
THE MAGAZINE OF USENIX & SAGE
October 2000 • volume 25 • number 6

{

#
inside:
CONFERENCE REPORT

USENIX 2000 Annual Technical

Conference

The Advanced Computing Systems Association &

The System Administrators Guild

&

5October 2000 ;login:

conference reports
related. Because the Freenix track was
run with the same rigor as the general
refereed papers track, they also presented
awards:

Best paper: “An Operating System in Java
for the Lego Mindstorms RCS
Microcontroller” by Pekka Nikander

Best student paper: “Protocol
Independence Using the Sockets API” by
Craig Metz

Andrew Hume, immediate past president
of the USENIX Association (and now
vice president) announced the two annu-
al USENIX awards:

Software Tools User Group (STUG)
Award: Tetu Yionen for the initial design
and creation of “ssh”, the Secure Shell.

The Flame: Outstanding Achievement
Award given posthumously to W.
Richard Stevens for his work as an inno-
vator, teacher, and active member of the
USENIX community (accepted on his
behalf by his sister, his widow, and his
children)

KEYNOTE ADDRESS

Bill Joy presented the keynote address on
his vision on the future of technology.

Based on his 25 years of experience, Joy
forecasted the next 25-30 years in com-
puting. He started by looking back at the
history: the eventual acceptance of soft-
ware as research in computer science, the
integration of networks and the operat-
ing system, and the growth of portability
in computing. More and more we’ll see
standards defined in English, perhaps
passing code or agents instead. He also
sees the continued need for maintaining
compatibility with open protocols and
specifications, noting that protocols
often outlive the hardware systems for
which they were designed.

Looking forward, Joy believes that
Moore’s Law will continue. He expects to
see up to a 1012 improvement over 30
years based in part on molecular elec-

USENIX ANNUAL TECHNICAL
CONFERENCE
JUNE 18–23, 2000
SAN DIEGO, CA
Opening Session
Summary by Josh Simon

ANNOUNCEMENTS

Christopher Small announced that there
were 1,730 attendees as of the start of the
technical sessions. The program commit-
tee received 91 refereed-paper submis-
sions (up from 63 in 1999) and accepted
27 (up from 23 in 1999). Next year
USENIX will be in Boston.

The best paper awards were:

Best paper: “Scalable Content-aware
Request Distribution in Cluster-based
Network Servers” by Mohit Aron, Darren
Sanders, Peter Druschel, and Willy
Zwaenepoel

Best student papers (tie): “Integrating a
Command Shell into a Web Browser” by
Robert C. Miller and Brad A. Myers, and
“Virtual Services: A New Abstraction for
Server Consolidation” by John Reumann,
Ashish Mehra, Kang G. Shin, and Dilip
Kandlur

Kirk McKusick, chair of the Freenix
committee, spoke about that track. The
committee received 56 refereed paper
submissions and accepted 29 of them.
Most of the papers were open source–

This issue’s report is on the USENIX
Annual Technical Conference held in San
Diego, California, June 18-23, 2000.

Thanks to the summarizers:

Doug Fales
Rik Farrow
Kevin E. Fu
Matt Grapenthien
Bob Gray
Josh Kelley
Jeff Schouten
Josh Simon
Craig Soules
Gustavo Vegas

And check out Peter Salus’ impressions
of the conference on page 34.

A collection of photographs taken at the
conference can be found at
<http://www.usenix.org/publications/libra
ry/proceedings/usenix2000/photos.html>

<http://www.usenix.org/publications/library/proceedings/usenix2000/photos.html>

Christopher Small

http://www.usenix.org/publications/libra
http://www.usenix.org/publications/library/proceedings/usenix2000/photos.html

tronics and improved algorithms. The
question of synchronization between dif-
ferent geographies becomes hard when
you can store 64 TB in a device the size
of your ballpoint pen. We need to
improve resilience and autonomy for the
administration of these devices to be
possible.

Further, he sees six webs of organization
of content: near, the Web of today, used
from a desktop; far, entertainment, used
from your couch; here, the devices on
you, like pagers and cell phones and
PDAs; and weird, such as voice-based
computing for tasks like driving your car
and asking for directions. These four
would be the user-visible webs; the
remaining would be e-business, for busi-
ness-to-business computing, and perva-
sive computing, such as Java and XML.

Finally, reliability and scalability will
become even more important. Not only
will we need hardware fault tolerance but
also software fault tolerance. In addition
we need to work toward a distributed
consensus model so there’s no one sys-
tem in charge of a decision in case that
system is damaged. This leads into the
concepts of byzantine fault tolerance and
the genetic diversity of modular code.
We also need to look into the fault toler-
ance of the user; for example, have the
computer assist the user who has forgot-
ten her password.

Refereed Papers Track

SESSION: INSTRUMENTATION AND

VISUALIZATION

Summarized by Josh Simon

MAPPING AND VISUALIZING THE INTERNET

Hal Burch, Carnegie Mellon University;

Bill Cheswick and Steve Branigan, Bell

Labs Research, Lucent Technologies

We need tools to be able to map net-
works of an arbitrarily large size, for
tomography and topography. This work
is intended to complement the work of
CAIDA. So Cheswick, et al. developed
tools UNIX-style, using C and shell

6 Vol. 25, No. 6 ;login:

scripts to map the Internet as well as the
Lucent intranet. The tools scan up to 500
networks at once and are throttled down
to 100 packets per second. This generates
100–200MB of text data (which com-
presses to 5–10MB) per day and covers
on the order of 120,000 nodes. See
<http://www.cs.bell-labs.com/who/ches/map/>
for details and maps.

MEASURING AND CHARACTERIZING SYSTEM

BEHAVIOR USING KERNEL-LEVEL EVENT

LOGGING

Karim Yaghmour and Michel R.

Dagenais, Ecole Polytechnique de

Montréal

Karim Yaghmour spoke on the problem
of visualizing system behavior. ps and
top are good, but neither provides truly
realtime data. He therefore developed a
kernel trace facility with a daemon that
logs to a file. He instrumented the Linux
kernel to trace the events, and then per-
forms offline analysis of the data. The
tools do not add much overhead for
server-side operations but do add a lot of
overhead to intensive applications such
as the Common Desktop Environment
(CDE). Data is collected up to 500kb per
second but it compresses well. Future
work includes quality-of-service kernels
(throttling the rate of, for example, file
opens), security auditing, and even inte-
grating the event facility further into the
kernel. Sources are available at
<http://www.opersys.com/LTT> and are
under the GNU Public License.

PANDORA: A FLEXIBLE NETWORK

MONITORING PLATFORM

Simon Patarin and Mesaac Makpangou,

INRIA SOR Group, Rocquencourt

Patarin and Makpangou’s goal was to
produce a flexible network-monitoring
platform with online processing, good
performance, and no impact on the envi-
ronment. The privacy of users was also
important in the design. They decided to
use components for flexibility and a
stack model. They developed a small

configuration language and a dispatcher
that coordinates the creation and
destruction of the components. The tool
is 15,000 lines of C++, using libpcap. The
overhead is about 0.26 microseconds per
filter per packet. For example, HTTP
requests get over 75Mb/s throughput on
traces, which translates into 44–88Mb/s
in real-world situations, or 600–2600
requests per second. Future work
includes improving the performance and
flexibility. More details are available from
<http://www-sor.inria.fr/projects/relais>
and released pursuant to the GPL.

INVITED TALKS

COMPUTER SYSTEM SECURITY: IS THERE

REALLY A THREAT?

Avi Rubin, AT&T Research

Summarized By Rik Farrow

Avi Rubin began his talk by alluding to
the February 2000 distributed denial-of-
service (DDoS) attacks, saying that those
attacks just about made this talk redun-
dant. But perhaps the theme of his talk
was that not enough has been learned
about mitigating the threats to security,
that lessons have not been learned from
the past.

Rubin used the Internet Worm to illus-
trate this point. In November of 1988,
Robert T. Morris released the Worm, a
relatively small piece of code that used
the Internet to copy itself to over 6,000
systems. At the time, those 6,000 systems
compromised a large percentage of hosts
on the Internet. Damage estimates fell
between $10,000 and $97 million.
Recovering from the Worm was difficult,
as most Internet-connected sites relied
on email for communication, and email
couldn’t get through while Worms were
executing.

The Worm used three mechanisms to
obtain access to networked systems: a
buffer-overflow in the finger server, a
backdoor still in sendmail (debug), and
the “r” commands. The Worm would

http://www.cs.bell-labs.com/who/ches/map/
http://www.opersys.com/LTT
http://www-sor.inria.fr/projects/relais

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Scrack passwords, using a list of 432
“common” passwords so it could assume
other user identities for use with the
remote shell.

Today, the finger server has been patched
and the debug backdoor commented out
(except for short period when a Sun
engineer accidentally reenabled it in
1994) of sendmail. But “r” commands
are still in use today, and SSH when used
as an “r” command replacement (with
trust) is still vulnerable to Worm-style
attacks.

But the biggest problem then and now
was homogeneity. The Worm targeted
Sun servers. (A few VMS systems were
also affected.) Microsoft systems present
the current homogenous environment.

Rubin went on to talk about several
recent virus attacks. Rubin had firsthand
experience with HAPPY99, as it infected
his mom’s system. HAPPY99 is very
polite and very widespread. It keeps a list
of infected systems, can be commanded
to remove itself, and does nothing else. It
will even replace the DLL (Dynamic
Linked Library) it modifies with a copy
of the original.

The Melissa virus caused many millions
in damages. Named after a dancer in
Florida, Melissa first appeared on alt.sex.
Because Melissa is written in Visual
Basic, it is easy to modify even if you
don’t know VB, as you can just change its
message or various strings, and it will
still work (and have a different anti-virus
signature as well).

Rubin listed the reasons why Melissa was
so successful (besides its promise of a list
of hot porn sites):

■ Many people use the same mailer
(Outlook)

■ MSWord on Windows on almost all
systems

■ Many people click okay to macro
warnings

■ No separation between MSWord
and OS

7October 2000 ;login:

■ Virus protect only works against
known viruses

“If every time you received a phone call,
there was a chance that an appliance,
such as your toaster, could explode, you
would likely not put up with it. For some
reason, people are willing to tolerate the
potential loss of all their data when they
receive an email.” said Rubin.

There have been other interesting virus-
es, such as Russian New Year and
Bubbleboy. Russian New Year invokes
Excel to execute any program on the sys-
tem. Bubbleboy was the first email virus
that did not require an attachment, but
did display a dialog prompting the user
to delete update.hta instead of doing it
itself via code, which it could have done.
Bubbleboy represents the killer transport
mechanism, as it could install any soft-
ware wanted. Actually, Microsoft makes
this easy, as there are system calls that
upload files (one call), then execute them
(second call).

In summary, Rubin suggested that there
were certain deficiencies in our current
security model. Besides the homogeneity
of desktops, Rubin said, “This seems to
be the theme, security by pop-up win-
dows. Do you want to continue? The
default is YES.” He also suggested the use
of Digest Authentication in HTTP to
prevent replay attacks, and said that SSL
was the right place to do encryption, as
the top of the IP stack, where you could
tell it is working.

Rubin stated, “Trinoo [a DDoS tool]
requires password (people can be very
proprietary about their daemons).” He
went on to recommend that people
remember to make backups, so if some-
thing does go awry, you at least can
recover.

There were a number of questions. Chris
Harrison, Whitehead Institute, asked:
“Why haven’t we yet seen someone who
has caused some really serious damage
on a national scale?” Rubin answered, “I
don’t have an answer to that. Could have

been much much worse. We need a soci-
ologist to answer that.”

Some one asked about the patch to
Outlook. Rubin said that he would
install it, but what surprises him is how
fast MS produced a patch (440k).

Some one asked two questions. How
much risk do you see from polymorphic
viruses? How much risk from cross-plat-
form viruses? Rubin answered, “I think
polymorphic viruses are harder to detect,
making them more dangerous. As for
cross platform, right now all viruses and
worms are on MS platforms, but when
cell phones start including command
interpreters, this problem will spread this
as well.”

Dan Geer, now CTO of @stake (which
bought the l0pht) asked: What is your
opinion about closing security holes by
advertising them? Rubin answered by
saying that there are “days I wake up feel-
ing we should advertise vulnerabilities,
and other days where I think this is a bad
idea.” The NIPC (National Infrastructure
Protection Council, [I think]) is plan-
ning on creating industry forums for
exchanging security information and
rumors. Rubin said, “We need a way to
disseminate information to all of the
good guys and none of the bad guys.”
(laugh)

There were several more questions,
including comments about Linux or
UNIX users having the inboxes crammed
full of impotent email viruses, and a sug-
gestion to use litigation to force better
adherence to security practices.

USENIX ANNUAL TECHNICAL CONFERENCE ●

FREENIX TRACK

SESSION: STORAGE SYSTEMS

Summarized by Kevin E. Fu

SWARM: A LOG-STRUCTURED STORAGE

SYSTEM FOR LINUX

Ian Murdock and John H. Hartman,

University of Arizona

Ian Murdock described Swarm, a log-
structured interface to a cluster of stor-
age devices in Linux. Filesystem inter-
faces are often tightly coupled to the
interface of the underlying storage sys-
tem (e.g., requiring a block-oriented
storage device). Moving away from this
tendency, Swarm provides a configurable
and extensible infrastructure that may be
used to build high-level storage abstrac-
tions and functionality. The intent was to
build more than a just a research proto-
type.

Swarm is storage system, not a filesys-
tem. However, Murdock presented two
filesystems that build upon Swarm. Sting
is a log-structured filesystem similar to
Sprite’s LFS. Ext2fs/Swarm is an unmod-
ified Ext2 filesystem on top of a special
logical Swarm device.

Several goals guided the design of
Swarm:

■ Scalability. As the network grows,
scale to demands.

■ High performance. Take advantage
of the network-disk bottleneck.

■ High Availability. Handle failures
gracefully.

■ Cost-performance. Run on com-
modity hardware.

■ Flexibility.

Swarm moves the high-level abstractions
from the server to the client. The server
becomes a simple repository for data
while clients implement the bulk of
functionality. By clustering devices,
Swarm removes centralization. In this
way, Swarm avoids bottlenecks and sin-
gle points of failure.

8 Vol. 25, No. 6 ;login:

Clients use a striped, append-only log
abstraction to store data on servers. This
combines log-structured properties with
RAID. Each client maintains its own log
to eliminate synchronization. The log
allows reconstruction of data from server
crashes and client failures.

Logs are divided into fixed-size pieces
called fragments, which are striped
across storage servers. Parity is computed
for redundancy. The log is append-only,
conceptually infinite, and consists of an
ordered stream of blocks and records.

Visit
<http://www.cs.arizona.edu/swarm/> for
more information.

Q: What is the performance to availabili-
ty tradeoff? A: Write performance is
good because Swarm can batch small
writes. Large write performance is also
good. Read performance is not as good
as it should be, but this is an artifact of
the implementation. The log structure
gives both high availability and high per-
formance.

Q: Is there a mechanism for synchro-
nization of a shared resource? A: We are
working on distributed lock service.

Q: How does the cleaner know what is
cleanable? A: The cleaner is not aware of
what is in the fragments, but it can know
what parts of the fragment are alive.
Agents participate in the cleaning
process.

Q: You might consider a Hierarchical
Storage Management (HSM) design
instead of cleaning the tapes. A: Cleaning
is a very interesting topic we are explor-
ing. Your suggestion might be useful.

DMFS - A DATA MIGRATION FILE SYSTEM

FOR NETBSD

William Studenmund, Veridian MRJ

Technology Solutions

Bill Studenmund talked about the Data
Migration File System (DMFS) designed
at the NASA Ames Research Center.

Implemented for NetBSD, DMFS stores
files on both disk and tape. This allows
an administrator to transparently archive
data to tape without affecting users.

NAStore 3 is a storage system at NASA’s
Numerical Aerospace Simulation facility.
It consists of three main systems: the vol-
ume-management system for tape robot-
ics, the virtual volume-management sys-
tem to avoid small writes to tape by
aggregating data, and the data-migration
filesystem. Studenmund focused on
DMFS for the remainder of the talk.

DMFS is a layered filesystem that places
its migration code between kernel
accesses and the underlying filesystem.
The system works with the Berkeley Fast
File System (FFS), FFS with soft updates,
and any other filesystem with a fixed
number of inodes. The layering decou-
ples development of DMFS from that of
any FFS-related development.

To have control over archiving and
restoring, there are a number of new
FNCTL operations, such as set-archive-
in-progress and set-restore-in-progress.
Also, a modified ls command denotes
whether a file is unarchived, archived
and resident, or archived and nonresi-
dent.

When a user asks for a file stored on
tape, a DMFS daemon blocks the user
process until the file is sufficiently
restored from tape or the restoration
fails. However, a user can still interrupt
the process by hitting control-C. There is
also a utility to force restoration of files
from tape into the resident risk. Writes
also block until restoration finishes. The
archive subsystem stores whole files on
tape. Therefore, it is necessary to read
from tape to piece together the unmodi-
fied parts of a file. To initiate an archival
process, one can either run a user utility
or let the daemon schedule an archive.

The performance cost of using DMFS is
minimal. There is an overhead of 1–2%
to access resident files. However,

http://www.cs.arizona.edu/swarm/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SStudenmund jokingly admitted that for
obvious reasons vi takes about five min-
utes to start when the data is retrieved
from tape.

Q: Looking at HSM, it seems that some
files are active, while others are accessed
only once a month. Is there a way to
mark file as readable but not actually
perform the restoration? Say, classify files
as active or read once a month? A: This
is not supported by DMFS, but sounds
reasonably easy to add to the system.

Q: You added system calls to deal with
opening/closing files. Why not use a new
filesystem with vnodes instead? A: We
added only three system calls. Data
passed to open is sent to the name-
lookup system before the filesystem gets
the request. Using a special filesystem
that would take file handles as the
“names” of files would not work.
open(2), stat(2), and statfs(2) take nul-
terminated strings to name files. File
handles have an embedded length, and
can contain nuls. Thus these system calls
will not read in the correct amount of
data for such a special filesystem to be
able to work.

Q: Can you mark files as preferred
online rather than archival? A:
Everything is done in response to the
migration daemon. You could modify
the daemon to control this. It is certainly
feasible.

A 3-TIER RAID STORAGE SYSTEM WITH

RAID1, RAID5, AND COMPRESSED RAID5
FOR LINUX

K. Gopinath, Nitin Muppalaneni, N.

Suresh Kumar, and Pankaj Risbood,

Indian Institute of Science, Bangalore

K. Gopinath discussed the design and
implementation of a host-based driver
for a 3-tier RAID storage system. The
tiers include a small RAID1, a larger
RAID5, and a compressed RAID5. The
system migrates the most frequently
accessed data to the RAID1 tier. The
project was motivated by the need for

9October 2000 ;login:

fast, reliable, efficient, quickly recover-
able, and easily manageable storage.

Gopinath and his students previously
developed the system for Solaris, but are
now developing in the context of Linux.
The team ran into difficulty with the
Linux device-driver framework. Linux
has some support to logically integrate
multiple disks as one logical disk, but
this breaks its own device-driver frame-
work.

Q: A lot of RAID performance is guided
by stripe size. How do you support
changing stripe size? A: We do not, but
we considered issues of the filesystem
informing the lower layer (volume man-
ager) about stripe sizes and in the reverse
direction about the actual capacities
available because of compression.

SESSION: FILE SYSTEMS

Summarized by Kevin E. Fu

A COMPARISON OF FILE SYSTEM

WORKLOADS

Drew Roselli and Jacob R. Lorch,

University of California at Berkeley;

Thomas E. Anderson, University of

Washington

Drew Roselli presented an analysis of
filesystem traces from a variety of envi-
ronments under modern workloads. The
goal was to understand how modern
workloads affect the performance of
filesystems.

Traces were collected on four workloads:
an HP-UX instructional workload with
20 hosts for eight months (INS), an HP-
UX research workload with 14 hosts for
one year (RES), an HP-UX Web database
and server with one host for six weeks
(WEB), and a personal computing work-
load with eight NT hosts for four to nine
months (NT). To normalize the meas-
urements, only 31 days of each trace
were used. None of the workloads
reached a steady state because more files
were created than deleted. Drawing

chuckles from the crowd, Drew noted
that “disk sales confirm this result.”

The authors developed a new metric for
measuring lifetimes. This involves track-
ing all files created during the trace and
ignoring files created toward the end of
the trace window. This measurement
reveals that for many workloads, the
block lifetime is less than the 30-second
write delay used by many systems.

On to the results. Each workload has its
own unique shape. Systems with dae-
mons tend to have a knee because of
activities such as overwriting Web-
browser cache files. Other operating sys-
tems tend to either delete immediately or
wait until space fills (e.g., emptying the
recycle bin). The deletion sweet spot cen-
ters around one hour on all but the NT
workload. The NT workload reads and
writes more than twice the amount of
the RES or INS workload. Common to
all workloads are that overwrites cause
the most significant fraction of deleted
blocks, and overwrites show substantial
locality. The results also show that a
small cache is very effective for decreas-
ing disk reads.

Because many processes memory-map a
small set of files, these files are usually
cached. The authors also reconfirmed a
bimodal distribution where many files
are repeatedly written without being
read while many are repeatedly read
without being written. This buys pre-
dictability in post-cache access patterns.

The UNIX traces are publicly available
on
<http://tracehost.cs.berkeley.edu/traces.html>.

Q: How often should such trace studies
be done? Can we subscribe to something
that collects and publishes such traces?
A: If you’re thinking of collecting traces,
don’t do it. Read others’ traces instead.
Workloads change over time.

Q: Did you filter out access to shared
libraries? Or is this included in your
trace? A: There isn’t much left if you take

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://tracehost.cs.berkeley.edu/traces.html

out the shared libraries, so we kept them
in the study.

Q: Are there traces of large sequential
flows? This is important to manufactur-
ers. I’m willing to pay for the traces. A:
Usually traces do not exist because peo-
ple are concerned about privacy. [Margo
Seltzer from Harvard stood up and said
she can help in this area. Contact her
offline.]

Q: Are filesystems generally designed
with database workloads in mind? A:
The Web server has a database in it. IBM
compared database workloads with
Sprite. There is not a big difference
between their results and Sprite.

Q: You mentioned that your tested
filesystem is not in steady state. How
much is expanding? A: We reported this
in paper submission, but we thought it
was too wordy so we removed it. I can’t
remember the growth off the top of my
head, but it was somewhere around
30GB.

FIST: A LANGUAGE FOR STACKABLE FILE

SYSTEMS

Erez Zadok and Jason Nieh, Columbia

University

Erez Zadok discussed FiST, a language
for stackable filesystems. Building a
filesystem is hard! The kernel is a hostile
environment; portability is a pain; devel-
opment is time-consuming; and main-
taining the code is costly. A stackable
filesystem makes code extensible and
modular. To create a new filesystem, one
does not have to remember all the low-
level details.

Early research suggested creating new
APIs such as the stackable vnodes.
However, this suffers from several prob-
lems including: modifying each operat-
ing system, rewriting existing filesystems,
taking a performance hit, using a non-
portable API, and having no high-level
functionality. A stackable filesystem

10 Vol. 25, No. 6 ;login:

alone is not enough. It still leaves much
kernel work to do.

The FiST approach consists of a language
and a set of templates. The language
contains simple, high-level primitives
while C templates provide kernel-level
abstractions. The fistgen program out-
puts code given a base template (basefs)
and a FiST input file. Erez dubbed this
system “a YACC for filesystems.”

Without stacking, a user system call is
translated into a filesystem call. With
stacking, there is a translation between
the filesystem and basefs. The translation
can modify results and arguments. This
allows for feature additions such as file
attributes and distributed filesystems.

The authors compared the development
of FiST-based filesystems with filesys-
tems written from scratch. Four filesys-
tems were implemented under the vari-
ous models:

■ Snoopfs: warns of possible unautho-
rized access

■ Cryptfs: transparent encryption
filesystem

■ Aclfs: adds ACLs to files
■ Unionfs: joins content of two direc-

tories

The measured systems include filesys-
tems written from scratch in C, written
using the basefs templates, written using
the wrapfs templates, and written using
FiST.

The authors found that the size of newly
written code is one to two orders of
magnitude smaller when written with
FiST. Development time is shortened by
a factor of seven compared to writing
from scratch. Meanwhile, the perform-
ance overhead ranges between 0.8% and
2.1% to enable stacking.

For more information, see
<http://www.cs.columbia.edu/~ezk/research/fist/
> or email <fist@cs.columbia.edu>.

Q: Could you explain the difference in
cryptfs results between basefs and

wrapfs? Why the strange spike in the
graph? A: Wrapfs performs unnecessary
memory copies.

Q: How do you handle locking? A:
Filesystem templates take care of nasty
details like locking and reference count-
ing. We use whatever the VFS provides.
Special locking primitives could be
added to the FiST language.

Q: What is your intention now that you
have built a filesystem framework? Do
you intend to write an original filesystem
using FiST? A: We have plans to extend
the language for low-level filesystems on
various storage media.

Q: How do you handle traditional
filesystem issues such as consistency and
recovery? A: Stacking is completely inde-
pendent of what happens above and
below the stacking. You don’t have to
know about details.

JOURNALING VERSUS SOFT UPDATES:
ASYNCHRONOUS METADATA PROTECTION IN

FILE SYSTEMS

Margo I. Seltzer, Harvard University;

Gregory R. Ganger, Carnegie Mellon

University; M. Kirk McKusick, Author &

Consultant; Keith A. Smith, Harvard

University; Craig A. N. Soules, Carnegie

Mellon University; Christopher A. Stein,

Harvard University

Chris Stein compared two technologies
for improving the performance of meta-
data operations and recovery: journaling
and soft updates. Journaling uses an aux-
iliary log to record metadata operations
while soft updates uses ordered writes to
ensure metadata consistency.

Stein discussed three properties for relia-
bility:

■ Integrity. Metadata always recover-
able.

■ Durability. Persistence of metadata.
■ Atomicity. No partial metadata visi-

ble after recovery.

The metadata update problem concerns
proper ordering of operations such that
a filesystem can recover from a crash.

http://www.cs.columbia.edu/~ezk/research/fist/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SThere are three general approaches: syn-
chronous writes, soft updates, and jour-
naling. The Berkeley Fast File System
(FFS) uses synchronous writes to main-
tain consistency. That is, an operation
blocks until metadata are safely written
to disk. Synchronous writes significantly
impair the ability of a filesystem to
achieve high performance. On the other
hand, soft updates and journaling use
asynchronous writes.

Soft updates uses delayed metadata
writes to improve performance.
However, delayed writes alone could
change the order of writes. Therefore,
soft updates maintains dependency
information to order writes. That is,
before a delayed write is written to disk,
it must satisfy certain dependency con-
straints. Soft updates is not durable or
atomic; has weak guarantees on when
updates flush to disk; and requires no
recovery process after a crash.

Journaling writes all metadata updates to
a log in such a way to guarantee recover-
ability. It can perform asynchronous
with Write Ahead Logging (WAL) to
ensure that the metadata log is written to
disk before any associated data. After a
crash, the system can scan this log to
recover metadata consistency. This pro-
vides atomicity. With synchronous jour-
naling, the filesystem will have durability.
Asynchronous mode results in higher
performance at the cost of durability.

The authors performed a microbench-
mark consisting of several stages remi-
niscent of the LFS benchmark. After cre-
ating a directory hierarchy, the bench-
mark writes, reads, and deletes either
128MB of data or 512 files, whichever
generates the most files. There is also a
test on zero-length files to stress metada-
ta operations.

Macrobenchmarks included four work-
loads:

■ An SSH build (similar to the
Modified Andrew Benchmark)

11October 2000 ;login:

■ A netnews server (large working set,
no locality)

■ The SDET software development
environment (timesharing)

■ The PostMark ISP benchmark
(small file transactions to simulate
email and e-commerce)

These benchmarks were applied to two
journaling filesystems; a soft updates
filesystem, and FFS. One of these jour-
naling implementations has the charac-
teristic that the log is a separate filesys-
tem. This makes it easy to run either syn-
chronously or asynchronously, switching
on and off the filesystem’s metadata-
durability property.

The results show that both journaling
and soft updates dramatically improve
the performance of metadata operations.
However, synchronous journaling alone
is insufficient to solve the metadata
update problem. Synchronous journaling
can penalize performance up to 90% rel-
ative to the upper bound of an asynchro-
nous filesystem with no protection. The
delayed writes in soft updates improves
performance in the microbenchmarks.
However, soft updates did not achieve
good performance in the netnews bench-
mark because of the ordering con-
straints. On the other hand, the delayed
writes let soft updates excel in perform-
ance on the PostMark benchmark.

By understanding the solutions in terms
of the transactional properties they offer,
one can derive the relative costs of the
properties. The cost of durability is the
performance difference between the
best-performing solution that does offer
this property and the best-performing
one that does not. Likewise with the
other properties. What one discovers
from comparing performance is that the
cost of durability is generally large rela-
tive to that of integrity. If one sacrifices
durability, performance can be very close
to that of systems with no metadata pro-
tection, while maintaining integrity.

Q: What part of the performance gain is
due to the hefty hardware you’re using?
Which has a better gain, an expensive
disk or an expensive CPU?
A: Synchronous systems would perform
better with better SCSI drives and rota-
tion. Asynchronous systems would bene-
fit from more memory and faster CPU.

Q: Did you turn off disk caching? For
instance, Cheetah hard drives do
caching. A: I can’t recall off the top of
my head.

Q: In your microbenchmark, what were
the file sizes and how long short lived
were the files? A: There were many file
sizes. There are four phases in the
microbenchmark. All files were first cre-
ated, the filesystem was unmounted then
remounted, and then the files were read
and deleted.

INVITED TALK

WATCHING THE WAIST OF THE PROTOCOL

HOURGLASS

Steve Deering, Cisco Systems

Summarized by Rik Farrow

Steve Deering elected to use imagery and
puns to get across his point: that the
waist of IP should remain narrow. The
basic image was an hourglass shape,
where layers four through seven of IP
(application and transport) represent the
top half; layer three (IP) is the narrow
middle, or waist; and various different
transport mechanisms fit into the fat
bottom half (ATM, SONET, Ethernet,
etc.). Deering pointed out the impor-
tance of the IP layer – that it isolates the
stuff above it from the stuff below it, and
that this is what has allowed the Internet
to evolve.

IP allows us to create a “virtualized net-
work” to isolate end-to-end protocols
from network details/changes. Having a
single IP protocol maximizes interoper-
ability and minimizes the service inter-
face. IP means that we can assume a least

USENIX ANNUAL TECHNICAL CONFERENCE ●

common denominator of network func-
tionality to maximize the number of net-
works.

Then Deering asked rhetorically: why
worry about the waist of IP? He gave
mostly humorous answers:

■ It provides for navel gazing.
■ It happens at middle age.
■ The IP is the only layer I can get my

arms around.
■ I am worried about how the archi-

tecture is now being lost: the waste.
■ This theme offers all these puns.

Deering went on to describe some prob-
lems with the waist of IP. For example,
IP multicast (which he actually had a lot
to do with) and quality of service (QoS)
have added to the waist. And a mid-life
crises, IPv6, has created a second waist
(the hourglass image now has two nar-
row connections). IPv6 doubles the
numbers of interfaces, requires a new
Ethertype, and changes in application
software.

The reason for IPv6 was that the IPv4
address space was being rapidly depleted.
Although IPv4 addresses began to be
rationed out in the early ’90s, Network
Address Translation (NAT, RFC 1631)
and application gateways (AG) have
helped to preserve the IPv4 address
space, but at some cost to the original
goals of IP.

IP was also threatened by youths. The
ATM community had this vision of get-
ting rid of the IP layer, and having end-
to-end ATM. ATM did not supplant IP,
and instead we wound up with a compli-
cated hybrid and two address plans. On
top of this, we had more fattening temp-
tations: layer-two tunneling protocols
(PPP, LP2T, PPP over Ethernet). “This is
progress?” quipped Deering.

Deering talked about lost features of the
Internet, properties that were true but
are not anymore:

■ Transparency – devices that modify
addresses (NAT).

12 Vol. 25, No. 6 ;login:

■ Robustness through fate-sharing –
design a system so you do not
depend on more resources than you
absolutely must. TCP connectiveness
depends on state maintained at
either end. Add in NAT, and you lose
this.

■ Dynamic routing. There are many
places routing is constrained. With
NAT, an organization cannot pro-
vide multiple outgoing paths. And
the failure of your ISP today means
that you cannot simply have a sepa-
rate path to your network (another
ISP).

■ Portable addresses. (Early connec-
tors could move their addresses with
them, but now addresses are not
portable.)

■ Unique addresses (NAT).
■ Stable addresses (NATs and DHCP).
■ Connectionless service. (If you are

behind the NAT, NATs do not sup-
port transaction-oriented protocols
like UDP; protocols do not have an
explicit teardown, so NAT boxes just
apply their own heuristics.)

■ Always-on service, most users of the
Internet are behind dialup services,
so they must connect or disconnect
from the Internet. PPPoE makes
cable/DSL like dialup.

■ Peer-to-peer communications, not
symmetric devices (no servers
behind the Net). It becomes the
purview of the ISP to set up servers.

■ Application independence is another
key feature, as more and more appli-
cation knowledge has to be built
into the NAT. If NAT had been
widespread before we got the Web,
we might have not gotten the Web
(no servers behind NAT).

In case all this didn’t make the network
manager’s job hard enough, we renamed
bridges to switches. Router people
renamed routers as switches (multilayer
switches and layerless switches, but this
just obscures what is going on). Is this
entropy or evolution? Deering believes

that this looks like the normal entropy of
all large engineered systems over time.
“Of course it grows warts and hats over
time,” said Deering.

What Deering really wants to do is turn
hourglass into wineglass – IP over cop-
per, fiber, radio with no intervening pro-
tocols. If the lower layers are making IP
jobs harder, then let’s get rid of lower
layers. And we are seeing signs of IP
evolving this way. We saw IP over
SONET, but people are asking what
value does SONET add to IP? We need
IPv6 to get back to the narrow shape.
Deering concluded, “This is my dream.
Only time will tell.”

Rob Pike of AT&T Research arose quick-
ly to ask the first question. Pike men-
tioned that there is not much flow
through the stem of the wineglass. He
also stated that he thinks that Deering
was not giving enough credit to things
like what the phone system does for you,
and that he doesn’t think that IPv6 can
replace this. Deering responded by say-
ing that the shape was not supposed to
represent a bottleneck, but a reduction in
baggage. Pike responded by saying it
doesn’t appear that IPv6 addresses many
of these issues, such as trunking between
sites supported by frame relay. Deering
responded that circuits could be better
based on routing tables, and that MPLS
is the current answer to this problem. At
this point, Pike suggested that they con-
tinue in private.

Jeff Mogul of Compaq Western Research
Labs tried to get Deering to talk about
firewalls. (It was obvious he doesn’t like
them.) Eventually, Deering said that fire-
walls should be in the end host, not in a
dedicated firewall (not that we can throw
firewalls away today).

Evi Nemeth asked when we will we see
IPv6 really deployed. Deering answered
“next year,” and when Nemeth asked
what will get it there, Deering said, “IPv6
in billions of cell phones will require it.”

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SSESSION: OLD DOGS, NEW TRICKS

Summarized by Bob Gray

LEXICAL FILE NAMES IN PLAN 9, OR, GETTING

DOT-DOT RIGHT

Rob Pike, Bell Laboratories

Rob Pike pointed out that for 20 years,
the UNIX community has been living
with the embarrassing problem that
chdir("..") doesn’t work properly in the
presence of symbolic links. From his
paper an example is:

% echo $HOME
/home/rob
% cd $HOME
% pwd

/n/bopp/v7/rob
% cd /home/rob
% cd /home/ken
% cd ../rob
../rob: bad directory

This annoyance, which causes confusion
and headaches, should never have lasted
so long. The anomaly exists in most ver-
sions of UNIX and Plan 9. With a few
hours of work, Pike was able to solve the
problem for Plan 9 by implementing an
“accurate” path name for every active file
in the system. It is guaranteed to be the
rooted, absolute name the program used
to acquire it. A pure lexical definition of
chdir("..") is required. That is, take the
current working directory and strip off
the last component, yielding the new
working directory. However, symbolic
links introduce an ambiguity in the
pathnames. Rob showed that the “cor-
rect” name can easily be determined by
context.

Rob explained that in Plan 9, “bind” is
like symbolic links and a channel is a
filesystem handle. All of the necessary
information to disambiguate chdir("..") is
present in the kernel. A few lines of ker-
nel code implemented the proper solu-
tion. Rob challenged the audience to fix
this silly bug in contemporary UNIX
implementations. He suggested that we
may want to look at the Plan 9 source
code, which is freely available now at
<http://plan9.bell-labs.com>.

13October 2000 ;login:

GECKO: TRACKING A VERY LARGE BILLING

SYSTEM

Andrew Hume, AT&T Labs-Research;

Scott Daniels, Electronic Data Systems

Corp.; Angus MacLellan, AT&T Labs-

Research

Andrew Hume described Gecko – an
adjunct system to track the efficiency,
performance, and accuracy of the AT&T
phone billing system. The fundamental
question being asked was: “Is every tele-
phone call being billed exactly once?”
Their legacy system comprises dozens of
big-iron, MVS computers, running hun-
dreds of programs written in Cobol – it
was not feasible to interrupt the opera-
tions of this 24x7 production system to
add tracking software. However, Hume
and his team were allowed to tap into the
data flows between processes. The sum
of these taps amounted to over
250GB/day.

Given the hundreds of millions of trans-
actions per day, Hume’s job was to mon-
itor and verify that billing processing was
accurate, timely, and complete. His solu-
tion was to create “tags” for each tele-
phone call record at each tap point.
Nightly, Gecko would add these tags into
a giant (60G tag) database, and produce
reports highlighting discrepancies from
expected flows.

Hume and his team processed the raw
information and analyzed the flows
using a 32-processor Sun E10000 and
two smaller Sun E5000s. They used a
number of basic tools: C, ksh, Awk, and
Gre (a special implementation of grep).
He compared implementations on the
Sun and an SGI Origin 2000, and com-
mented that Gecko relied on a solid SMP
implementation and they were stymied
by inadequacies in PC environments. He
found that the SGI gave a 2.5 price/per-
formance advantage over the Sun. But
for huge increases in scalability, they
would recommend a cluster implemen-
tation.

EXTENDED DATA FORMATTING USING SFIO

Glenn S. Fowler, David G. Korn, Kiem-

Phong Vo, AT&T Labs-Research

Kiem-Phong Vo described the Sfio pack-
age, which is a faster, more robust, and
more flexible replacement for the Stdio
package. Stdio has several shortcomings
in data formatting. For example, to print
an abstract scalar such as off_t on some
systems you would use a printf specifica-
tion of %d – on other systems you
would need a printf specification of %ld.
The Stdio routines, gets and scanf are
unsafe when the length of an input line
or string exceeds the size of the given
buffer. Stdio has no extension mecha-
nism for printing user-defined types. For
example, if you had a spatial coordinate
type, Coord_t, you would have to use ad
hoc formatting methods.

Sfio fixes the above-mentioned prob-
lems. It also contains a generalized
mechanism for printing arbitrary bases
in the range of 2–64. For example, %..2d
will print the decimal value of 123 as
1111011.

Here is an example of how Sfio allows
flexibility in printing a integer whose size
may vary from architecture to architec-
ture:

sfprintf(sfstdin, "%I*d", sizeof(intval),
intval);

Similarly, here is a scanning example for
floating point numbers:

sfscanf(sfstdin, "%I*f". sizeof(fltval),
&fltval);

In both examples, the sizes of the scalar
objects determine their types.

Sfio has hooks for handling user-defined
types such as complex numbers. This
general mechanism allows user to specify
format strings, argument lists, and func-
tions to parse each data type.

Sfio outperforms Stdio on all tested plat-
forms mostly due to the new data con-
version algorithms. The code is available
from <http://www.research.att.com/sw>.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://plan9.bell-labs.com
http://www.research.att.com/sw

INVITED TALK

IMPLEMENTING 3D WORKSTATION GRAPHICS

ON PC UNIX HARDWARE

Daryll Strauss, Precision Insight

Summarized by Matt Grapenthien

3D hardware for PCs has improved to
the point where it begins to rival that of
traditional 3D graphics workstations.
However, providing these capabilities on
commodity hardware poses a number of
difficult and interesting problems.

After explaining some of the basic algo-
rithms implemented by various 3D hard-
ware, Strauss addressed several of the
challenges 3D presents, such as security
issues related to commodity hardware.
Also, the scheduling granularity used by
the Linux kernel, though more efficient
for most processes, is too large for
smooth video.

Next, Strauss presented the shortcomings
of indirect rendering techniques, and
presented an alternative: the Direct
Rendering Infrastructure (DRI). The
DRI is designed to be secure, reliable,
and high-performance, by utilizing the
available hardware as much as possible.
In addition, the DRI is highly modular,
allowing different implementations to
use only the subset of software they
wish.

The DRI is included in XFree86 4.0, and
is starting to be used by 3DLabs, HP, and
IBM, among others, even on high-end
hardware. Precision Insight’s work to
provide completely open-source solu-
tions to the problems above has shown
great promise, even in this somewhat
early stage.

14 Vol. 25, No. 6 ;login:

FREENIX SESSION: FILE SYSTEMS

Summarized by Kevin E. Fu

PORTING THE SGI XFS FILE SYSTEM TO

LINUX

Jim Mostek, Bill Earl, Steven Levine,

Steve Lord, Russell Cattelan, Ken

McDonell, Ted Kline, Brian Gaffey, and

Rajagopal Ananthanarayanan, SGI

Russell Cattelan talked about the work
necessary to port SGI’s XFS filesystem to
Linux. In particular, he discussed the
filesystem interface, the buffer caching,
and legal issues. XFS is a highly scalable,
journaling filesystem available for free
under the GPL.

To maintain atomic updates to the
filesystem metadata, XFS keeps a log of
its uncommitted actions. Should the
machine crash, XFS simply replays the
log to recover to a consistent filesystem.
Recovery time depends on the size of the
uncommitted log. This is in stark con-
trast to the fsck tool, where recovery
time depends on the size of the entire
filesystem.

A single XFS filesystem can hold as
much as 18 million terabytes of data and
as much as 9 million terabytes of data
per file. XFS is an extent-based filesys-
tem. That is, data are organized into
arbitrarily long extents of disk rather
than fixed-sized blocks of disk. This
allows XFS to achieve a throughput of
7MB/second when reading from a single
file on an SGI Origin 2000 system.

XFS uses the vnode/VFS interface.
However, Linux does not use this inter-
face. As a result, SGI created the linvfs
interface, which maps the Linux VFS
interface to the VFS layer in IRIX. At a
small overhead cost in translation, this
keeps the core XFS code portable.

Second, SGI added pagebuf to Linux.
This is a cache and I/O layer to provide
most of the advantages from the cache in
IRIX. Pagebuf allows pinning of metada-
ta buffers, delayed writes via a daemon,
and placement of metadata in a page
cache.

Russell also explained the legal process of
encumbrance relief. SGI determined, for
all the XFS code, which code was original
and which code came from third parties.
Most of the original XFS code came
from SGI. However, XFS contains some
software from third parties. A homebrew
tool compared every line of code in XFS
against the source code from third par-
ties. After removing the third-party code,
SGI released XFS under the GPL.

For more information, see
<http://oss.sgi.com/projects/xfs/>.

Q: Is preallocation fast? A: Yes. You’re
preallocating an extent of space, not
individual blocks. You’re not zeroing out
files, but you will receive zeros if you
read from preallocated space.

Q: How does preallocation work on an
API level? A: There are two ways to pre-
allocate, with a command-line utility or
new IRCTL calls.

Q: Could you describe what you did at
the vnode/VFS layer? A: Our vnode is
now part of the inode. The Linux inode
would not work with our design. We
mostly map functions from linvfs func-
tions to vnode functions.

LINLOGFS – A LOG-STRUCTURED FILE

SYSTEM FOR LINUX

Christian Czezatke, xS+S; M. Anton Ertl,

TU Wien

Christian Czezatke described the
LinLogFS filesystem. Started in 1998,
LinLogFS aims to achieve faster crash
recovery than that of the Ext2 filesystem.
LinLogFS also enables the creation of
consistent backups while the filesystem
remains writable.

LinLogFS evolved from the Ext2 code-
base to a log-structured filesystem with
better data consistency and
cloning/snapshots. It guarantees in-order
write consistency.

If you modify part of an Ext2 filesystem
during a backup, the change may or may
not be noticed. Worse, a simultaneous

http://oss.sgi.com/projects/xfs/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sbackup may only detect parts of the
change. LinLogFS does not suffer from
this problem because backups can use a
snapshot of a filesystem. In this manner,
backups are completely atomic while still
allowing read-write access to the filesys-
tem.

In the future, Czezatke plans to finish the
cleaning program, use less naive data
structures and algorithms, and cooperate
with the object-based disk project for
mirroring.

See
<http://www.complang.tuwien.ac.at/czezatke/lfs.html>

for the code.

Q: Have you reviewed the LFS code for
the *BSD operating systems? Can you
comment on differences or code overlap?
A: We looked at BSD LFS and Sprite LFS.
We had slightly different goals. We want-
ed an LFS for Linux. And the Sprite and
BSD LFS goal was higher speed than
FFS. Our goal was better functionality at
the same speed as Ext2.

UNIX FILE SYSTEM EXTENSIONS IN THE

GNOME ENVIRONMENT

Ettore Perazzoli, Helix Code, Inc.

Ettore Perazzoli spoke about filesystem
extensions in the GNOME environment.
Perazzoli is an open source software
developer and contributor to the
GNOME project. GNOME extends the
functionality of the UNIX filesystem by
using a user-level library called the
GNOME Virtual File System.

There are many file formats to juggle:
zip, tar, gzip, etc. Each format uses a dif-
ferent tool to view the file contents.
GNOME avoids this problem by using a
global filesystem namespace. This allows
GNOME to identify and view contents of
container files such as tar files. Names in
the GNOME VFS use an extension of the
familiar Web Uniform Resource
Identifier scheme.

Ettore discussed how Microsoft
Windows has the “My Computer” con-

15October 2000 ;login:

cept where one can find all system
resources such as files, a control panel,
printers, and the recycling bin. GNOME
VFS addresses the “My Computer” prob-
lem by providing filesystem abstractions,
and the asynchronous file I/O problem
by implementing an asynchronous API.
Asynchronous behavior is important
because a GUI should be responsive all
the time. If the GUI were to block on a
file operation, the user cannot stop the
operation. GNOME implements asyn-
chronous behavior through an asynchro-
nous virtual filesystem library.

For more information, visit
<http://www.gnome.org/> and
<http://developer.gnome.org/>.

Q: Why did you choose a pound sign for
subschema? A: We inherited this from
Midnight Commander. You can always
quote the character.

Q: How do you handle symlinks with “..”
in the path? A: Symlinks only work with-
in their context. For instance, a symlink
inside a tar file will only make sense
within the context of the tar file.

Q: Have you considered POSIX AIO as
twisted as it may be? A: Yes, but POSIX
AIO only lets you make reads/writes
from/to the filesystem asynchronous, so
it does not help in complex cases such as
the .tar or .zip ones, when you have to do
other stuff besides physically reading the
file.

SESSION: DISTRIBUTION AND

SCALABILITY: PROBLEMS AND

SOLUTIONS

Summarized by Josh Kelley

VIRTUAL SERVICES: A NEW ABSTRACTION FOR

SERVER CONSOLIDATION

John Reumann, University of Michigan;

Ashish Mehra, IBM T.J. Watson

Research Center; Kang G. Shin,

University of Michigan; Dilip Kandlur,

IBM T.J. Watson Research Center

Virtual services (VSes) provide a way to
partition resources on a server cluster
between competing applications. VSs can
be used to set resource limits and to
charge resources out to different virtual
services. For example, Web servers for
two different companies can be run on a
single host by treating them as two sepa-
rate VSes. Such partitioning has tradi-
tionally been done by partitioning a
physical host into several virtual hosts.
Although this approach provides good
insulation between services, it does not
allow sharing common subservices
between co-hosted sites. VSes address
this problem by dynamically adjusting
resource bindings. Each request’s VS
resource context is tracked as the request
is handed off across application and
machine boundaries, thus allowing VSes
to remain insulated from each other
while still accessing shared applications
and machines.

Implementing VSes involves modifying
the operating system’s scheduler to parti-
tion the CPU. A VS also hooks into vari-
ous system calls (such as process creation
calls and network communication calls)
via gates in order to track the propaga-
tion of work. Gates adjust resource bind-
ings during system calls (binding a
process to a different virtual service as
needed) and enforce resource limits.
These gates are implemented as loadable
kernel modules.

Evaluation shows that virtual services
have a minimal negative impact on per-
formance and successfully insulate com-
peting services from each other, even
when these services rely on a common
shared service. VS support is currently
available for Linux 2.0.36; support for
Linux 2.2.14 is in development. Source
code is available from
<http://www.eecs.umich.edu/~reumann/vs.html

>.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.complang.tuwien.ac.at/czezatke/lfs.html
http://www.gnome.org/
http://developer.gnome.org/
http://www.eecs.umich.edu/~reumann/vs.html

LOCATION-AWARE SCHEDULING WITH

MINIMAL INFRASTRUCTURE

John Heidemann, USC/ISI; Dhaval Shah,

Noika

With the increase in use of laptop com-
puters, some way to specify context-
dependent configurations and activities
could provide a great deal of conven-

ience for users. For example, a user
might wish to specify “print to the print-
er in room 232 when I’m at work” or
“disable this background process while
I’m on battery.” lcron is a context-aware
cron that provides a general solution to
scheduling such context-dependent
activities.

Context information could come from
many sources: GPS receivers, wireless
base station name, idle status, network
addresses, or battery status are all possi-
bilities. Lcron currently supports the lat-
ter two.

The interface to lcron is similar to that of
the standard cron and at utilities. A con-
text-dependent at command, for exam-
ple, could be invoked as at 7pm @work.
lcron allows users to specify mappings
between terms meaningful to the user
(‘@work’) and information readily avail-
able to the computer (latitude, longitude,
router IP address).

lcron has been in use for two years. It is
available from
<http://www.isi.edu/~johnh/SOFTWARE/XCRON>.

16 Vol. 25, No. 6 ;login:

DISTRIBUTED COMPUTING: MOVING FROM

CGI TO CORBA

James FitzGibbon and Tim Strike,

Targetnet.com Inc.

In 1997, TargetNet deployed a banner-ad
delivery system using CGI. As the net-
work grew, basic CGI showed itself to be
incapable of keeping up with the growth.
They wanted a solution that was faster
than basic CGI, was freely available,
would support distributed computing,
and would work with other products.
CORBA was chosen as the solution that
best met these criteria.

The system that was developed involves
two main components. First is an HTTP-
to-CORBA proxy. This proxy, called the
dispatch server, takes HTTP requests
from the Web servers and presents them
as CORBA requests to the application
servers. This dispatch server allows a
three-tier architecture (Web servers,
application servers, databases) in which
only the Web servers are exposed to the
Internet.

The second main component is a
method of notifying each dispatch server
of the available application servers. A
service heartbeat daemon serves this role
by maintaining a list of available applica-
tion servers, providing a client with an
available application server when
queried, and coordinating with other
heartbeat daemons. This design avoids
any single point of failure and provides
excellent scalability.

CORBA offers an open source, distrib-
uted object model, with wide language
support. The combination of a dispatch
server and a heartbeat daemon allows a
three-tier architecture with excellent reli-
ability and near-linear scalability.

INVITED TALK

THE MICROSOFT ANTITRUST CASE: A VIEW

FROM AN EXPERT WITNESS

Edward Felten, Princeton University

Summarized by Josh Simon

Disclaimer: Neither the author of this
write-up nor the speaker is a lawyer.

Dr. Felten was one of the expert witness-
es for the U.S. Department of Justice in
the recent antitrust case against
Microsoft. In his talk he discussed why
he believed the government chose him,
and he explained the role of an expert
witness in antitrust cases.

In October 1997 Felten received an email
message from an attorney in the
Department of Justice asking to speak
with him. After signing a nondisclosure
agreement (which is still binding, so he
advised us there were some aspects he
simply could not answer questions on),
and over the course of several months,
he spoke with the DOJ until, in January
1998, he signed a contract to be an advi-
sor to the case.

What was the case about? Unlike media
portrayals, the case was not about
whether Microsoft is good or evil, or
whether or not Bill Gates is good or evil,
or whether Microsoft’s behavior was
good or bad. The case was specifically
about whether or not Microsoft violated
U.S. antitrust laws.

A brief discussion of economics may be
helpful here. Competition constrains
behavior. You cannot, as a company, hike
prices and provide bad products or serv-
ices when there is competition, for the
consumer can go to your competitors
and you’ll go out of business. Weakly
constrained companies, or those compa-
nies with little or no competition, have
what is called monopoly power.
Monopoly power in and of itself is not
illegal. What is illegal is using the
monopoly power in one market (for
example, flour) to weaken competition
in another market (for example, sugar).

John Heidemann

http://www.isi.edu/~johnh/SOFTWARE/XCRON

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SThe U.S. government claimed that (1)
Microsoft has monopoly power in the
personal-computer operating-system
market; and that (2) Microsoft used its
monopoly power to (a) force PC manu-
facturers to shun makers of other (non-
Microsoft) applications and operating
systems; (b) force AOL and other ISPs to
shun Netscape’s browsers, Navigator and
Communicator; and (c) force customers
to install and use Microsoft Internet
Explorer. These issues are mostly non-
technical and specifically economic. Dr.
Felten focused on the technical aspects.

Under U.S. antitrust law, tying one prod-
uct to another is illegal in some cases.
For example, if you have a monopoly on
flour, you cannot sell flour and sugar
together unless you also sell flour alone.
You cannot force customers to buy your
sugar in order to get your flour.
Similarly, the government argued,
Microsoft cannot tie Windows 95 (later,
Windows 98) together with Internet
Explorer unless it offers both the OS and
the browser separately. Microsoft
claimed technical efficiencies in bundling
the products together.

This boils down to two legal issues. First,
what was the motive in combining the
OS and the browser? The answer to this
is provided by documentation and wit-
nesses, subpoenaed by the government,
and not technical. Second, does the com-
bination achieve technical efficiencies
beyond that of not combining the two?
The answer to this is experimental, tech-
nical, based in computer science, and
was the focus of the rest of the talk.

Specifically, how did Felten go about
testing the efficiencies or lack thereof?
He started by hiring two assistants who
reverse-engineered both Windows and
Internet Explorer. (Note that this work,
because it was done on behalf of the gov-
ernment for the specific trial, was not
illegal. Doing so yourself in your own
basement would be illegal.) After nine
months, they were able to assemble a

17October 2000 ;login:

program to remove Internet Explorer
from Windows.

The next step in the process was to pre-
pare for court. In general, witnesses have
to be very paranoid, nail down the tech-
nical details, have sound and valid con-
clusions, and learn how to be cross-
examined. Lawyers, no matter your per-
sonal opinion of them, are generally very
well-schooled in rhetoric, terminology,
and framing of questions, and hiding
assumptions in them. They’re also good
at controlling the topic, pacing the exam-
ination, and producing sound bites. In
his testimony, Felten demonstrated the
“remove IE” program. Jim Alchain,
Microsoft vice president, provided 19
benefits of tying the products together
and claimed the removal program had
bugs. In the government’s cross-exami-
nation of Alchain, he admitted that all 19
benefits were present if IE was installed
on top of Windows 95, and that the
video used to show that the demonstra-
tion of the removal process had bugs had
errors and inconsistencies. Microsoft
tried a second demo to show problems
with the removal program under con-
trolled circumstances and could not do
so. Furthermore, in rebuttal to
Microsoft’s assertion that the products
had to be strongly tied together to gain
benefits, the government pointed out
that Microsoft Excel and Microsoft Word
were not strongly tied and yet were able
to interoperate without being insepara-
ble.

Judge Jackson reported in his findings of
fact in November 1999 that the combi-
nation had no technical efficiencies
above installing them separately, Internet
Explorer could be removed from the
operating system, and tying the browser
and the operating system together was,
in fact, illegal.

The next phase of the trial was the reme-
dy phase in May 2000. The goals of the
remedy phase are to undo the effects of
the illegal acts, prevent recurrence of

those acts, and be minimally intrusive to
the company, if possible. There are gen-
erally two ways to accomplish this: struc-
tural changes (reorganization or separa-
tion of companies) and conduct changes
(imposing rules). The judge could
choose either or both. The decision was
reached to restructure Microsoft such
that the operating system (Windows)
would be handled by one company and
everything else by another. Furthermore,
in conduct changes, Microsoft could not
place limits on contracts; could not retal-
iate against companies for competing in
other markets (such as, for example,
word processing); must allow PC manu-
facturers to customize the operating sys-
tems on the machines they sell; must
document their APIs and protocols; and
cannot tie the OS and products together
without providing a way to remove
them.

Microsoft has appealed the case. At the
time of this writing it is not clear
whether the appeal will be heard in the
U.S. Court of Appeals or by the U.S.
Supreme Court. The remedies are stayed,
or on hold, until the resolution of the
appeals or until a settlement of some
kind is reached between Microsoft and
the U.S. government. Once the case is
truly over, Felten’s slides will be available
on the USENIX Web site.

FREENIX SESSION: SOCKETS

Summarized by Bob Gray

PROTOCOL INDEPENDENCE USING THE

SOCKETS API

Craig Metz, University of Virginia

Craig Metz convinced the audience that
in an all-IP world, our network pro-
gramming has become inflexible and
uni-protocol. Even though the Berkeley
Sockets were designed as a protocol-
independent API, other parts of the API
(like the name-service functions) grew
up as protocol-dependent. So, some of
the APIs are not protocol-independent,

USENIX ANNUAL TECHNICAL CONFERENCE ●

which in turn encourages code not to be
either. For now, IPv4 is ubiquitous, but
as its 32-bit address space runs out, we
will find IPv6 more and more com-
pelling. Therefore, it would be prudent
to pay attention to the portability issues
and even check and retrofit some of our
existing network programs.

Metz pointed out multiple problems:

■ Hard coded constants in programs,
■ Storage limitations and assumptions,
■ GUIs that assume four three-digit

fields as an address.

For example, many programs hard-code
the protocol family as AF_INET, which
prevents protocols other than IP from
being used. We should not assume a net-
work address will fit in a u_long. And
using struct sockaddr_in sin limits pro-
grams because it doesn’t allocate enough
storage for protocols such as IPv6.

Metz recommends using the new POSIX
p1003.1g interfaces. For example, getad-
drinfo performs the functionality of geth-
ostbyname(3) and getservbyname(3), in
a more sophisticated manner.

The new interfaces will take time to be
universally deployed; however, they are
currently available in at least the follow-
ing environments: AIX, BSD/OS,
FreeBSD, Linux, OpenBSD, NetBSD,
Solaris, and Tru64 UNIX. They are
expected to be available soon with IRIX
and HP-UX.

SCALABLE NETWORK I/O IN LINUX

Niels Provos, University of Michigan;

Chuck Lever, Sun-Netscape Alliance

Graduate students Niels Provos and
Chuck Lever have observed and
addressed bottlenecks in Linux where
many high-latency, low-bandwidth con-
nections are simultaneously present on a
Web-server box. The problem is that the
stock kernel data structures and algo-
rithms don’t scale well in the presence of
thousands of rapidly formed HTTP con-
nections. The file-descriptor selection

18 Vol. 25, No. 6 ;login:

code needed work. The problem is event
notification. It takes a long time for the
kernel to find which connections are
ready for I/O.

Niels discussed two solutions to remove
the inefficiency: the POSIX RT signals
API and an optimized poll() along the
lines of Banga’s declare_interest() inter-
face. He convinced the audience that
both mechanisms provide huge improve-
ments for HTTP response time when
251 or 501 idle or inactive connections
are present in the background. However,
his optimization using /dev/poll yielded
the overall best response times.

To achieve high performance, Neils made
the following changes to poll():

■ Maintain state information in the
kernel so that every poll system call
doesn’t have to retransmit it.

■ Allow device drivers to post comple-
tion events to poll().

■ Eliminate the result copying when
poll returns to the user.

The /dev/poll device allows a process to
add, modify, and remove “interests” from
an interest set. This streamlines poll()
calls because only relevant information is
passed at system call time. Further, when
poll() returns, the application immediate-
ly has access to the ready descriptors.

The software enhancements to poll() are
freely available.

ACCEPT() SCALABILITY IN LINUX

Stephen P. Molloy, University of

Michigan; Chuck Lever, Sun-Netscape

Alliance

Stephen Molloy described the thunder-
ing hard problem associated with Linux
implementations of the accept() system
call. When multiple threads call accept()
on the same TCP socket to wait for
incoming TCP connections, they are
placed into a wait queue. The problem is
when a TCP connection is accepted, all
of the threads are awakened – even
though all but one will immediately need

to go back to sleep. As the number of
threads goes from a few dozen to hun-
dreds, the kernel begins severe thrashing.

One proposed solution is called Task
Exclusive. The idea is to add a flag to the
thread state variable, change the han-
dling of wait queues, and connect into a
standard, newly added wait-queue mech-
anism.

Another solution is called Wake One,
which adds new calls to complement
wake_up() and wake_up_interruptible().
The new functions just wake up one
thread when a connection becomes
ready.

Molloy presented micro-benchmark data
showing huge improvements in “settle
time” for both the Task Exclusive and
Wake One solutions over the stock ker-
nel.

He also used a Macro-benchmark,-
SpecWeb99, to demonstrate the effective-
ness of both solutions – over 50% more
connections.

The Task Exclusion solution has been
incorporated into the Linux kernel. The
code is also available at the Linux
Scalability Project’s home page:
<http://www.citi.umich.edu/projects/linux-scalability/>.

SESSION: TOOLS

Summarized by Doug Fales

OUTWIT: UNIX TOOL-BASED PROGRAMMING

MEETS THE WINDOWS WORLD

Diomidis D. Spinellis, University of the

Aegean

Windows is fundamentally an environ-
ment of mouse clicks and pixel output.
Very little of this GUI-based OS is acces-
sible to text-based programs. It is with
this shortcoming in mind that Diomidis
Spinellis developed Outwit. Outwit pro-
vides a number of text-based tools for
Windows to work together with UNIX-
based tools. Specifically, Spinellis’ tools
provide mechanisms for interaction with

http://www.citi.umich.edu/projects/linux-scalability/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sthe clipboard, the registry, the ODBC
database interface, document properties,
and shell links (shortcuts). The presenta-
tion included several convincing exam-
ples of the time-saving advantages of
such an environment.

One example used the winreg command
(the interface to the registry) to change
the location of the user’s home directory
from drive C: to drive D:, with a little a
help from pipelines and the Win32 ver-
sion of sed:

winreg HKEY_CURRENT_USER |
sed -n 's/C:\\home/D:\\home/gp' |
winreg

The winclip tool provides shell-based
clipboard access. For example, to copy
data from standard input to the
Windows clipboard:

ls -l | winclip -c

and to paste Windows clipboard data to
standard output:

winclip -p | wc -w

Spinellis would be interested in adding
functionality to Outwit for new features
of Windows 2000, and in providing sup-
port for Unicode. The Outwit tools are
available at <http://softlab.icsd.aegean.gr/
~dspin/sw/outwit>.

PLUMBING AND OTHER UTILITIES

Rob Pike, Bell Labs

Plumbing is a Plan9 solution for inter-
process communication and message
passing between user applications. The
general idea is to remove some of the
burden on the user of constantly shuf-
fling data from program to program. A
common example of this occurs during
compilation and debugging, when a
compiler generates error messages detail-
ing file location and line number.
Plumbing allows the user to access the
error in an editor in one click.

Thanks to the pattern-matching lan-
guage at the core of the plumber’s
design, it is a far more powerful mecha-

19October 2000 ;login:

nism than filename-extension associa-
tions such as those in Windows. While
the goal is for the plumber’s default
actions to be the most desirable actions,
it is highly customizable through a con-
figuration file that defines rules in a pat-
tern-action format.

The actual message passing is relatively
trivial because the plumber is a fileserv-
er; messages are written to a file on the
server, which then takes appropriate
action based on the defined rules. The
rules are actually quite flexible and pow-
erful in that they provide a means to
interpret the context of messages.

The interface for plumbing is simple and
designed to minimize keystrokes and
button clicks. The applications them-
selves do remarkably little work; almost
everything is handled within the
plumber itself.

One very good application of this sort of
automation is in dealing with file for-
mats that might require transformation
before viewing, such as an attached
Microsoft Word document. With a cou-
ple of pattern-matching rules to set up
the variables, this rule takes a Word doc-
ument, converts it to text, and sends it to
the editor:

plumb start doc2txt $data | \
plumb -i -d edit \
-a action=showdata \
-a filename=$0

This one-click approach to conversion
and viewing is a slick example of the
advantages of this system. Details and
more examples may be found in Pike’s
paper.

INTEGRATING A COMMAND SHELL INTO A

WEB BROWSER

Robert C. Miller and Brad A. Myers,

Carnegie Mellon University

Rob Miller demonstrated enhancements
to his existing Web browser (LAPIS, see
http://www.usenix.org/events/usenix01/cfp/miller/miller_html/usenix99.html>
). The extension was an integration of

browser and command shell. At first
glance, this might look like another
attempt to unnecessarily GUI-ify a clas-
sic typescript tool. However, this project
demonstrated some very useful and
innovative ways of using a Web browser.

Miller’s browser provides a circular redi-
rection of the standard input and out-
put, so that commands are executed as if
in one long pipeline. The benefits of
such a mechanism in a Web browser are
not immediately apparent until the full
potential of conventions like the “back”
button are realized.

In addition, the browser conveniently
separates the standard error and output
streams when displaying command out-
put. Some features of the browser are: an
embedded pattern-matching language to
extract data from a Web page, a com-
mand window that can execute tradi-
tional shell commands and Web-specific
commands, and the ability to automate
browsing.

The demonstration showed how LAPIS
could be used to visit and print (or save)
each page in a document that is strung
out over several links. Another interest-
ing application was automating the use
of forms. Miller used the pattern-match-
ing language to extract the ISBN of a
book from an Amazon.com Web site,
and then fed this into a script that had
been constructed by LAPIS to consult
the form-based Web pages of CMU’s
library lookup service.

Judging by the demonstration, LAPIS
seemed a well-designed, easy to use
interface. Furthermore, it does some-
thing to alleviate the pain of endless
clicking and banner-ad watching that is
associated with browsing the Web these
days. The browser and its Java source are
available at
<http://www.cs.cmu.edu/~rcm/lapis>.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://softlab.icsd.aegean.gr/
http://www.usenix.org/events/usenix01/cfp/miller/miller_html/usenix99.html
http://www.cs.cmu.edu/~rcm/lapis

INVITED TALK

CHALLENGES IN INTEGRATING THE MAC OS
AND BSD ENVIRONMENTS

Wilfredo Sanchez, Apple Computer

Summarized by Josh Simon

Fred Sanchez discussed some of the chal-
lenges in integrating the MacOS and
BSD environments to produce MacOS X.
Historically, the Mac was designed to
provide an excellent user interface (“the
best possible user experience”) with tight
hardware integration and a single user.
In contrast UNIX was designed to solve
engineering problems, using open source
(for differing values of “open”), running
on shared multi-user computers and
with administrative overhead. There are
positives and negatives with both
approaches. MacOS X is based on the
Mach 3.0 kernel and attempts to take the
best from both worlds. A picture may
help explain how all this hangs together:

Sanchez next talked about four problem
areas in the integration: filesystems, files,
multiple users, and backwards compati-
bility. Case sensitivity was not much of
an issue; conflicts are rare and most sub-
stitutions are trivial. MacOS uses colon
as the path separator; UNIX uses the
slash. Path names change depending on
whether you talk through the Carbon
and Classic interfaces (colon, :) or the
Cocoa and BSD interfaces (slash, /).
Filename translation is also required,
since it is possible for a slash to be pres-
ent in a MacOS file name. File IDs are a
persistent file handle that follows a file in

20 Vol. 25, No. 6 ;login:

MacOS, providing for robust alias man-
agement. However, this is not imple-
mented in filesystems other than HFS+,
so the Carbon interface provides for
nonpersistent file IDs. Hard links are not
supported in HFS+, but it fakes it, pro-
viding the equivalent behavior to the
UFS hard link. Complex files – specifi-
cally, the MacOS data and resource forks
– are in the Mac filesystems (HFS+, UFS,
and NFS v4) but not the UNIX filesys-
tems (UFS and NFS v3). The possible
solutions to this problem include using
AppleDouble MIME encoding, which
would be good for commands like cp
and tar but bad for commands using
mmap(), or using two distinct files, which
makes renaming and creating files tough,
overloads the name space, and confuses
cp and tar. The solution they chose was
to hide both the data and resource forks
underneath the filename (for example,
filename/data and filename/resource,

looking like a
directory
entry but not
a directory)
and have the
open() system
call return the
data fork
only. This lets
editors and
most com-
mands
(except

archiving commands, like cp and tar, and
mv across filesystem boundaries) have
the expected behavior. Another filesys-
tem problem is permissions (which exist
in HFS+ and MacOS X but not in
MacOS 9’s HFS). The solution here is to
base default permissions on the directory
modes.

The second problem area is files. Special
characters were allowed in MacOS file-
names (including space, backslash, and
the forward slash). Filename translation
works around most of these problems,
though users have to understand that
“I/O stuff” in MacOS is the same as

“I:O_stuff” in UNIX on the same
machine. Also, to help reduce problems
in directory permissions and handling
they chose to follow NeXT’s approach
and treat a directory as a bundle, reduc-
ing the need for complex files and sim-
plifying software installations, allowing
drag-and-drop to install new software.

The third problem area involves multiple
users. MacOS historically thought of
itself as having only a single user and
focused on ease of use. This lets the Mac
user perform operations like setting the
clock, reading any file, installing soft-
ware, moving stuff around, and so on.
Currently MacOS X provides hooks for
UID management (such as integrating
with a NetInfo or NIS or LDAP environ-
ment) and tracks known (UNIX-like)
and unknown disks, disabling com-
mands like chown and chgrp on
unknown disks.

The fourth and final problem area
Sanchez discussed was compatibility
with legacy software and hardware.
Legacy software has to “just work,” and
the API and toolkit cannot change, so
previous binaries must continue to work
unchanged. The Classic interface pro-
vides this compatibility mode. Classic is
effectively a MacOS X application that
runs MacOS 9 in a sandbox. This causes
some disk-access problems, depending
on the level (application, filesystem, disk
driver, or SCSI driver). The closed archi-
tecture of the hardware is very abstract-
ed, which helps move up the stack from
low-level to the high-level application
without breaking anything.

Questions focused on security, the desire
to have a root account, and the terminal
window or shell. The X11 windowing
system can be run on MacOS X, though
Apple will not be providing it. Software
ports are available from
<http://www.stepwise.com/>. Additional
details can be found at
<http://www.mit.edu/people/wsanchez/papers/USENIX_2000/>

, <http://www.apple.com/macosx/>, and
<http://www.apple.com/darwin/>.

Platinum Aqua Curses

Classic Carbon Cocoa BSD

(OpenStep)

Application Services

Quantum, OpenGL, and QuickTime

Core Services

Darwin (BSD layer)

http://www.stepwise.com/
http://www.mit.edu/people/wsanchez/papers/USENIX_2000/
http://www.apple.com/macosx/
http://www.apple.com/darwin/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SFREENIX SESSION: NETWORK

PUBLISHING

Summarized by Matt Grapenthien

The growth and evolution of the Internet
has caused some of its limitations to
become more acute. The presenters in
this session attempt to address some of
these problems with more dynamic and
generally more useful systems and proto-
cols than those currently in wide use.

PERMANENT WEB PUBLISHING

David S. H. Rosenthal, Sun

Microsystems Laboratories; Vicky Reich,

Stanford University Libraries

David Rosenthal presented LOCKSS
(Lots of Copies Keep Stuff Safe), a sys-
tem to preserve access to scientific jour-
nals in electronic form. Unlike normal
systems, LOCKSS has far more replicas
than necessary just to survive the antici-
pated failures. Exploiting the surplus of
replicas, LOCKSS allows much looser
coordination among them.

THE GLOBE DISTRIBUTION NETWORK

A. Bakker, E. Amade, and G. Ballintijn,

Vrije Universiteit Amsterdam; I. Kuz,

Delft University of Technology; P.

Verkaik, I. van der Wijk, M. van Steen,

and A. S. Tanenbaum, Vrije Universiteit

Amsterdam

The Globe Distribution System, present-
ed by Arno Bakker, attempts to address
the problem of distribution to a world-
wide audience through selective, per-
document replication, as opposed to the
“all-or-none” replication policies cur-
rently in use. Though still in an early
stage, the project’s goal of a “better”
WWW/FTP seems promising.

OPEN INFORMATION POOLS

Johan Pouwelse, Delft University of

Technology

Johan Pouwelse presented a method to
allow modification and extension of
existing Web pages by allowing public
write access to collections of WWW-

21October 2000 ;login:

based databases. Open Information
Pools further address the problem of
quickly evaluating huge amounts of con-
tent, through an open rating and moder-
ation system. Experiments on similar,
already-existing systems seem to prove
these concepts very valuable.

SESSION: KERNEL STRUCTURES

Summarized by Josh Kelley

OPERATING SYSTEM SUPPORT FOR MULTI-
USER, REMOTE, GRAPHICAL INTERACTION

Alexander Ya-li Wong and Margo I.

Seltzer, Harvard University

An increasing number of services are
being provided over the network instead
of locally. Examples include filesystems
(NFS), storage (Fibre Channel), memory
(Distributed Shared Memory), and inter-
faces (thin clients). Of these, thin clients
are often neglected.

The key characteristics of thin-client
service are that it is interactive, multi-
user, graphical, and remote. One of the
most important features of thin-client
service is low latency. This presentation
compared two operating systems,
Windows NT 4.0 Terminal Server
Edition, and Linux 2.0.36 running the X
Window System, and examined how well
they provide these characteristics.

The first two questions regarding thin-
client service are processor management
and memory management. The OS’s goal
should be to prevent the user from expe-
riencing any perceptible latency. To min-
imize latency, the OS should insure that
interactive performance is background-
load-independent and should swap out
pages belonging to interactive processes
last. Although NT offers special support
for scheduling interactive threads, exper-
iments showed Linux to be much better,
both for processor scheduling and for
low latencies while swapping pages in
from disk. Open questions here include
the best time slice to use for interactive
processes and how the Linux kernel can
identify interactive threads (since inter-

activity is determined in user space) for
special treatment.

A third question regarding thin-client
service is network load. In experiments,
NT’s Remote Display Protocol presented
a much lower network load, with a larger
message size, than did the X or LBX pro-
tocols used by Linux and X Windows.
(This may be due partially to poorly
coded X applications.) RDP’s use of a
client-side bitmap cache allowed it to
have virtually no load in the specific area
of animation (as long as the cache was
not overloaded). These experiments
point out the importance of a client-side
cache.

TECHNIQUES FOR THE DESIGN OF JAVA

OPERATING SYSTEMS

Godmar Back, Patrick Tullmann, Leigh

Stoller, Wilson C. Hsieh, and Jay

Lepreau, University of Utah

A Java OS is an execution environment
for Java bytecode that provides standard
operating-system functionality: separa-
tion and protection, resource manage-
ment, and interapplication communica-
tion. It may run on a traditional OS or it
may be embedded in an application. The
purpose of a Java OS is to support exe-
cuting multiple Java applications.

There are several options for arranging
the operating system, Java Virtual
Machine, and Java applications. One
approach is physical separation: one OS
per one JVM per one app. Such an
approach is expensive, prevents embed-
ding of an OS within an application, and
makes communication difficult. A sec-
ond approach is separate JVM processes
running under one OS. This approach
has inefficient resource use, requires a
underlying OS, and makes for difficult
communication and no embedding
within outside applications. A third
approach is an ad hoc layer that supports
running multiple applications within
one JVM. Examples of this approach
include an applet context or a servlet

USENIX ANNUAL TECHNICAL CONFERENCE ●

engine. However, this approach offers
insufficient separation between the
processes, with no resource control and
unsafe termination of one runaway
process. The fourth, and best, approach
is to provide support for processes with-
in the JVM, turning the JVM into a Java
OS. The Java OS can be designed to
replace the base OS as well.

There are several design decisions to be
made for a Java OS. One example is the
area of shared memory management.
Issues here include the precision of
accounting, the ability to reclaim shared
objects, and the need for full reclamation
of memory upon process termination.
Java’s automatic garbage collection com-
plicates these issues. Solutions to the
question of shared memory management
include copying (simple but slow), indi-
rect sharing via revocable proxies, direct
sharing via a dedicated shared heap, and
a hybrid approach of both direct and
indirect. The J-Kernel, from Cornell
University, and Alta and K0 (which later
became KaffeOS), both from the
University of Utah, all offer different
solutions to this question and illustrate
the general tradeoffs between separation,
resource management, and communica-
tion.

SIGNALED RECEIVER PROCESSING

José Brustoloni, Eran Gabber, Abraham

Silberschatz, and Amit Singh, Lucent

Technologies-Bell Laboratories

This session presented signaled receiver
processing, an alternative to the BSD’s
traditional IP packet receiver processing.
Since implementations of and derivatives
of BSD have appeared on a variety of
platforms, BSD receiver processing is a
part of many operating systems,
although it has several disadvantages.
Protocol processing of received packets
in BSD is interrupt-driven. This results
in scheduling anomalies; CPU time spent
processing packets is charged to the cur-
rently running process or is not charged
at all. Therefore, no quality of service

22 Vol. 25, No. 6 ;login:

(QoS) guarantees are possible. A second
problem is receive livelock, in which the
system spends all of its time processing
incoming packets, even when no buffer
space is available to store these packets.

One alternative to BSD receiver process-
ing is lazy receiver processing (LRP). To
prevent receive livelock, LRP uses earlier
demultiplexing to detect full receive
buffers as soon as possible and drop
packets accordingly. UDP packets are
processed synchronously, at the receive
call. TCP packets are processed asyn-
chronously, via an extra kernel thread
per process or via a system-wide process
that uses resource containers. (Resource
containers are an abstraction used to
separate resource principal and protec-
tion domain. Resources used by kernel-
level code can be charged out to user
processes.) This processing of UDP and
TCP packets allows LRP to avoid the
BSD receiver processing’s scheduling
anomalies.

There are several disadvantages with
LRP. First, it does not work on systems
that do not implement kernel threads or
resource containers. Second, under LRP,
TCP is always asynchronous and shares
resources equally with the application.
Third, LRP is designed for hosts, not
gateways. Its early demultiplexing is too
simplistic for gateways, and time-sharing
scheduling is inadequate for gateways.
There are open questions with LRP
regarding how well it would work with
realtime schedulers and proportional-
share schedulers.

Signaled receiver processing (SRP) is
presented as an alternative method that
avoids these problems with LRP. When a
packet arrives, the OS signals the receiv-
ing application. By default, the packet is
processed asynchronously, although the
application may instead choose to catch,
block, or ignore the packet, in order to
defer processing until the next receive
call. SRP processes incoming packets in
several stages; only the actual hardware

input is handled at the interrupt level.
Processing is handled via a multi-stage
early demultiplexer, or MED, and is
transferred from one stage to another via
the next stage submit (NSS) function.
The NSS function signals the application
by sending it a SIGUIQ (unprocessed
interrupt queue).

Performance tests show that throughput,
CPU utilization, and round trip times
are practically the same for SRP under
Eclipse/BSD as they are for BSD receiver
processing under FreeBSD. Tests also
show that SRP successfully prevents
receive livelock. It is easily portable,
allows for flexible scheduling and use
with gateways, and still allows for QoS
guarantees.

INVITED TALK

THE CONVERGENCE OF NETWORKING AND

STORAGE: WILL IT BE SAN OR NAS?

Rod Van Meter, Network Alchemy

Summarized by Josh Simon

The goal of this talk was to provide
models for thinking about SANs and
NASs. Network-attached storage (NAS)
is like NFS on the LAN; storage area net-
works (SAN) are like a bunch of Fibre
Channel–attached disks.

There are several patterns of data shar-
ing, such as one-to-many users, one-to-
many locations, time slices, and fault tol-
erance; activities, such as read only, read-
write, multiple simultaneous reads, and
multiple simultaneous writes; and multi-
ple ranges, of machines, CPUs, LAN ver-
sus WAN, and known versus unknown
clients.

When sharing data over the network,
how should you think about it? There
are 19 principles that Levy and
Silverschatz came up with that describe
the file. These include the naming
scheme, component unit, user mobility,
availability, scalability, networking, per-
formance, and security. There is Garth

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SGibson’s taxonomy of four cases: server-
attached disks, like a Solaris machine;
server integrated disks, like a Network
Appliance machine; netSCSI, or SCSI
disks shared across many hosts with one
“trusted” host to do the writes, and net-
work-attached secure devices (NASD).
Over time, devices are evolving to
become more and more network-
attached, smarter, and programmable.

Van Meter went into several areas in
more detail. Access models can be appli-
cation-specific (like databases or HTTP),
file-by-file (like most Unix file systems),
logical blocks (like SCSI or IDE disks),
or object-based (like NASD). Connec-
tions can be over any sort of transport,
including Ethernet, HiPPI, Fibre
Channel, ATM, SCSI, and more. Each
connection model is at the physical and
link layers and assumes there is a trans-
port layer (such as TCP/IP), though
other transport protocols are possible
(like ST or XTP or UMTP). The issues of
concurrency (are locks mandatory or
advisory, is management centralized or
distributed?), security (authorization and
authentication, data integrity, privacy,
and nonrepudiation), and network (“it
doesn’t matter” versus “it’s all that mat-
ters”) all need to be considered.

Given all those issues, there are three
major classes of solutions today. The first
is a distributed file system (DFS), also
known as NAS. This model is a lot of
computers and lots of data; examples
include NFS v2, AFS, Sprite, CIFS, and
XFS. The bottleneck with these systems
is the file manager or object store; draw-
backs include the nonprogrammability
of these devices and the fact that they are
OS-specific and have redundant func-
tionality (performing the same steps dif-
ferent times in different layers).

The second class of solution is storage
area networks (SAN). These tend to have
few computers and lots of data and tend
to be performance-critical. These are
usually contained in a single server or

23October 2000 ;login:

machine room; the machines tend to
have separate data and control networks.
These devices’ drawbacks are that they
are neither programmable nor smart,
they’re too new to work well, they pro-
vide poor support for heterogeneity, and
the scalability is questionable. However,
there is a very low error rate and the
application layer can perform data recov-
ery. Examples of SANs include VAX clus-
ters, NT clusters, CXFS from SGI, GFS,
and SANergy.

The third solution class is NASD, devel-
oped at CMU. The devices themselves
are more intelligent and perform their
own file management. Clients have an
NFS-like access model; disk drives
enforce (but do not define) security poli-
cies. The problems with NASD is that it’s
too new to have reliable details, more
invention is necessary, there are some OS
dependencies, and some added function-
ality may be duplicated in different lay-
ers. Which solution is right for you? That
depends on your organization’s needs
and priorities.

FREENIX SESSION: X11 AND USER

INTERFACES

Summarized by Gustavo Vegas

THE GNOME CANVAS: A GENERIC ENGINE

FOR STRUCTURED GRAPHICS

Federico Mena-Quintero, Helix Code,

Inc.; Raph Levien, Code Art Studio

The GNOME Canvas is a generic high-
level engine for structured graphics. A
canvas is a window in which things can
be drawn. It contains a collection of
graphical items such as lines, polygons,
ellipses, smooth curves, and text.
Graphics on this canvas are deemed to
be structured because you can place
these geometric shapes in the canvas and
later on access the objects to change their
attributes, such as position, color, and
size. The canvas is in charge of all
redrawing operations.

The GNOME canvas has an open inter-
face that permits applications that use
the canvas to create their own custom
item types. Thus, the canvas can work as
a generic display engine for all kinds of
applications. The GNOME canvas items
are GTK+ objects derived from an
abstract class (GnomeCanvasItem), that
gives the methods for objects to be
implemented. Using the GTK+ object
system provides several advantages, such
as the possibility of associating arbitrary
data items to canvas items.

The GNOME canvas also uses the Libart
library for its external imaging model in
antialias mode. Libart is a library that
provides a superset of the PostScript
imaging model, and it provides support
for antialiasing and alpha transparency.
The end result is that graphics’ contours
are smoothed out to eliminate jagged
edges.

Several applications that are currently
distributed as part of the GNOME envi-
ronment use the GNOME canvas to ren-
der graphics and other types of data.
Examples of such applications are
Gnumeric (the GNOME spreadsheet),
GNOME-PIM (personal information
manager), and Evolution (the next-gen-
eration mail and groupware program for
GNOME).

For more information about the
GNOME project and the GNOME can-
vas, see <http://developer.gnome.org/>.

EFFICIENTLY SCHEDULING X CLIENTS

Keith Packard, SuSE Inc.

Keith Packard presented a new schedul-
ing algorithm for X11. The technical
motivation behind this project is that the
original scheduling mechanism in X11 is
simplistic and can potentially starve
interactive applications while a graphics-
intensive program runs. This program is
evident when one runs programs like
plaid, which generate many rendering
requests that can tie up the system for
long periods of time, making it unusable

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://developer.gnome.org/

by other programs, as simple as an
xterm.

The X server is typically a single-thread-
ed network server that uses well-known
ports to receive connections from clients
for which it processes requests sent over
the port. To detect pending input from
clients, it uses the select(2) system call.
When the set of clients with pending
input has been determined, the X server
starts executing the requests, starting
with the smallest file descriptor. Each
client uses a buffer to read some of the
data from the network connection. This
buffer can be resized but it is typically
4KB. The requests are executed until
either the buffer is exhausted of com-
plete requests, or after ten requests. After
this has taken place, the server figures
out if there are any clients with pending
complete requests. If this is the case, the
server stops the select(2) call and goes
back to process those pending requests.
When all client input is exhausted, the X
server calls select(2) again to await for
more data. The problem with this algo-
rithm is that it gives preference to more
active clients. If a client generates com-
plex requests, these requests may take up
more time to be satisfied and this client
will end up hogging the server. As a con-
sequence, clients that generate fewer
requests are starved in the presence of
more active clients. Also, clients that do
not generate a complete request during
their turn will be ignored. On the posi-
tive side, when clients are busy, the server
spends most of its time executing
requests and wastes little time on system
calls.

The design goal of the proposed solution
is to provide relatively fine-grained time-
based scheduling with increased priority
given to applications that receive user
input. Each client would be given an ini-
tial priority at connect time. Requests are
executed from the client with the highest
priority, and various events may change
the priority of a given client. This system

24 Vol. 25, No. 6 ;login:

intends to penalize overactive clients and
praise clients with little activity.

In the performance measurements that
were presented a measurable change was
apparent. However, the two schedulers
were within only 2% of each other. This
shows that the changes in the scheduler
have little impact on the tool used for
performance measurement. The tool
used was X11perf, a widely available tool.
This tool runs with very little competi-
tion from other clients, and thus most of
the benefits of the new scheduler go
unnoticed.

In conclusion, simple changes on the
scheduler, based on real-life observations
of the X server behavior, can bring some
advantages over the original scheduler
without impacting performance nega-
tively. For more information and for
work that has been incorporated into the
4.0 release of the X Window System from
the XFree86 group, see
<http://www.xfree86.org/>.

THE AT&T AST OPEN SOURCE SOFTWARE

COLLECTION

Glenn S. Fowler, David G. Korn,

Stephen S. North, and Kiem-Phong Vo,

AT&T Laboratories-Research

David Korn presented a suite of tools
that have been released to the open
source community by AT&T. This tool
suite includes widely known components
that may or may not be directly used in
graphics applications, but the fact that
these have been released has a profound
impact in the open source community.

These tools have been released under an
AT&T license agreement. This is not GPL
or LGPL, so it is important to read the
license if one is going to make use of any
of the software components for any pur-
pose.

The components of this suite are deemed
to be highly portable to practically any
environment, given the right base. They
may not necessarily be complete applica-
tions, but they can be reusable tools to

produce other powerful pieces of soft-
ware. Their focus when creating this
software suite is reusability. They have
also focused in creating software libraries
that encompass core computing func-
tions such as I/O and memory allocation
and other new algorithms and data
structures such as data compression and
differencing and graph drawing. Thus,
they created libraries like,

Libast – Porting base library for their
software tools.
Sfio – This I/O library provides a
robust interface and implements new
buffering and data formatting algo-
rithms that are more efficient than
those in the standard I/O library,
Stdio.
Vmalloc – This memory-allocation
library allows creation of different
memory regions based on applica-
tion-defined memory types (heap,
shared, memory mapped, etc.) and
some library-provided memory-man-
agement strategies.
Cdt – This container data-type library
provides a comprehensive set of con-
tainers under a unified interface:
ordered/unordered sets/multisets,
lists, stacks, and queues.
Libexpr – This library provides run-
time evaluation for simple C-styled
expressions.
Libgraph – This graph library sup-
ports attributed graphs, generalized
nested subgraphs, and stream file I/O
in a flexible graph data language. It is
built on top of the Cdt library and
employs disciplines for I/O, memory
management, graph-object name-
space management and object-update
callbacks. This library is the base of
the Graphviz package.

Other complete tools that have been
released as part of this collection are
reimplementations of programs like the
KornShell language and nmake, and
other new applications like: tw, a more
powerful find and xargs; and warp, a tool
that helped with Y2K testing by running

http://www.xfree86.org/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sa process through it and simulation a
time and clock speed different from the
actual system’s time and clock.

For more information, please see
<http://www.research.att.com/sw/tools/>.
For the AT&T source code license agree-
ment, please see
<http://www.research.att.com/sw/license/ast-open.html>.

SESSION: WORKS IN PROGRESS

Summarized by Kevin Fu

PERL ON THE ITANIUM

Murray Nesbitt

<murray@activestate.com>, ActiveState

Tool Corp.

Nesbitt discussed his experiences in
building Perl under Windows 2000,
Linux, and Monterey on the 64-bit Intel
Itanium. It was straightforward to build
Perl on IA-64 Linux. Building Perl on
Monterey was almost as easy; it required
a standard Perl hints file to compile
though. Murray’s main point was that
building Perl on Windows 2000 was
more painful for a number of reasons
such as lack of configure-script support
and problems with type sizes and
abstractions. In the future Murray plans
to work on optimization. In short, it’s
fairly easy to port Perl, but it’s helpful to
share an office with a Perl guru.

TTF2PT1: A TTF TO ADOBE TYPE 1 FONT

CONVERTER

Sergey Babkin <babkin@users.source-

forge.net>, Santa Cruz Operation

Babkin described his work on a TTF-to-
Adobe Type 1 converter. The converter
also attempts to clean the outlines from
detects and automatically generate Type
1 hints. His program optimizes the
method to make the conversion look
good. It comes under the BSD license
and is reasonably well modularized. He
noted that this work has nothing to do
with SCO and is simply his personal
hobby. For more information, see
<http://ttf2pt1.sourceforge.net/>.

25October 2000 ;login:

LODD: A PIPELINING AND IN-PIPE DATA

MANIPULATION TOOL

Joseph Pingenot <jap3003@ksu.edu>,

Kansas State University

Pingenot, an undergraduate at KSU,
talked about a tool to combine multiple
channels of input and output. The lodd
utility hopes to perform tasks such as
acting as a logical dd and mixing three
pipes together. lodd 1.x has stream-pipe
support and can mix multiple pipelines
together, manipulate data at the block
level, perform bitwise logic, and divide
pipelines. lodd is dd-compatible. Some of
the interesting issues in creating lodd
include dealing with blocking I/O, back-
streams, block sizes, shell limitations,
and deciding what to do if a pipe closes.
Visit
<http://www.phys.ksu.edu/~trelane/lodd>
for more information.

Q: Are functions extensible? A: Not in
the preliminary version. Hopefully in the
future.

Q: How does one use lodd within a shell?
A: I am now looking at ways to imple-
ment a shell syntax. Suggestions are wel-
come.

VSTACK: EASILY CATCH SOME BUFFER

OVERRUN ATTACKS

Craig Metz <cmetz@inner.net>,

University of Virginia

Buffer overruns typically work by over-
writing a function’s return address with a
value of the adversary’s choice. In this
way, an adversary can change the flow of
control to execute, for example, a root
shell. Metz described a simple approach
that prevents many commonly exploited
overruns.

vstack verifies that function return
addresses do not change. It does so by
keeping a separate virtual stack of return
addresses and frame pointers. On return
from a function, a program verifies that
the return address and frame pointer on
the execution stack matches that on the
virtual stack. If not, the program jumps

to a fault handler. This does not break
standard calling convention and requires
changes only to the caller convention in
a compiler.

A sample Perl implementation exists for
the x86. It edits assembly code to insert
the checks and management of the virtu-
al stack. The code will appear soon
under a BSD-style license. The perform-
ance loss is minimal. In the future, Metz
plans to have more sophisticated choices
in what to do after detecting an overrun.
vstack does not catch every overrun
attack, but it can catch the vast majority.

Q: Instead of verifying the return address
matches, why not simply use the return
address on the virtual stack? A: There
might be other corrupted data. In special
cases it might be OK to use the virtual
stack directly, but not in general.

Q: What prevents overwriting the virtual
stack itself? A: It is elsewhere in memory.
If you can overwrite an extent of 232

space, then you can overwrite everything
anyway.

Q: Does longjmp() or other functions
that unwind the real stack confuse
vstack? A: Probably. (Offline Metz
explained that this is mostly solvable by
using wrappers around longjmp() and
related functions. It won’t catch every
case, but it will catch most of them.)

Q: Can I overwrite data on the stack? A:
Yes, but vstack will detect changes made
to return addresses.

KQ: KERNEL QUEUES IN FREEBSD

John-Mark Gurney <jmg@freebsd.org>,

FreeBSD

Kernel queues are a stateful method of
event notification. Instead of passing
which events to monitor each time as is
done with select(2) and poll(2), the pro-
gram tells the kernel which events need
notification. kq supports event monitors
(filters) for file descriptors, processes,
signals, asynchronous I/O, and VNODEs.
State is allocated in kernel memory. kq

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.research.att.com/sw/tools/
http://www.research.att.com/sw/license/ast-open.html
http://ttf2pt1.sourceforge.net/
http://www.phys.ksu.edu/~trelane/lodd

pays attention to what file descriptors are
ready for reading and writing.

John-Mark described l0pht’s watch pro-
gram modified to use kq. The watch pro-
gram looks for temporary files created in
/tmp. Before using kq, the watch pro-
gram consumed a lot of CPU time by
polling directory entries in /tmp over and
over. With kq, you get a notification
when the /tmp directory changes. In this
manner, the watch program does not
needlessly scan an unmodified directory.

Efforts are underway to use kq in the
Squid HTTP proxy cache for asynchro-
nous I/O and in ircd to reduce the server
load. Visit
<http://people.freebsd.org/~jmg/kq.html>
for more information.

Q: How does this compare to /dev/poll
on Solaris 8? A: I haven’t looked at
/dev/poll; it’s hard to say. However, my
system is extremely lightweight.

Q: If a given source sends multiple sig-
nals, will it cause a series of kernel mem-
ory allocations before the read occurs? A:
The memory is actually allocated when
you register.

Q: Can you unify with other kernel
name spaces? A: Currently you are limit-
ed to a filesystem. However, pretty much
any kernel object can be associated.

AUTONOMOUS SERVICE COMPOSITION ON

THE WEB

Laurence Melloul

<melloul@stanford.edu>, Stanford

University

The goal of this service it to allow
dynamic specification of composition
requests. The advantages include a cost-
effective development cycle, better fault
tolerance, and high availability. Melloul
chose the Web as the medium because it
has autonomous services, uses a public
infrastructure, is common, is simple, and
speaks a language independent protocol
(HTTP). The two main issues are detec-
tion of service interface changes and ver-

26 Vol. 25, No. 6 ;login:

ification of semantic compatibility
between service parameters. The key is to
build on the ontology by web users.

THE HUMMINGBIRD FILE SYSTEM

Liddy Shriver <shriver@research.bell-

labs.com>, Bell Labs, Lucent

Technologies

The Hummingbird File System caters to
workloads of a caching Web proxy. On
UNIX machines, server software such as
Apache or Squid typically runs on a
derivative of the 4.2BSD Fast File
System. FFS was not designed with the
workload of a proxy server in mind. In
particular a Web-proxy workload has
high temporal locality, relaxed persist-
ence, and a read/write ratio different
from most workloads. FFS also includes
features which a proxy server does not
require.

The Hummingbird File System takes
advantage of Web-proxy server proper-
ties such as whole file access, small files
on average, and repeatable reference
locality sets. It also co-locates the storage
of an HTML Web page with its embed-
ded GIFs. Performance measurements
show that under a sample Web-proxy
workload, Hummingbird supports
throughput five to ten times greater than
that of XFS and EFS (SGI) and six to ten
times greater than that of FFS mounted
asynchronously (FreeBSD).

Future work includes persistence of data.
At the moment, Hummingbird does not
worry about persistence because the data
can be regenerated from origin servers.
Visit
<http://www.bell-labs.com/project/hummingbird/> for
more information.

Q: Does Hummingbird support for
HTTP reads for specific byte ranges? A:
Not yet.

Q: When does Hummingbird write to
disk? A: During idle time and when
memory is filled and space is needed.

THE SELF-CERTIFYING FILE SYSTEM

Kevin Fu <fubob@mit.edu>, MIT Lab

for Computer Science

The Self-Certifying File System is a
secure, global filesystem with completely
decentralized control. SFS lets you access
your files from anywhere and share them
with anyone, anywhere. Anyone can set
up an SFS server, and any user can access
any server from any client. SFS lets you
share files across administrative realms
without involving administrators or cer-
tificate authorities.

SFS is a secure network filesystem in the
sense that it provides confidentiality and
integrity of the Remote Procedure Calls
(RPCs) going over the wire. SFS runs at
user level and uses NFSv3 for portability.
It performs between TCP and UDP NFS
on FreeBSD and is in day-to-day use for
Fu’s research group.

Server public keys are made explicit in
pathnames. The pathname to a remote
file includes a “HostID” that consists of a
cryptographic hash of a server’s public
key and hostname. At a high level, the
HostID is essentially equivalent to a pub-
lic key. Using this convention, we can
easily implement certificate authorities
with symbolic links. Then a certificate
authority can chain trust with symbolic
links. A system of user agents and
authenticated lists of trusted HostId
takes care of most of the HostIds.

There is also a read-only dialect suitable
for highly replicated, public, read-only
data (e.g., software-distribution or cer-
tificate authorities). In this scheme, an
administrator creates offline a signed
database of a filesystem to export.
Untrusted servers can replicate this data-
base. Clients can then select any of the
untrusted servers. Because the database
is signed and the self-certifying path
denotes the corresponding public key,
the client can verify that the data is
authentic. Measurements show that a
read-only server can handle many times
the workload of a read-write SFS server
and that server-side authentication is

http://people.freebsd.org/~jmg/kq.html
http://www.bell-labs.com/project/hummingbird/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Smore than an order of magnitude faster
than that of SSL.

SFS is free software. The SFS developers
have used it on OpenBSD, FreeBSD,
Solaris, OSF/1, and a patched Linux ker-
nel. Download the software from
<http://www.fs.net/>.

Q: Why not store server public keys in a
file? Is the self-certification just a hack?
A: We believe the symlink approach is
more elegant. And c’mon! It’s a cool
hack.

Q: Have you thought about committing
this to the FreeBSD tree? You should
make sure that your software stays main-
tained by contacting someone in charge
of distributions for each operating sys-
tem. A: You are certainly welcome to
include SFS in your operating system.
We can try to locate the appropriate con-
tacts for each operating system, but you
are welcome to contact the SFS develop-
ers too. Email <sfs-dev@pdos.lcs.mit.edu>.

Q: Do you rely on DNS for security? A:
No. We only use DNS as a hint to locate
a server. If a fake SFS server responds to
a request, the client will detect the fake
because the fake server’s private key will
not correspond to the public key
described in the self-certifying path. You
could receive notification of such failures
via an agent. In our system, the worst an
adversary can do is deny service.

NFS VERSION 4 OPEN SYSTEMS PROJECT

Andy Adamson <andros@umich.edu>,

CITI, University of Michigan

Adamson discussed some of the interest-
ing features of NFS version 4. The CITI
group at the University of Michigan
received funding from Sun Microsystems
to implement NFSv4 on Linux and
OpenBSD.

NFS version 4 has compound RPCs that
perform multiple operations per RPC.
There is no more mountd. There is no
more lockd. Locking is incorporated into
the protocol and includes DOS share

27October 2000 ;login:

locks and nonblocking byte-range locks
with lease-based recovery. Delegation
aids in client file cache consistency. The
server controls who gets delegation.
Security is added to the RPC layer via
GSSAPI. NFSv4 requires Kerberos5 and
Lipkey PKI implementations. The securi-
ty mechanism and QOP is negotiated
between the client and server.

The code has passed all nine basic
Connectathon tests under Linux. The
CITI folks have just started work on the
OpenBSD code. In the near future,
Adamson plans to rebase to Linux 2.2.4
and finish the OpenBSD port. Source
code will be available by September 1,
2000. Visit
<http://www.citi.umich.edu/projects/nfsv4/>
for more information.

Q: Is there backwards compatibility with
NFS3? A: There is none.

Q: Do you expect future growth in NFS
specifications? A: Ohhhh yeah.

Q: What are the terms of the license? A:
Under Linux it is GPLed. Under
OpenBSD it has the OpenBSD license.

Q: Does it work under IPv6? A: We’d
love it to work with IPv6. Would you like
to financially support us?

ALFA-1: A SIMULATED COMPUTER WITH

EDUCATIONAL PURPOSE

Alejandro Troccoli <atroccol@dc.uba.ar>

and Sergio Zlotnik

<szlotnik@dc.uba.ar>, University of

Buenos Aires

The Alfa-1 project consists of software
tools to simulate a processor. This helps
in teaching computer architecture to
undergraduate students. The GAD tool
was used as a basis for developing a sim-
ulated computer, allowing students to
experiment with the approach defined by
the DEVS formalism. The model is based
mainly on the specification of the Integer
Unit of the Sparc processor.

Undergraduates implemented most of
the system, which is now completely

specified and implemented. In the
future, the Alfa-1 staff hopes to add a
GUI, perform exhaustive testing, use dig-
ital logic gates, add another level of
cache memory, and promote educational
use of Alfa-1. Visit
<http://www.dc.uba.ar/people/proyinv/usenix/>
for more information.

Q: What are you able to simulate? A: If
we had enough computational power, we
could simulate everything.

Q: Are there triggers, tracepoints, GDB
for this? A: This is plain C code. You can
debug the simulator using any standard
tool.

TELLME STUDIO

Jeff Kellem <composer@tellme.com>,

Tellme Networks

Tellme Studio offers a free service for
developing and testing voice XML appli-
cations. All you need is knowledge of
VoiceXML and JavaScript (if you choose
to use JavaScript). You write your
VoiceXML code, put it up on a Web serv-
er somewhere, log in to Tellme Studio
(<http://studio.tellme.com/>), and give
the URL pointing to your code. You are
then given an 800 number to call to
immediately test out the application.
Tellme Studio includes VoiceXML docu-
mentation, code and grammar examples,
and a community for sharing ideas.

PASSWORDS FOUND ON A WIRELESS

NETWORK

Dug Song <dugsong@monkey.org>,

CITI, UMich

Receiving a standing ovation and giving
by far the most entertaining talk at the
conference, Dug Song from the CITI
group at the University of Michigan gave
a “brief report of what he found in the
air.” He further described tools he creat-
ed to demonstrate the insecurity of his
network. In the process, the audience
convinced him to give a live demonstra-
tion on how easy it is to collect pass-
words and shadow a user’s Web surfing.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.fs.net/
http://www.citi.umich.edu/projects/nfsv4/
http://www.dc.uba.ar/people/proyinv/usenix/
http://studio.tellme.com/

Song’s second slide included slightly san-
itized sniffer logs. Among the finds were
cleartext root logins via Telnet and color-
ful passwords such as “hello dug song, do
I smell.” While explaining an ebay.com
URL, Dug reasoned that, “I don’t know if
Matt Blaze is here, but it sure looks like
he is.”

On to more serious stuff, Dug explained
the rationale behind his seemingly mali-
cious behavior. He views himself not as a
bad guy, but as someone promoting
“security through public humiliation.”
On that note, he introduced the mother
of all password sniffers and a few pene-
tration testing tools. His penetration
tools include:

arpredirect – This tool is extremely effec-
tive for sniffing on switched Ethernet. It
does so by poisoning ARP. It politely
restores the ARP mappings when fin-
ished.
macof – This is a C port of a tool to
flood a network with random MAC
addresses. It causes some switches to fail
open in repeating mode. This effectively
turns the switch into a hub for the pur-
poses of sniffing. Dug commented,
“Switch becomes hub, sniffing is good.”
tcpkill – A evil tool to selectively kill con-
nections. However, Dug uses it to
remotely initialize connection state.
tcpnice – This selectively slows down
traffic by using ICMP quenches and
shrinking TCP window sizes. This is use-
ful for sniffers that work better on slower
network traffic. It’s also useful against
things like Napster.
dsniff – This sniffer decodes 30 major
protocols from Telnet to Meeting Maker.
The HTTP module recognizes password
URL schemes for many e-commerce sites
(e.g., Web mail sites, eBay, etc). dsniff
uses a magic(5)-style automatic protocol
detection. For example, running Telnet
on port 3000 will not fool dsniff because
it can determine protocol by analyzing
the traffic content.
filesnarf – Sucks down cleartext NFS2
and NFS3 traffic. Very useful against files

28 Vol. 25, No. 6 ;login:

such as .XAuthorithy and .ssh/identity.
This is Song’s “motivation” for develop-
ing NFSv4.
mailsnar – A fast and easy way to violate
the Electronic Communications Privacy
Act of 1986 (18 USC 2701-2711), be
careful. This snarfs cleartext mail and
outputs the contents into a convenient
format suitable for offline browsing with
your favorite mail reader.
urlsnarf – Same idea as mailsnarf but for
URLs.
webspy – Very sinister. It allows you to
watch someone’s Web surfing in real-
time. Dug demonstrated the tool by
shadowing the Web surfing of an audi-
ence member.

Song concluded that many people incor-
rectly believe wireless and switched net-
works are immune to sniffing. He thinks
that public humiliation can remind peo-
ple of this misconception. Visit
<http://www.monkey.org/~dugsong/dsniff>
for more information. The slides are on
<http://www.monkey.org/~dugsong/talks/usenix00.ps>.

Q: Should we block access to port 23 at
USENIX terminal rooms? Then cleartext
Telnet sessions will not happen. A: That’s
a technical solution to a social problem. I
like my way better.

Q: The conference network ran out of
DHCP leases. Can your tools help me? A:
During the conference I wrote a short
“dhcpfree” program to forcibly free up IP
addresses. [Crowd laughs as he shows the
code.]

Q: Once upon a time in a terminal
room, I measured the ratio of
SSH/Telnet traffic. At one point, I said
loudly “look at all the interesting pass-
words!” All of a sudden, the ratio went
up. A: Yup.

INVITED TALK

LESSONS LEARNED ABOUT OPEN SOURCE

Jim Gettys, Compaq

Summarized by Matt Grapenthien

In this interesting, informative, and thor-
oughly entertaining talk, Jim Gettys
addressed the history of several projects
and presented the most (and least) suc-
cessful methodologies over a time frame
of about two decades.

Beginning with a history of X, Gettys
traced its peaks and valleys from “prehis-
tory” (1983) through our present
“baroque” period. When the CDE (or
“cruddy desktop environment”) took
over the market, X development became
almost nonexistent. Then, starting in

about 1996, a combination of factors
revitalized X. X is better today than any
point in the past, and the future looks
promising.

Next Gettys talked about several individ-
ual projects, tracing the Apache’s market
share through the past decade. Through
these case studies, he noted which prac-
tices worked best (release continuously,
make it easy for developers to con-
tribute) and which didn’t work at all.

Gettys achieved a rare balance of keeping
the talk both very entertaining and very
useful. His wit, sarcasm, and experience
(20 years with OSS) made this a valuable
and enjoyable session.

Jim Gettys

http://www.monkey.org/~dugsong/dsniff
http://www.monkey.org/~dugsong/talks/usenix00.ps

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SSESSION: RUN-TIME TOOLS AND

TRICKS

Summarized by Josh Kelley

DITOOLS: APPLICATION-LEVEL SUPPORT FOR

DYNAMIC EXTENSION AND FLEXIBLE

COMPOSITION

Albert Serra, Nacho Navarro, and Toni

Cortes, Universitat Politècnica de

Catalunya

DITools is a way to modify an applica-
tion or library without access to the
source code. It can be used, for example,
to profile a binary without instrumenta-
tion, to use another library with a pro-
gram without rewriting the program, or
to fix a bug in a library without recom-
piling it.

A process image is traditionally built of
three parts: a runtime loader, a main
program, and one or more libraries. The
OS brings all of the needed modules into
the address space, and then the runtime
loader resolves references between these
modules. DITools augments the loader to
insert an extension backend between the
main program and the libraries. The
main program then calls the extension
backend instead of the libraries, and the
backend forwards calls to the libraries as
appropriate.

DITools loads before entering the pro-
gram. It offers dynamic loading support
and uses binding management to inter-
pose modules. DITools can change func-
tion bindings on a per-module basis,
through rebinding, or globally, through
redefinition. DITools also offers two
interposition modes; it can change the
linkage table to point directly to a back-
end’s wrapper, or it can change the link-
age table to point to DITools’s dispatch-
er, which calls callback functions in the
backend before and after calling the orig-
inal function. To ensure correct opera-
tion, DITools transparently checks for
and handles events that may affect its
behavior, such as dynamic loading,
process forking, and multithreading.

29October 2000 ;login:

Performance tests show that DITools
incurs a reasonable overhead on function
calls. DITools complements related
methods such as static binary rewriting
or dynamic instrumentation based on
code patching. DITools operates at a
higher abstraction level and is simpler
than these related methods, but it works
at the function level only. It presents an
application-level tool to intercept cross-
module references and easily make
changes. DITools is available from
<http://www.ac.upc.es/recerca/CAP/DITools>.

PORTABLE MULTITHREADING-THE SIGNAL

STACK TRICK FOR USER-SPACE THREAD

CREATION

Ralf S. Engelschall, Technische

Universität München (TUM)

Multithreading offers many advantages
to a programmer, but finding a portable
fallback approach to implement thread-
ing on UNIX platforms can be difficult,
if the standardized Pthreads API is not
available. Setjmp(3) and longjmp(3) are
the traditional methods of transferring
execution control in user-space, but they
do not address the question of how to
create a machine context on a particular
runtime stack. The ucontext(3) API
allows for user-space context creation
and switching, but it is still not available
across all platforms.

A solution to this problem is to use the
UNIX signal-handling facilities in con-
junction with setjmp(3) and longjmp(3).
The process can create a machine context
by setting up a signal stack using sigalt-
stack(2), then sending itself a signal to
transfer control onto that stack. Once in
that stack, the process saves the machine
context there via setjmp(3), leaves the
signal handler scope, and later restores
the saved machine context without sig-
nal-handler scope. Then it finally enters
the thread-startup routine while running
on this particular stack. A much more
detailed description of the algorithm is
available in the author’s paper or at
<http://www.engelschall.com/pw/usenix/2000/>).

Performance tests show that thread cre-
ation using this signal stack trick is about
15 times slower than thread creation
using ucontext(3), because of the signal-
ing required. However, user-space con-
text switching is as fast as with ucon-
text(3). The signal-stack trick offers an
extremely portable method of imple-
menting user-space threads without rely-
ing on assembly code or platform-specif-
ic facilities. This fallback approach is
used in the GNU Portable Threads (Pth)
library, available from
<http://www.gnu.org/software/pth/>.

TRANSPARENT RUN-TIME DEFENSE AGAINST

STACK-SMASHING ATTACKS

Arash Baratloo and Navjot Singh, Bell

Labs Research, Lucent Technologies;

Timothy Tsai, Reliable Software

Technologies

Buffer overflows are one of the most
common sources of security vulnerabili-
ties. Crackers can exploit buffer over-
flows to achieve two dependent goals:
injecting attack code and altering control
flow to execute this attack flow. The basic
method of exploiting a buffer overflow is
the stack-smashing attack, where the
attacker puts the attack code on the
stack, then overwrites the current func-
tion’s return address with the address of
the attack code. This presentation offered
two complementary defenses against
stack-smashing attacks.

The first defense is libsafe, which inter-
cepts calls to unsafe functions and
replaces them with safe versions. The
majority of buffer overflows result from
the misuse of unsafe functions such as
strcpy and fscanf. At runtime, libsafe
estimates a safe upper bound on the
stack buffer. It intercepts calls to these
unsafe functions and replaces them with
calls using this upper bound, thus con-
taining overflows to a safe region and
guaranteeing that the stack return
addresses are protected. The function-
interception technique is similar to that
used by zlib.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.ac.upc.es/recerca/CAP/DITools
http://www.engelschall.com/pw/usenix/2000/>
http://www.gnu.org/software/pth/

The second defense, libverify, uses binary
rewrites to ensure that return addresses
are valid before use. It wraps each func-
tion to save the function’s return address
on the heap upon entry and check the
return address at exit. If the return
address has changed, then the process
displays an error to screen and syslog
and dies. libverify uses runtime instru-
mentation (copies the program at run-
time and changes it) to insert its stack-
checking code. This technique is similar
to that used by StackGuard, but without
recompilation of the source code.

Both libraries can be loaded for an
already-compiled binary using an entry
in /etc/ld.so.preload or the LD_PRELOAD
environment variable. Testing showed
that these libraries successfully prevented
known exploits on several programs with
reasonable execution time overhead. lib-
safe is available for Linux from
<http://www.bell-labs.com/org/11356/libsafe.html>.

INVITED TALK

AN INTRODUCTION TO QUANTUM

COMPUTATION AND COMMUNICATION

Rob Pike, Lucent Technologies – Bell

Labs

Summarized by Doug Fales

Rob Pike’s discussion of quantum com-
puting was a very forward-looking,
change-of-pace invited talk. He first
reviewed some quantum mechanics to
bring the audience to common ground.
The always-popular polarized-light
experiment helped to demonstrate the
principles. He also presented the famous
two-slit experiment, in which a single
photon passed through two very small
slits in a barrier still creates interference
on the opposite side of the barrier. Pike
used this as a demonstration of the
Quantum Measurement Postulate
because when the particle is measured to
see which slit it passed through, the pat-
tern disappears.

30 Vol. 25, No. 6 ;login:

After the simplified (but challenging)
introduction, Pike progressed into the
more specific field of quantum computa-
tion. He addressed quantum-mechanical
phenomena like decoherence and entan-
glement, as well as the implementation
of quantum computational systems
(qubits, quantum gates, etc.). The most
promising aspects of this infant technol-
ogy, those of massive parallelism and

zero-energy calculation, were clarified.
As examples of the power of quantum
computation, Pike went over the possi-
bilities of Shor’s algorithm for factoring
large primes in polynomial time, and
Grover’s algorithm, which searches a list
in square root time.

In addition to the computational side of
quantum mechanics, Pike also addressed
possibilities for communications, which
he saw as not so distant in the future.
This included a discussion of EPR pairs
(a pair of entangled photons produced
by electron-positron annihilation, named
after Einstein, Podolsky and Rosen) and
how entanglement is actually an advan-
tage for communications.

Perhaps the most interesting point in the
whole talk was the theme that informa-
tion is known to be a physical quantity,
restricted by a law of conservation, much
like energy or mass. Furthermore, as
Moore’s Law continues to shrink classical
computers, we will run into a physical
barrier of size; as Pike put it, “we’re run-
ning out of particles.”

Although quantum computation is still
relatively far from real application, Pike
noted in closing that we cannot tell yet
whether progress in this field will be lin-
ear or exponential. After all, he said, clas-
sical computers were as much of an enig-
ma 60 years ago as quantum computa-
tion is today. The slides for this presenta-
tion are at
<http://www.usenix.org/events/usenix2000/invitedtalks/pike_html/index.html

>.

INVITED TALK

PROVIDING FUTURE WEB SERVICES

Andy Poggio, Sun Labs

Summarized by Josh Simon

Andy Poggio basically expanded on Bill
Joy’s keynote talk. The Internet has effec-
tively begun to mimic Main Street and is
beginning to provide those services that
Main Street cannot, such as any time and
anywhere. The six Webs are of relevance:

Near web – Monitor, keyboard, and
mouse attached to a nearby system; per-
sonalized news such as multimedia and
news-on-demand; and educational
aspects like multimedia, interactive sim-
ulations, and so on. An example of edu-
cational uses of the near web can be
found at
<http://www.planetit.com/techcenters/docs/>.

Far web – The television or appliance
with remote control, providing enter-
tainment on demand; multiple data
sources, providing a lower barrier to
entry; possibly targeted advertising with
product placement in on-demand
movies showing Coke ads on the sides of
a taxi cab to Coke drinkers but showing
Pepsi drinkers a Pepsi ad in the same
position.

Voice web – For use when the hand and
eye are busy, like driving a car.

e-commerce web – Computer-to-com-
puter, such as auctions (both “forward”
like eBay and “reverse” like eWanted) and
dynamic pricing.

Rob Pike

http://www.bell-labs.com/org/11356/libsafe.html
http://www.usenix.org/events/usenix2000/invitedtalks/pike_html/index.html
http://www.planetit.com/techcenters/docs/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SDevice web – Device-to-device for non-
PC devices like cell phones and pagers
and set-top boxes. These include agents
to collect data and remote distributed
processing via IP and Java.

Here web – Personal digital assets, like
“my CDs” or “my MP3s” or “my DVDs”;
providing on-demand access and owner-
ship, and allowing the end-user to create
her own environments.

So how do we get there? Three aspects
need to be worked on. First, the network
has to be enhanced. IPv6 provides more
address space, better configuration man-
agement, authentication, and authoriza-
tion, but adoption has been slow. Poggio
predicts wired devices will win over
wireless devices, both quality of service
and overprovisioning will continue, opti-
cal fiber will replace or supercede electri-
cal (copper) wiring, and the last mile to
the home or the consumer will be fiber
instead of ADSL or cable modems or
satellites. Second, the computer-chip
architecture will probably remain based
on silicon for the next ten or so years.
Quantum effects (see the “Quantum
Computing” talk for more information)
show up around 0.02 microns, so we
need new approaches such as optical
computing, organic computing, quan-
tum computing, or computational fogs
(virtual realities). Third, Poggio believes
that the system architecture will connect
three components – CPU server, storage
devices, and the network – with some
form of fast pipe, probably InfiniBand (a
high-bandwidth, low-error, low-latency
fast interconnect).

31October 2000 ;login:

FREENIX SESSION: COOL STUFF

Summarized by Jeff Schouten

AN OPERATING SYSTEM IN JAVA FOR THE

LEGO MINDSTORMS RCX
MICROCONTROLLER

Pekka Nikander, Helsinki University of

Technology

The RCX Microcontroller is a device sold
as part of a Lego set. It’s designed to
move a bit of Lego here or there, and
making a mostly functional robot for a
child to play with. As a project, a Java
operating system was developed for this
microcontroller by Pekka Nikander and
his students at Helsinki University of
Technology. The RCX consists of a
Hitachi H8 microcontroller, 32K of ram,
an LCD panel, an IR transceiver, and sev-
eral IO devices.

Using mostly Java, a small bit of C++,
and a bit of H8 assembly, there is a most-
ly functional OS for the RCX. When the
RCX agrees to take the download (about
one in three times) it runs fairly well, but
gets stuck in a loop once in a while. A
student is currently debugging this
behavior. (That gave us a few laughs).

In all, it’s an amazingly small OS, for a
very limited task, but it works – it can be
done.

LAP: A LITTLE LANGUAGE FOR OS
EMULATION

Donn M. Seeley, Berkeley Software

Design, Inc.

LAP (Linux Application Platform), is a
Linux-emulation package for BSD/OS
that allows Linux applications to run
under BSD/OS. By loading a shared
library on a BSD system to “catch” Linux
system-level calls and reroute them to
the BSD kernel, a BSD user can run a
Linux application.

Emulation is quite successful. A number
of interesting Linux applications run via
LAP and liblinux under BSD, including
Adobe Acrobat Reader v4, Netscape

Communicator, and WordPerfect 8. Not
all functions of a Linux system are emu-
lated, most notably the Linux clone() sys-
tem call.

Overall, it seems to not eat a lot of
processor, and it provides BSD users a bit
of flexibility they didn’t previously have.

TRAFFIC DATA REPOSITORY AT THE WIDE
PROJECT

Kenjiro Cho, Sony CSL; Koushirou

Mitsuya, Keio University; Akira Kato,

University of Tokyo

The idea behind this project is to collect
statistical data on trans-Pacific backbone
links on the Internet. WIDE is a Japanese
research consortium that designed this
data repository, with the intent of build-
ing free tools with which to build your
own repository.

One problem with this type of data is
privacy, another security. How do they
protect private information from leaking
into the repository and thus generating a
possible security breach? Removal of the
payload is the first step, leaving only
header information to analyze. Address
Scrambling is the second step, rewriting
or stripping out IP addresses out of
ICMP and TCP packets.

INVITED TALK

THE GNOME PROJECT

Miguel de Icaza

Summarized by Josh Kelley

Although Linux has proved itself on the
server, its progress on the desktop lagged
until quite recently. Three years ago,
UNIX had little innovation; the last sig-
nificant user interface change was X
Windows. There was little code reuse and
no consistent way to build desktop appli-
cations. Improvements were incremental
enhancements to speed and feature lists
rather than major architectural changes,
and there was little direction between
groups making these enhancements. The

USENIX ANNUAL TECHNICAL CONFERENCE ●

GNOME project aims to correct these
shortcomings.

The GNOME project is a unified, con-
certed effort to build a free desktop envi-
ronment for UNIX. One major part of
this effort is GNOME’s component plat-
form. GNOME is designed as a collec-
tion of components that build on top of
one another; dependencies between
components are encouraged, and each
application or component exports its
internals to others via CORBA.

This approach to writing software as a
collection of small components works
well with free software. Since free-soft-
ware contributors tend to come and go, a
set of components allows them to focus
on, and contribute to, a small problem
with relatively little ramp-up time.

Traditional approaches to components
have several disadvantages. UNIX com-
mand-line tools may not be easy to use
and can only communicate through uni-
directional pipes that transfer primarily
streams of textual data. Object-oriented
programming has its advantages, but
sharing objects among different object-
oriented languages is difficult.

Bonobo is the GNOME solution for
components. Bonobo is a component
architecture based on CORBA and par-
tially inspired by Microsoft’s COM/
ActiveX/OLE2. Bonobo provides the
building blocks and the core infrastruc-
ture for writing and using components.
Bonobo can be divided into two parts:
the CORBA interfaces that are the con-
tract between the providers and the
users, and the implementations of those
interfaces. Other implementations of
these interfaces are possible. For exam-
ple, KDE could choose to provide these
interfaces to allow KDE and GNOME
components to work together.

Since Bonobo is based on CORBA, it has
all of the standard CORBA features,
including language independence and
support for automation and scripting.
Bonobo’s basic interface is

32 Vol. 25, No. 6 ;login:

Bonobo::Unknown, which provides two
basic features: life-cycle management of
an object through reference counting,
and dynamic discovery of features
through a standard query interface.
Specific components may support any
number of additional interfaces to allow
full access to their functionality.

One application of Bonobo would be to
provide standard interfaces to system
services. Traditional UNIX, for example,
stores configuration information in a
variety of formats, mostly in files under
the /etc directory, and specific instruc-
tions on how to make changes and how
to put these changes into effect often dif-
fer. The goal of Bonobo (and GNOME)
is to have CORBA interfaces everywhere,
for every service, for the desktop, and for
each application. The entire system
should be scriptable. Applications should
have easy access to one another’s func-
tionality rather than having to write
desired functionality themselves. This
provides better IPC (a more flexible
alternative to pipe and fork) and better
Internet protocols (applications can
communicate via Bonobo rather than
using ad hoc protocols).

Bonobo is used in several applications
that are either in development or are
currently available. These include
Gnumeric (a spreadsheet), Sodipodi (a
draw application), Evolution (a mail and
calendar system), and Nautilus (the
GNOME 2.0 file manager). Bonobo is
also integrated with the rest of GNOME;
the GNOME canvas, for example, allows
embedding of objects of any type, and
the GNOME printing architecture offers
functionality similar to the canvas to
provide an alternative to using PostScript
for everything. GNOME 1.4, which
includes Bonobo 1.0, should be released
this October.

FREENIX SESSION: SHORT TOPICS

Summarized by Craig Soules

JEMACS – THE JAVA/SCHEME-BASED EMACS

Per Bothner

The first talk of the “shorts” section of
Freenix was a discussion of JEmacs, the
Java/Scheme-based Emacs. Described as
“A next-generation Emacs based on
Java,” JEmacs offers all of the standard
features of Emacs, as well as a number of
useful new features.

The rationale behind JEmacs is that Java
implementations have become increas-
ingly faster, making it suitable to an
application such as Emacs. Additionally,
it offers a number of useful features,
such as built-in Unicode support and
multithreading. Through the use of
Kawa, JEmacs also has an easy-to-use
Scheme interpreter that offers features of
Java, such as Swing (its GUI interface), in
a simple scripting language.

In order to make the transition to
JEmacs as painless as possible, JEmacs
also offers full ELisp support. Although
there are some slight difficulties with
integrating ELisp with the multithreaded
nature of Java, the author seems to have
them well in hand. For more informa-
tion on JEmacs see
<http://www.jemacs.net/>. Kawa
(JEmacs’s Scheme implementation) also
has a home page,
<http://www.gnu.org/software/kawa/>.

A NEW RENDERING MODEL FOR X

Keith Packard, SuSE, Inc.

Keith Packard spoke on developing a
new rendering model for the X Window
System. The current X system was devel-
oped based upon the PostScript specifi-
cation of the time, and was targeted at
being a simple solution to support sim-
ple “business” applications. Today most
programs don’t even use many of the
available features of X, relying on ineffi-
cient or unaccelerated external libraries

http://www.jemacs.net/
http://www.gnu.org/software/kawa/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sto handle screen drawing, which is done
mostly client side. By looking at the
requirements of most X programs today,
Packard has developed a new model for
X that will offer many of its missing fea-
tures.

Although many things in the current X
system are lacking, there are a few things
that are worth keeping, such as testable
pixelization and exposed pixel values. It
is important also, that all of the poten-
tial, good and bad, of the old model is
left in place for use by legacy programs.
The proposed solution offered here is
simply to add a number of new features.
These include: alpha composition,
antialiasing support, a finer-grained
coordinate system, more rendering prim-
itives, and better text handling.

UBC: AN EFFICIENT UNIFIED I/O AND

MEMORY CACHING SUBSYSTEM FOR NETBSD

Chuck Silvers, The NetBSD Project

UBC is a unification of the I/O and
memory caching systems of NetBSD, and
was presented by Chuck Silvers. Unlike
many other current operating systems,
NetBSD had a separated page and file
caching. This led to many complications
within the kernel involving management
between the two systems to avoid stale
data and proper behavior. Additionally,
the page cache has a number of useful
features not available in the file-buffer
cache, such as being dynamically resized.

The proposed solution to this problem is
to have the page cache manage all file
access. This offers a number of benefits:
only one copy of the data will ever be
cached, which also prevents any copying
to avoid stale data; the page cache can
dynamically resize itself; and cached data
no longer needs to be constantly mapped
in memory to remain in the cache. This
is all managed through several new calls,
which are used by the buffer cache to
retrieve and manage pages from the vir-
tual-memory system.

33October 2000 ;login:

Although this new system has the poten-
tial to have increased performance, as
well as reducing overall cache size, many
improvements need to be made in order
to make this a reality. Tests with the ini-
tial system indicate worse sequential-
access performance than the current
caching system. This is claimed to be due
mostly to unaggressive read ahead and
bad pager algorithms. In addition to the
performance tuning, several other
enhancements are in the future, such as
soft-updates support, avoiding the need
to map pages in order to do file I/O, and
page loan out. The current implementa-
tion of this code will become available in
the release following the 1.5 release of
NetBSD.

MBUF ISSUES IN 4.4BSD IPV6 SUPPORT –
EXPERIENCES FROM THE KAME IPV6/IPSEC

IMPLEMENTATION

Jun-ichiro itojun Hagino, Internet

Initiative Japan, Inc.

This presentation looked at the difficul-
ties found in offering IPv6 support in a
BSD environment. Although IPv6 was
designed with the idea that it can easily
be layered over current IPv4 implemen-
tations, its implementation on 4.4BSD
proved to be more complicated than
advertised.

These complications arose from a num-
ber of IPv4-specific assumptions made
within the BSD kernel. The biggest of
these problems arose from a change in
header size in IPv6, which led to severe
packet loss. In order to fix this problem,
the author created a new parser for the
IP layer which not only offered correct
IPv6 support, but also reduced the
amount of copying and mbuf allocation
significantly. This work has now been
integrated with all of the major BSD ker-
nels available. For more information on
this work, see <http://www.kame.net/>.

MALLOC() PERFORMANCE IN A

MULTITHREADED LINUX ENVIRONMENT

Chuck Lever and David Boreham, Sun-

Netscape Alliance

This work, presented by Chuck Lever, is
a direct result of the Linux scalability
project at the University of Michigan.
This project aims to enumerate the prob-
lems facing network servers and ensure
that Linux offers support greater than or
equal to current production-level operat-
ing systems for network servers.

Because malloc() is a major concern for
network servers, it is important that it be
able to offer acceptable performance in
situations that require multithreaded
asynchronous I/O, low latency and high
data throughput with a predictable
response time, and a potentially
unbounded input set of unpredictable
requests. It has been found that the man-
ner in which malloc() performs can have
a significant effect in overall system per-
formance. One example showed a 6x
performance degradation when the
iPlanet LDAP server ran on four-way
hardware with a native implementation
of malloc().

To study the performance of malloc(),
three benchmarks were created. The first
compared the elapsed runtime of N
threads accessing the same heap concur-
rently. It was found that Linux outper-
formed Solaris for N greater than two.
The second benchmark, which tested
unbounded memory consumption, allo-
cated an object in one thread and free
the same object in the second thread. It
was found that Linux has no pathologi-
cal heap growth in this situation. The
final benchmark tested data placement
within the heap by allocating a data
object normally with malloc() and then
letting several threads write into it many
times. Bad data placement causes poor
performance, especially on SMP hard-
ware. Linux’s version of malloc() aligns
data to eight-byte boundaries, which
resulted in widely varying application

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.kame.net/

performance on CITI’s four-way test
machine. In conclusion, the version of
malloc() offered with glibc 2.1 showed
overall acceptable performance on two-
and four-way hardware, but still needs
work and special attention to reduce per-
formance and scalability problems
caused by sloppy data placement.

CLOSING SESSION

NEW HORIZONS FOR MUSIC ON THE

INTERNET

Thomas Dolby Robertson

Summarized by Josh Simon

Thomas Dolby is a musician (you’ll
probably remember him from “She
Blinded Me with Science!”) who’s been
working for at least 20 years on integrat-
ing computers into music. (One histori-
cal tidbit: The drums in “Science!” were
actually generated by a discotheque’s
light-control board.)

Dolby is one of the founders of Beatnik
(<http://www.beatnik.com/>), a tool suite
or platform to transfer descriptions of
the music, not the music itself, over the
Internet. For example, the description
would define which voice and attributes
to use, and the local client side would be
able to translate that into music or
effects. This effectively allows a Web page
to be scored for sound as well as for
sight.

For example, several companies have
theme music for their logos that you may
have heard on TV or radio ads. These
companies can now, when you visit their
Web sites, play the jingle theme without
needing to download hundreds of kilo-
bytes, merely tens of bytes. Similarly, a
Web designer can now add sound effects
to her site, such that scrolling over a but-
ton not only lights the button but plays a
sound effect. Another use for the tech-
nology is to mix your own music with
your favorite artists, turning on and off
tracks (such as drums, guitars, and
vocals) as you see fit, allowing for per-

34 Vol. 25, No. 6 ;login:

sonalized albums at a fraction of the disk
space. (In the example provided during
the talk, a 20K text file would replace a
5MB MP3 file.) In addition to the “way
cool” and “marketing” approaches,
there’s an additional educational compo-
nent to Beatnik. For example, you can set
up musical regions on a page and allow
the user to experiment with mixing dif-
ferent instruments to generate different
types of sounds.

The technical information: Beatnik com-
bines the best of the MIDI format’s effi-
ciency and the WAV format’s fidelity.
Using “a proprietary key thingy” for
encryption, Beatnik is interactive and
cross-platform, providing an easy way to
author music. And because the client is
free, anyone can play the results. The
audio engine is a 64-voice general MIDI
synthesizer and mixer, with download-
able samples, audio file streaming, and a
64:2 channel digital mixer. It uses less
than 0.5% of a CPU per voice, and there
are 75 callable Java methods at runtime.
It supports all the common formats
(midi, mp3, wav, aiff, au, and snd), as
well as a proprietary rich music format
(rmf), which is both compressed and
encrypted with the copyright. RMF files
can be created with the Beatnik Editor.
(Version 2 is free while in beta but may
be for-pay software in production.) The
editor allows for access to a sound bank,
sequencer, envelope settings, filters, oscil-
lations, reverbs, batch conversions (for
example, entire libraries), converting
loops and samples to MP3, and encryp-
tion of your sound. And there is an
archive of licensable music so you can
pay the royalties and get the license
burned into your sample.

Web authoring is easy with the EZ
Sonifier tool, which generates JavaScript;
middling with tools like NetObjects’
Fusion, Adobe GoLive, and Macromedia
Dreamweaver; and hard if you write it
yourself, though there is a JavaScript-
authoring API available for the music
object.

Beatnik is partnered with Skywalker
Sound, the sound-effects division of
Lucasfilms Ltd.

BOF SESSION

WORKPLACE ISSUES FOR LESBIAN, GAY,
BISEXUAL, TRANSGENDERED AND FRIENDS

Summarized by Chris Josephes and Tom
Limoncelli

Although the first submitted name for
this BoF suggested that it was for “sysad-
mins,” it was well-attended by managers,
engineers, programmers, and anyone else
who felt like attending. The LGBT BoF
has had a long history at USENIX and
LISA conferences. The crowd was an
even mix of newcomers and conference
veterans. The purpose of the session was
to give people to opportunity to talk
about their work environments, and to
provide the opportunity to network with
other attendees whom they may not have
otherwise met during the conference.

Everyone introduced themselves and the
companies they work for. Then they
talked about how their employers have
handled issues facing LGBT employees
and related experiences they may have
had when dealing with their employers.
As it is becoming harder to find qualified
people, more companies are adapting
their benefits to the LGBT community in
hopes of attracting new talent and
retaining existing employees.

Of the 34 attendees, most reported that
their employers established a nondis-
crimination policy that included sexual
orientation. On top of that, some
employers also offered domestic-partner-
ship benefits for registered partners.
Another issue employers are trying to
address is maintaining a safe, friendly,
nonthreatening environment for
employees by implementing peering pro-
grams, diversity training, and employee
groups.

Andrew Hume, USENIX vice president,
attended the BoF to welcome everyone

http://www.beatnik.com/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sand assure us that USENIX is committed
to creating a space that is inviting and
supportive to all attendees. His com-
ments were well-received.

After the introductions were finished, the
BoF became an open floor. We talked
more in depth about the issues of
employment and some of the recruiting
plans some firms were offering. Several
attendees, all from one large company,
reported that they now have a recruit-
ment effort targeting the LGBT commu-
nity since they feel their accepting work
environment is one of their competitive
advantages. Someone pointed out which
BoF attendees were presenting papers at
the conference, so that others could
attend and lend support. Ideas for
improving attendance at future BoFs
were brought up, including a couple of
suggestions for making sure the
male/female ratio was more representa-
tive of the conference attendance.

When it was time for the BoF to official-
ly end, everyone agreed to informally get
together at one of the hospitality suites
scheduled for that night.

Trip Report

USENIX ANNUAL TECHNICAL

CONFERENCE
by Peter H. Salus

<peter@matrix.net>

I had a great time at the 25th Anniv-
ersary USENIX conference in San Diego.
Oh, boy! San Diego! Right. I didn’t even
get off the hotel premises for nearly three
days.

After all, there were Dennis Ritchie, Ken
Thompson, Bill Joy, Rob Pike, Kirk
McKusick, Eric Allman, Tom
Christiansen, Elizabeth Zwicky, Margo
Seltzer, Sam Leffler, Jim Gettys, Clem
Cole, Evi Nemeth, Mike Ubell, Teus
Hagen, Rich Miller, Oz Yigit, Miguel de
Icaza, and over 2000 others inside the
hotel.

35October 2000 ;login:

In fact, I only got to about two
papers/presentations a day. Take
Thursday, the “middle” day of the con-
ference. From 9:00 to 11:00 am, I listened
to Ed Felten of Princeton University talk
about the Microsoft trial. As he was
under DoJ secrecy rules (he was adviser
to and expert witness for the DoJ), there
was much he couldn’t say. What he could
say was fascinating. Then I walked
around the exhibits, and chatted. Then I
went to a publications-committee meet-
ing where I was a guest of the USENIX
board. Then I was on the Dr. Dobb’s
Webcast for over an hour, to be succeed-
ed by Linus Torvalds. So I chatted with
Linus, his wife, and their two little girls.
Then I sat down with some folks from
Sleepycat to learn about embedded data-
bases. And it’s now after 5:00 pm. At
6:00, I went to the celebratory reception;
at 8:00, I went to hear Linus at the Linux
BoF. At nine, I went to the “Old Farts’
BoF.” At 10:30 pm I met my wife, who
wanted to go out for dinner. I was too
tired. We stayed in the Marriott.

On Wednesday morning I had the pleas-
ure of witnessing the awarding of the
“Flame” (for lifetime achievement) to the
late Rich Stevens, with Rich’s wife, chil-
dren, and sister getting a five-minute
standing ovation from the attendees.
Then Bill Joy shared his thoughts about
the future of computing.

Bill traced his beginnings in the field –
just about 25 years ago at Berkeley – and
traced the origins of “open source” to the
bases of university research and of UNIX
on the PDP-11. While there was the
question of whether doing software is
“research,” the common answer was
“yes,” and as researchers publish results,
there could be no property rights adher-
ing to that research. Lately, largely
because of commercial and industrial
contributions, there are more and more
“entanglements.”

Bill noted that he had written “a really
boring Java book.” My guess is that he

was referring to The Java Language
Specification by Joy, Steele, Gosling, and
Bracha. As I really liked the first edition
(1996) and found the second edition
(2000) even better – when was the last
time the second edition of a reference
book was smaller than the first? – I think
I’d disagree.

One of Joy’s more interesting comments
turned on the fact that UNIX was inher-
ently reliable because of its modulariza-
tion. The consequence is that “Microsoft
is clearly foolish” in attempting to make
all of its applications integral and the
construct monolithic. “Microsoft is
beyond retrograde,” Bill said. “All inter-
faces should be published.”

Turning to the future, Bill scorned the
notion of the death of Moore’s law. In
fact, he thinks that we might see another
“ten-to-the-sixth” improvement over the
next 30 years, just as machinery has
improved a million times over the past
30. Bill thinks that molecular computing
will enable us to come to grips with the
“grand challenge problems” like those of
cell biology. Some of these steps will
come about through algorithmic
improvements, some through greater
emphasis on remote storage and fast
transmission.

However, he pointed out, the more that’s
done remotely, the higher the toll for the
round-trip, even with high-speed optical
connections. “The Internet isn’t about
packets,” he said. “It’s about end-to-end.”

On the client-server side, Bill said that he
saw six Webs in the future:

the “near web,” which we currently
use;
the “far web,” the entertainment for
couch potatoes;
the “here web,” of the pocket device
and the cell phone;
the “weird web,” involving smart
clothing and voice-activated cars;
and two “invisible” webs: “e-business”
and “truly pervasive.”

USENIX ANNUAL TECHNICAL CONFERENCE ●

Friday morning I was spellbound as Rob
Pike, who is always exciting to hear,
spoke about quantum computing. This is
the kind of paper that differentiates a
real conference from a hawker’s
sideshow: Heisenberg, Schroedinger,
integral signs, real equations. Rob said
that we should rid ourselves of the
notion that “the elements of information
are independent” and get used to con-
cepts like “conservation of information.”
“A quantum computer is probabilistic,”
he remarked. “It’s not going to happen
soon,” but it will happen.

Now we can turn it over to Gibson,
Sterling, Stephenson, and Vinge . . .

A fine conference. I can’t wait till the
30th Anniversary.

There was lots more. It was a fine hour.

Then I spent over an hour on the Dr.
Dobb’s Webcast.

Wednesday night there was a four-hour
BSD BoF (that’s right) organized by Kirk
McKusick. An hour each of OpenBSD,
FreeBSD, NetBSD, and BSDI. I sat
through over an hour of it. While there
were pockets of enthusiasts cheering and
jeering, it was a generally highly intelli-
gent, well-informed group of about 400.
And I thought it exciting to see them all
together. A doff of my cap to you, Kirk.

Thursday morning, as I mentioned, I
went to hear Ed Felten. While most folks
know many of the details of the case, I
found listening to the recollections of a
participant truly fascinating. My person-
al feeling is that the case is more about
economics and business than about tech-
nology, but there are (clearly) two tech-
nical queries of significance: (1) is there
a technical advantage to tying Windows
to the browser? and (2) can they be dis-
entangled without injury to either?

The clear answer to (1) is “no” (there is,
of course, a business advantage for
Microsoft) and Felten himself demon-
strated the answer to (2) in court. In fact,
advocates of the small kernel (like Linus
Torvalds) as well as “old-timers” (like Bill
Joy) all shun the interwoven monolithic
monstrosities produced by Microsoft.

Went off for another hour of Webcast.

The “Old Farts’ BoF” on Thursday night
was very well attended. Ken Thompson,
Lou Katz, Greg Rose, Dennis Moomaw,
Clem Cole, and I were among the recol-
lectors. Toward 10:00 pm, Professor Arun
K. Sharma, head of computer science
and engineering at the University of New
South Wales, announced a “drive” to
raise $A2M (= $US1.2M) to establish a
John Lions Chair of Operating Systems
at UNSW. As I considered John a teacher
and a friend, I handed Arun my check
for $1,000 on the spot. I found it very
moving.

36 Vol. 25, No. 6 ;login:

The 25th Anniversary Reception was a good
party!

