e
k=32
45 k=64 —mimem
2 4
S
3
€ 3.5
2
s 3
o
Z 25 o
) -

1 10 100 1000 10000 100000 1e+06 1e+07
Receivers

Figure 3: Number of transmissions per packet for a
multicast protocol in presence of 5% losses, with ARQ
and with FEC.

be used, which consists in using only a moderate
amount of redundancy by default (or, possibly, even
no redundancy at all), and sending additional repair
packets on demand. Compared to pure ARQ, the
important difference is that all packets are equiv-
alent for recovery purpose, and this is also true in
presence of multiple receivers. As a consequence,
the handling of feedback is highly simplified, be-
cause the receiver does not need to specify which
packets are missing, but only how many of them
are missing. This also increases the chance that re-
transmission requests from different receivers can be
merged, thus alleviating some scalability problems
which might exist in multicast communication pro-
tocols.

Figure 4: Transmission order in RMDP.

An example of such a protocol is RMDP [16], which
is the application for which the Vandermonde code
presented in this paper was originally developed.



RMDP is a multicast file-transfer application oper-
ating on top of IP multicast, or on wireless channels
were receivers have limited uplink communication
capabilities. Thanks to the FEC encoding, the pro-
tocol scales very well even in presence of highly vari-
able loss patterns at the receivers, or differences in
receive bandwidths.

In RMDP, a server accepts requests for a file from
one (or more) receivers, and then transmits the file
as UDP packets over multicast IP [3]. The file is
partitioned in slices of k packets each, and these
packets are passed to an encoder which can pro-
duce up to n different encoded packets. The trans-
mission occurs by picking one (encoded) packet per
slice (see Fig. 4). Receivers with missing packets
(or late comers) issue “continuation” requests, ask-
ing for more packets. The transmitter responds by
generating a new packet for each slice using the en-
coder, and sending them. This way, each receiver
can complete reception by accumulating a sufficient
number of packets per slice, no matter which ones.

More recently, we have proposed in [18] the use of
FEC as a mechanism to support layered multicast
congestion control in reliable multicast communica-
tion, using techniques formerly devised only for the
(unreliable) transfer of continuous streams. Layered
congestion control relies on the transmission of a
data stream over a set of multicast channels, or lay-
ers [10]. Data is encoded in a hierarchical fashion,
so that receivers with low bandwidth subscribe only
to the lowest layer (getting a low-quality version of
the stream), whereas high-bandwidth receiver can
get a higher quality stream by subscribing to more
layers. A congestion control mechanism drives the
process of joining/leaves layers by looking at the
loss patterns experienced by each receiver. We have
adapted this mechanism to reliable multicast by us-
ing an encoder capable of producing a suitably large
number of packets (n > k), and transmitting dif-
ferent (encoded) packets across all layers. Thanks
to the encoding, the effect of hopping between lay-
ers does not affect the efficiency of the data trans-
fer, because again it is the total number of received
packets, not their identity, that counts.

The erasure code presented in this paper has been in
use since early 1997 in a number of research papers
and actual applications (e.g. [11, 17]) for the devel-
opment of scalable multicast communication proto-
cols. Albeit some other erasure codes with better
asymptotic performance have been proposed [8] re-
cently, we believe that our code has many practi-

cal applications being deterministically decodable,
small and simple (we have run it on machines as
small as an HP100LX), and, especially, not subject
to patents or other impediments to its use.

4 Conclusions

We have presented a couple of tools that can be
useful in the design, development and analysis of
networking protocols and applications. Both tools
are available in source format from the author’s Web
page 2 together with with more detailed documenta-
tion. While developed on FreeBSD, one design goal
was to make the code easily portable to different
operating systems, so that we have avoided the use
of special operating systems features if not strictly
necessary (in particular, in dummynet we did not
use the queue handling macros which are present in
the operating system sources, and we split the core
functionalities from the packet filter). The small
size of the sources, both for dummynet and for the
Vandermonde code, is another factor that should
make the porting effort relatively simple.
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