
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

S WA R M : A L O G - S T R U C T U R E D S T O R A G E S Y S T E M
F O R L I N U X

Ian Murdock and John H. Hartman

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Swarm: A Log-Structured Storage System for Linux

Ian Murdock

Department of Computer Science

The University of Arizona

imurdock@cs.arizona.edu

John H. Hartman

Department of Computer Science

The University of Arizona

jhh@cs.arizona.edu

Abstract

Swarm [3] is a storage system for Linux that pro-
vides scalable, reliable, and cost-e�ective data stor-
age. At its lowest level, Swarm implements a log-
structured interface to a cluster of storage devices.
Above the log, Swarm provides an infrastructure
that allows high-level abstractions and functionality
to be implemented easily and eÆciently. This paper
describes the design and implementation of Swarm,
paying particular attention to the Swarm infrastruc-
ture and how it has been used to construct two stor-
age systems: Sting, a log-structured �le system for
Linux, and ext2fs/Swarm, a Swarm-based version
of the Linux ext2 �le system that runs unmodi�ed
above a block device compatibility layer. The paper
concludes with a discussion of our experiences using
Linux as a platform for research.

1 Introduction

In Linux, �le systems interface with applications
through an abstraction layer called the Virtual
Filesystem Switch (VFS). The VFS separates �le
system interface from implementation, allowing
many di�erent �le systems to coexist in a single �le
system namespace. The VFS implements function-
ality common to all �le systems, including the sys-
tem calls that access or modify �le system data and
metadata (e.g., read and mkdir). To perform �le-
system-speci�c operations, the VFS vectors control
to lower-level �le system implementations when ap-
propriate (e.g., when a block needs to be read from

disk, or when an entry needs to be added to a direc-
tory). Below the VFS, �le systems access storage
indirectly through a caching subsystem. For exam-
ple, disk-based �le systems communicate with the
underlying disks through a bu�er cache, which pro-
vides a level of indirection between disks and the �le
systems stored on them.

In general, high-level abstractions such as those pro-
vided by �le systems are tightly coupled with the
low-level storage devices on which they are imple-
mented, making it diÆcult to extend or con�gure
the storage system. For example, since the ext2
�le system interfaces with disks through the bu�er
cache, it is not possible to run ext2 above a storage
device that is not block-oriented. Furthermore, the
high-level abstractions themselves are often tightly
coupled, providing a single large feature set that is
diÆcult to change without directly modifying the
�le system. For example, ext2 implements the stan-
dard UNIX �le system functionality and interface.
In general, to extend the functionality of ext2 (e.g.,
to add support for transparent compression of �le
data), it is necessary to modify ext2 directly to sup-
port the desired features.

To address this inherent in
exibility, several
projects have created extensible storage systems.
One group of projects focuses on stacking vn-
odes [5, 11]. In many versions of UNIX, a vnode
represents an object in the �le system namespace,
such as a �le, directory, or named pipe. In the con-
text of Linux, which does not support vnodes, the
same e�ect may be achieved by layering at the VFS
level, allowing new functionality to be interposed
between layers. For example, to add compression to

a �le system, a �le compression layer is interposed
between the �le system and the bu�er cache that
compresses �les as they are written, uncompresses
�les as they are read, and manages all the details re-
quired to make this transparent (e.g., making sure
cache blocks are managed properly). Thus, VFS
layering allows certain functionality to be added to
�le systems without having to modify the �le sys-
tems themselves.

Other projects attempt to provide
exibility at
the bottom end. For example, Linux supports
transparently-compressed block devices, providing
support for compression of �le system data and
metadata at the block level, and software RAID,
which combines several physical block devices into
one virtual block device that looks and acts like a
RAID. This kind of support allows high-level ab-
stractions to escape the con�nes of a particular stor-
age abstraction to a limited extent without requiring
modi�cation of the higher levels.

The problem with these approaches is that they only
allow changes in implementation; they do not allow
changes in interface. At the top end, VFS layering
does not allow extensions to alter the �le-oriented
interface the VFS provides; this limits the express-
ibility of VFS layers to functionality that matches
the �le abstraction and interface. For example, �le
system �lters, like transparent compression and en-
cryption, �t very nicely into the VFS framework,
but other kinds of extensions that diverge from the
�le abstraction and interface are more diÆcult to
implement, such as integrated support for database-
like functionality (e.g., transactions). At the bot-
tom end, extensions like transparent compression
of block devices and software RAID allow some �le
systems to provide extended functionality, but only
those that support the particular storage abstrac-
tion being extended (in this case, those �le systems
that run above block devices).

Swarm [3] is a storage system that attempts to
address the problem of in
exibility in storage sys-
tems by providing a con�gurable and extensible in-
frastructure that may be used to build high-level
storage abstractions and functionality. At its low-
est level, Swarm provides a log-structured interface
to a cluster of storage devices that act as reposi-
tories for �xed-sized pieces of the log called frag-
ments. Because the storage devices have relatively
simple functionality, they are easily implemented
using inexpensive commodity hardware or network-
attached disks [2]. Each storage device is optimized

for cost-performance and aggregated to provide the
desired absolute performance.

Swarm clients use a striped log abstraction [4] to
store data on the storage devices. This abstrac-
tion simpli�es storage allocation, improves �le ac-
cess performance, balances server loads, provides
fault-tolerance through computed redundancy, and
simpli�es crash recovery. Each Swarm client creates
its own log, appending new data to the log and form-
ing the log into fragments that are striped across the
storage devices. The parity of log fragments is com-
puted and stored along with them, allowing miss-
ing portions of the log to be reconstructed when a
storage device fails. Since each client maintains its
own log and parity, the clients may act indepen-
dently, resulting in improved scalability, reliability,
and performance over centralized �le servers.

Swarm is a storage system, not a �le system, be-
cause it can be con�gured to support a variety of
storage abstractions and access protocols. For ex-
ample, a Swarm cluster could simultaneously sup-
port Sun's Network File System (NFS) [10], HTTP,
a parallel �le system, and a specialized database
interface. Swarm accomplishes this by decoupling
high-level abstractions and functionality from low-
level storage. Rather than providing these ab-
stractions directly, Swarm provides an infrastruc-
ture that allows high-level functionality to be imple-
mented above the underlying log abstraction easily
and eÆciently. This infrastructure is based on lay-
ered modules that can be combined together to im-
plement the desired functionality. Each layer can
augment, extend, or hide the functionality of the
layers below it. For example, an atomicity service
can layer above the log, providing atomicity across
multiple log operations. In turn, a logical disk ser-
vice can layer above this extended log abstraction,
providing a disk-like interface to the log and hid-
ing its append-only nature. This is in contrast to
VFS or vnode layering, in which there is a uniform
interface across all layers.

Swarm has been under development at the Univer-
sity of Arizona for the past two years. We have im-
plemented the Swarm infrastructure in both a user-
level library and the Linux kernel (versions 2.0 and
2.2), and we have used this infrastructure to imple-
ment two storage systems, Sting, a log-structured
�le system for Linux, and ext2fs/Swarm, a Swarm-
based version of the Linux ext2 �le system that
runs unmodi�ed above a block device compatibil-
ity layer.

2 Swarm infrastructure

Swarm provides an infrastructure for building stor-
age services, allowing applications to tailor the stor-
age system to their exact needs. Although this
means that many di�erent storage abstractions and
communication protocols are possible, Swarm-based
storage systems typically store data in a striped log
storage abstraction and use a storage-optimized pro-
tocol for transferring data between client and server.

In the striped log abstraction, each client forms data
into an append-only log, much like a log-structured
�le system [9]. The log is then divided into �xed-
sized pieces called fragments that are striped across
the storage devices. Each fragment is identi�ed by
a 64-bit integer called a fragment identi�er (FID).
Fragments may be given arbitrary FIDs, allowing
higher levels to construct multi-device fragment ad-
dress spaces. As the log is written, the parity of the
fragments is computed and stored, allowing missing
fragments to be reconstructed should a storage de-
vice fail. A collection of fragments and its associated
parity fragment is called a stripe, and the collection
of devices they span is called a stripe group.

The striped log abstraction is central to Swarm's
high-performance and relatively simple implemen-
tation. The log batches together many small writes
by applications into large, fragment-sized writes to
the storage devices, and stripes across the devices
to improve concurrency. Computing parity across
log fragments, rather than �le blocks, decouples the
parity overhead from �le sizes, and eliminates the
need for updating parity when �les are modi�ed,
since log fragments are immutable. Finally, since
each client writes its own log, clients can store and
access data on the servers without coordination be-
tween the clients or the servers.

Swarm is implemented as a collection of modules
that may be layered to build storage systems in
much the same way that protocols may be layered
to build network communications subsystems [6].
Each module in Swarm implements a storage service
that communicates with the lower levels of the stor-
age system through a well-de�ned interface, and ex-
ports its own well-de�ned interface to higher levels.
Storage systems are constructed by layering the ap-
propriate modules such that all interfaces between
modules are compatible. This section describes the
basic modules that are used to construct storage
systems in Swarm.

2.1 Disk

As in most storage systems, the disk is the primary
storage device in Swarm. Swarm accesses disks
through the disk layer. The disk layer exports a
simple, fragment-oriented interface that allows the
layers above to read, write, and delete fragments.
Fragment writes are atomic; if the system crashes
before the write completes, the disk state is \rolled
back" to the state it was in prior to the write.

The disk layer operates by dividing the disk into
fragment-sized pieces and translating fragment re-
quests into disk requests. The mappings from frag-
ment identi�ers to disk addresses are stored in an
on-disk fragment map that is stored in the middle
of the disk to reduce access time. The disk con-
tains two copies of the fragment map, each with
a trailing timestamp, to permit recovery when the
system crashes while a fragment map write is in
progress. As an optimization, the disk layer only
writes out the fragment map periodically, saving two
additional seeks and a disk write on most fragment
operations.

The fragment map is not written to disk each time
it is updated, so the disk layer must be able to make
it consistent again after crashes, or fragments writ-
ten after the last fragment map write will be lost.
To address this problem, the disk layer borrows a
trick from the Zebra storage server [4]. It includes
a header with each fragment that contains enough
information for the fragment map to be updated
appropriately at recovery time. To allow crash re-
covery to proceed without having to scan the entire
disk, the disk layer preallocates the next set of frag-
ments to write before it writes the fragment map
and stores their locations in the fragment map. At
recovery time, the disk layer need only examine the
fragments preallocated in the fragment map.

2.2 Network-attached storage

Swarm also supports the use of network-attached
storage devices. Swarm provides a network trans-
parency layer that has the same interface as the
disk layer, allowing locally-attached and network-
attached storage devices to be used interchangeably.
The network transparency layer accepts fragment
operations from the layers above it, sends them
across the network to the appropriate device, and re-

turns the result of the operation to the caller trans-
parently.

In Swarm, network-attached storage devices are
called storage servers. The storage servers are es-
sentially enhanced disk appliances running on com-
modity hardware, and provide the same fragment-
oriented interface as disks, with added support for
security. The storage server security mechanism
consists of access control lists that may be applied to
arbitrary byte ranges within a fragment. The lists
give a client �ne-grained control over which clients
can access its data, without limiting the ways in
which fragments may be shared.

2.3 Striper

The striper layer is responsible for striping frag-
ments across the storage devices. It exports a
fragment-oriented interface to the higher layers. As
fragments are written, the striper forms the frag-
ments into stripes and writes them to the appro-
priate storage devices in parallel. To provide
ow
control between the striper and the storage devices,
the striper maintains a queue of fragments to be
written for each device; the striper puts fragments
into these queues, and the storage layers take them
out and store them on the appropriate device. Frag-
ments are written to disk one-at-a-time, but with a
storage server, the network layer transfers the next
fragment to the server while the previous one is
being written to disk; this keeps both the storage
server's disk and the network busy, so that as soon
as one fragment has been written to disk, the server
can immediately begin writing another fragment.

2.4 Parity

The parity layer implements the standard parity
mechanism used by RAID [8]. The parity layer sits
above the striper and provides a compatible inter-
face, allowing the striper and parity layer to be used
interchangeably. One diÆculty that arises from
Swarm's support for stripe groups is determining
which fragments constitute the remaining fragments
of a stripe during reconstruction, and on which de-
vices they are stored. Swarm solves this problem by
storing stripe group information in each fragment of
a stripe, and numbering the fragments in the same
stripe consecutively. If fragment N needs to be re-
constructed, then either fragment N-1 or fragment

D
E

LE
T

E

C
R

E
A

T
E

C
R

E
A

T
E

C
R

E
A

T
E

�
�
�

�
�
�

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

Figure 1: The light objects are blocks, and the dark
objects are records. Each create record indicates
the creation of a block, and each delete record
indicates a deletion; the arrows show which block
is a�ected by each record and represent references
visible to the log layer. Note that the contents of
the blocks themselves are uninterpreted by the log
layer.

N+1 is in the same stripe. The client queries all the
storage devices until it �nds either fragment N-1
or N+1. For locally-attached disks, the client uses
con�guration information to �nd all the disks; for
storage servers, the client simply broadcasts to �nd
the desired fragments. Broadcast is used because
it is simple and makes Swarm self-hosting|no ad-
ditional mechanism is needed to distribute stripe
group and storage server information reliably to all
clients.

2.5 Striped log

Above the fragment-oriented interfaces provided by
the storage, striper, and parity layers is the log layer.
The log layer implements the striped log storage ab-
straction and corresponding interface, forming data
written by higher levels into an append-only log
and striping the log across the underlying storage
devices. The layers above the log are called stor-
age services (services for short) and are responsi-
ble for implementing high-level storage abstractions
and functionality. The log layer's main function is
to multiplex the underlying storage devices among
multiple services, allowing storage system resources
to be shared easily and eÆciently.

The log is a conceptually in�nite, ordered stream
of blocks and records (Figure 1). It is append-only:
blocks and records are written to the end of the
log and are immutable. Block contents are service-
de�ned and are not interpreted by the log layer. For
example, a �le system would use blocks not only to
store �le data, but also inodes, directories, and other
�le system metadata. Once written, blocks persist
until explicitly deleted, though their physical loca-
tions in the log may change as a result of cleaning

or other reorganization.

New blocks are always appended to the end of the
log, allowing the log layer to batch together small
writes into fragments that may be eÆciently written
to the storage devices. As fragments are �lled, the
log layer passes them down to the striper for storage.
Once written, a block may be accessed given its log
address, which consists of the FID of the fragment in
which it is stored and its o�set within the containing
fragment. Given a block's log address and length,
the log layer retrieves the block from the appropriate
storage device and returns it to the calling service.
When a service stores a block in the log, the log layer
responds with its log address so that the service may
update its metadata appropriately.

Records are used to recover from client crashes. A
crash causes the log to end abruptly, potentially
leaving a service's data structures in the log incon-
sistent. The service repairs these inconsistencies by
storing state information in records during normal
operation, and re-applying the e�ect of the records
after a crash. For example, a �le system might ap-
pend records to the log as it performs high-level op-
erations that involve changing several data struc-
tures (e.g., as happens during �le creation and dele-
tion). During replay, these records allow the �le
system to easily redo (or undo) the high-level opera-
tions. Records are implicitly deleted by checkpoints,
special records that denote consistent states. The
log layer guarantees atomicity of record writes and
preserves the order of records in the log, so that ser-
vices are guaranteed to replay them in the correct
order.

2.6 Stripe cleaner

As in LFS, Swarm uses a cleaner to periodically
compress free space in the log to make room for new
stripes [9]. In Swarm, the cleaner is implemented as
a layer above the log, hiding the log's �nite capac-
ity from higher-level services. The cleaner service
monitors the blocks and records written to the log,
allowing it to track which portions of the log are
unused. A block is cleaned by re-appending it to
the log, which changes its address and requires the
service that wrote it to update its metadata accord-
ingly. When a block is cleaned, the cleaner noti�es
the service that created it that the block has moved.
The noti�cation contains the old and new addresses
of the block, as well as the block's creation record.

Applications

VFS

Sting

Stripe Cleaner

Page Cache

Parity

Striper

Striped Log

Figure 2: This �gure shows the Swarm module con-
�guration for Sting. The storage devices at the bot-
tom layer may be either locally-attached or network-
attached disks, and the number of devices is con�g-
urable.

The creation record contains service-speci�c infor-
mation that makes it easier for the service to up-
date its metadata. For example, the creation record
for a �le block might contain the inode number of
the block's �le and the block's o�set. The cleaner
is also responsible for free space management, en-
forcing quotas on higher-level services, reserving the
appropriate number of stripes so that cleaning is
always able to proceed, and initiating cleaning to
make room for new stripes in the event there are no
free stripes.

3 Swarm storage systems

We have implemented the Swarm infrastructure de-
scribed in the previous section in both a user-level
library and the Linux kernel, and we have used this
infrastructure to implement two storage systems.
This section describes our two demonstration stor-
age systems, Sting, a log-structured �le system for
Linux, and ext2fs/Swarm, a Swarm-based version
of the Linux ext2 �le system that runs unmodi�ed
above a block device compatibility layer.

3.1 Sting

Sting is a log-structured �le system for Linux that
is based on Swarm. It is similar to Sprite LFS [9],

although it is smaller and simpler because the un-
derlying Swarm infrastructure deals transparently
with log management and storage, cleaning, and
other LFS tasks. As with all other Linux-based �le
systems, Sting interacts with applications through
the Linux Virtual Filesystem Switch (VFS). Thus,
Linux applications may run above Sting as they
would any other Linux �le system. However, un-
like other Linux-based �le systems, Sting accesses
storage through the striped log abstraction rather
than a block device (see Figure 2).

Sting stores all of its data and metadata in blocks,
and uses many of the same data structures as LFS.
Files are indexed using the standard UNIX inode
mechanism. Directories are simply �les mapping
names to inode numbers. Inodes are located via
the inode map, or imap, which is a special �le that
stores the current location of each inode. A similar
data structure is not needed in most �le systems
because inodes are stored at �xed locations on the
disk and modi�ed in place. In Sting, when an inode
is modi�ed or cleaned, a new version of the inode
is written to the end of the log, causing the inode's
address to change periodically.

Sting uses records to recover its state after a crash.
For example, when a �le is created, Sting writes a
record to this e�ect to the log, so that it may eas-
ily recreate the �le after a crash. This mechanism
is similar to that used by journaling �le systems.
Without Swarm's record mechanism, Sting would
be forced to write out the a�ected metadata when a
�le is created, and write it out in a particular order
so that a �le system integrity checker (e.g., fsck)
can rectify an inconsistency after a crash. In Swarm,
services may summarize changes in records without
actually making them, and they are freed from hav-
ing to do their own ordering because Swarm guar-
antees that records are properly ordered by time of
creation during recovery.

Sting runs above Swarm's striped log, not a block
device, so it is unable to use the bu�er cache used
by disk-based �le systems for bu�ering writes and
caching metadata. Rather than adding our own spe-
cialized bu�ering mechanism to Sting, we modi�ed
the page cache to support tracking and writing back
dirty pages so that Sting could use it as its pri-
mary �le cache for both reads and writes. With
our changes, pages may be modi�ed and marked
\dirty" for later writing. When a page is marked
dirty, it is added to a list of dirty pages. Then, dur-
ing each run of update, the list of dirty pages is

Applications

Striper

Parity

Striped Log

Stripe Cleaner

VFS

Page Cache
ext2fs

Logical Disk

/dev/swarmld

Figure 3: This �gure shows the Swarm module con-
�guration for ext2fs/Swarm. The stack below the
�le system is identical to that of Figure 2, with
the introduction of two compatibility layers. As
with Sting, the storage devices at the bottom layer
may be either locally-attached or network-attached
disks, and the number of devices is con�gurable.

traversed. If a page is older than a certain thresh-
old age (currently twenty-�ve seconds), it is written
via a VFS method called writepage. In addition,
Sting uses the page cache to cache indirect blocks,
directory blocks, symbolic links, and the inode map.
Our modi�cations to the page cache were small but
allowed us to more easily implement a �le system
that does not run above a block device.1

Sting accesses storage through Swarm, allowing it
run on either locally-attached disks or on a Swarm
cluster as a network �le system (or a combination of
the two). In addition, it may also take full advan-
tage of Swarm's striping capabilities transparently.
It does not yet support �le sharing between clients.
We are in the process of implementing a locking
service that will allow clients to synchronize �le ac-
cesses, allowing us to easily modify Sting to be used
as a distributed �le system.

3.2 Ext2fs/Swarm

Ext2fs/Swarm is a version of the Linux ext2 �le sys-
tem that runs unmodi�ed above Swarm. This is
possible through the use of a special logical disk
service that provides a disk-like interface above
Swarm's striped log, and a Linux block device driver
that translates Linux block device requests into
Swarm logical disk requests (see Figure 3). The
block device driver exports the usual block device
interface via the /dev/swarmld device �le, which
may be read, written, or mounted like any other
block device. Thus, via the logical disk service and
/dev/swarmld, Swarm appears to Linux to be just
an ordinary block device.

The Swarm logical disk is similar to the MIT Log-
ical Disk [1], but it is much simpler because it is
implemented as a service above Swarm. It hides the
append-only nature of the striped log, providing the
illusion that higher-level services are running above
a disk. As with real disks, blocks in a logical disk are
written to �xed addresses that do not change over
time, and that can be overwritten in place. This
provides a much more convenient abstraction for
some services than the append-only log, in which
services must always append blocks to the end of
the log and block addresses change as the result of
being cleaned or overwritten.

The Swarm logical disk service's primary function
is to maintain a mapping from a logical disk's �-
nite address space to the log's in�nite address space.
This mapping is maintained in main memory, and
is periodically written to the log by the logical disk
service. In addition to updating the mapping ta-
ble during normal operation, the logical disk service
intercepts change-of-address noti�cations from the
stripe cleaner as blocks are cleaned and updates the
mapping table transparently.

Although the logical disk is a general-purpose stor-
age service that may be used to implement any
storage system, it serves as an excellent compatibil-
ity layer that allows existing �le systems that run
above a disk to run unmodi�ed above Swarm. Us-
ing /dev/swarmld, ext2fs (and all other disk-based
Linux �le systems) may run above Swarm unmodi-
�ed. As read requests and write requests are gener-
ated by applications, they are passed to the device

1Many of these shortcomings have been addressed in the

latest development version of Linux, 2.3. Our development

e�orts were under Linux 2.0 and Linux 2.2.

driver; in turn, the requests are passed to the logi-
cal disk, which performs the appropriate operation
on the striped log. In addition to striping, improved
performance on small writes, and other bene�ts pro-
vided by Swarm, ext2fs/Swarm can be con�gured
to run on a Swarm cluster as a network �le system.
Note, however, that because we run ext2fs unmodi-
�ed, its concurrency aspects are unchanged, so only
one client at a time may have write access to any
given instance of it.

4 Experiences using Linux for re-

search

Swarm has been under development in the Depart-
ment of Computer Science at the University of Ari-
zona for the past two years. Early on, we decided to
base Swarm on Linux because Linux had a large and
rapidly-growing user base, and we wanted to build a
storage system that people could use for day-to-day
data storage. As with most decisions, ours was not
without a downside, and we have learned some im-
portant lessons about Linux over the past few years
that may prove useful to fellow researchers who are
considering using Linux as a platform for research.
We hope these observations will be equally useful
to Linux developers, and that they will help make
Linux an even better platform for research and de-
velopment.

The lack of documentation is one of the biggest
limitations of Linux to the uninitiated. There is
very little documentation on the internal workings
of Linux, and what little exists tends to become out-
dated quickly. The code is often the best (and some-
times the only) point of reference on how a partic-
ular part of Linux works. Unfortunately, the func-
tionality of a piece of code is not always obvious at
�rst glance, as comments are sparse in many places,
and the code is often highly optimized and thus fre-
quently diÆcult to understand at �rst glance.

Fortunately, Linux has a large and friendly develop-
ment community that is normally more than happy
to answer questions (as long as the asker has done
his homework �rst), and the Internet serves as an
invaluable archival reference for �nding out if some-
one else has asked the same questions in the past
(they almost certainly have). Still, Linux would do
well to improve its documentation e�orts. Since the
code evolves so rapidly, any successful documenta-

tion mechanism must be somehow tied to the code
itself (e.g., automatically generated from comments
in the code), to prevent divergence of documenta-
tion from documented functionality.

Another limitation of Linux is its rather spartan de-
velopment environment. Linux (at least the x86 ver-
sion) does not include a kernel debugger, which we
consider to be an essential part of any operating sys-
tem development environment. Rather than using
an interactive debugger, Linux developers prefer to
rely on printk to debug new code, and use textual
crash (\oops") dumps of registers, assembly code,
and other low-level system state when something
goes wrong. Fortunately, there are patches available
that allow the kernel to be debugged interactively.
Linux is also light on diagnostic facilities. We often
found ourselves having to manually poke around in-
side system data structures using the debugger or
printk to gain insight into the source of a bug when
something had gone wrong. A clean interface to dis-
playing and analyzing system state, accessible from
the debugger, is another integral part of any oper-
ating system development environment.

Finally, Linux does not always follow good software
engineering practices [7]. For example, much of the
code we worked with seemed optimized unnecessar-
ily, usually at the expense of code clarity. Oper-
ating system code should only be optimized when
doing so has a clear, quanti�ed impact on overall
performance. Most operating system code is not
performance critical and has little or no e�ect on on
overall performance; such code should be structured
for the human reader rather than the computer, to
make the code easier to understand and maintain, to
make bugs less likely to be introduced when the code
is modi�ed, and to make bugs that are introduced
easier to �nd and �x. Furthermore, the abstraction
boundaries in Linux are not always obeyed or even
well-de�ned. We had problems with both the �le
system and I/O subsystems in this area, where the
implementation of an abstraction made certain as-
sumptions about how it would be used that were
not always readily apparent from the abstraction's
interface.

Despite its shortcomings, Linux has treated us well.
Ten years ago, we would have had to license the
source code to a proprietary operating system or
use an in-house research operating system to im-
plement Swarm, either of which would have limited
the impact of our work. Linux has allowed to us to
implement Swarm in a real operating system that

is used by real people to do real work. With a lit-
tle more work in the areas of documentation, de-
velopment environment, and software engineering
practices, Linux has the potential to be an excellent
platform for systems research and development.

5 Acknowledgements

We would like to thank Tammo Spalink and Scott
Baker for their help in designing and implementing
Swarm. We would also like to thank our shepherd,
Stephen Tweedie, for his helpful comments and
suggestions. This work was supported in part by
DARPA contracts DABT63-95-C-0075 and N66001-
96-8518, and NSF grants CCR-9624845 and CDA-
9500991.

6 Availability

For more information about Swarm, please visit
http://www.cs.arizona.edu/swarm/.

References

[1] Wiebren de Jonge, M. Frans Kaashoek, and
Wilson C. Hsieh. The logical disk: A new ap-
proach to improving �le systems. In Proceed-
ings of the 14th Symposium on Operating Sys-
tems Principles, December 1993.

[2] Garth A. Gibson, David F. Nagle, Khalil Amiri,
Fay W. Chang, Eugene M. Feinberg, Howard
Gobio�, Chen Lee, Berend Ozceri, Erik Riedel,
David Rochberg, and Jim Zelenka. File server
scaling with network-attached secure disks. In
Proceedings of the 1997 ACM SIGMETRICS
International Conference on Measurement and
Modeling of Computer Systems, June 1997.

[3] John H. Hartman, Ian Murdock, and Tammo
Spalink. The Swarm scalable storage system.
In Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems
(ICDCS '99), June 1999.

[4] John H. Hartman and John K. Ousterhout.
The Zebra striped network �le system. ACM

Transactions on Computer Systems, 13(3):274{
310, August 1995.

[5] John S. Heidemann and Gerald J. Popek.
File system development with stackable lay-
ers. ACM Transactions on Computer Systems,
12(1):58{89, February 1994.

[6] Norman C. Hutchinson and Larry L. Peterson.
The x-kernel: An architecture for implementing
network protocols. IEEE Transactions on Soft-
ware Engineering, 17(1):64{76, January 1991.

[7] Bulter W. Lampson. Hints for computer system
design. Operating Systems Review, 17(5):33{
48, October 1983.

[8] David Patterson, Garth Gibson, and Randy H.
Katz. A case for redundant arrays of in-
expensive disks (RAID). SIGMOD Record,
17(3):109{116, September 1988.

[9] Mendel Rosenblum and John K. Ousterhout.
The design and implementation of a log-
structured �le system. ACM Transactions
on Computer Systems, 10(1):26{52, February
1992.

[10] Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon. Design
and implementation of the Sun Network File
System. In Proceedings of the Summer 1985
USENIX Conference, June 1985.

[11] Erez Zadok, Ion Badulescu, and Alex Shen-
der. Extending �le systems using stackable
templates. In Proceedings of the 1999 USENIX
Annual Technical Conference, June 1999.

