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Abstract require coordination of accesses by different threads to
shared state, even on a uniprocessor. In contrast, event-

This paper presents a new asynchronous progran‘based programs are structured as a collectiaratihack
ming library (ibasync-smpthat allows event-driven ap- functions which a main loop calls as 1/O events occur.
plications to take advantage of multiprocessors by runEvent-based programs execute callbacks serially, so the
ning code for event handlers in parallel. To control theprogrammer need not worry about concurrency control;
concurrency between events, the programmer can spefowever, event-based programs until now have been un-
ify a color for each event: events with the same color able to take full advantage of multiprocessors without
(the default case) are handled serially; events with dif-running multiple copies of an application or introducing
ferent colors can be handled in parallel. The programfine-grained synchronization.
mer can incrementally expose parallelism in existing The contribution of this paper ikbasync-smpa li-
event-driven applications by assigning different colors tobrary that supports event-driven programs on multipro-
computationally-intensive events that do not share mutaeessordibasync-smyis intended to support the construc-
ble state. tion of user-level systems programs, particularly network

An evaluation oflibasync-smplemonstrates that ap- Servers and clients; we show that these applications can
plications achieve multiprocessor speedup with little pro-achieve performance gains on multiprocessors by ex-
gramming effort. As an example, parallelizing the cryp- ploiting coarse-grained parallelisrbasync-smgs in-
tography in the SFS file server required about 90 linegended for programs that have natural opportunities for
of changed code in two modules, out of a total of aboutParallel speedup; it has no support for expressing very
12,000 lines. Multiple clients were able to read largefine-grained parallelism. The goalldfasync-smis con-
cached files from théibasync-smpSFS server running currency control mechanisms is to provide enough con-
on a 4-CPU machine 2.5 times as fast as from an unmodeurrency to extract parallel speedup without requiring the
ified uniprocessor SFS server on one CPU. Applicationgrogrammer to reason about the correctness of a fine-
without computationally intensive tasks also benefit: angrained parallel program.
event-driven Web server achieves 1.5 speedup on four Much of the effort required to make existing event-
CPUs with multiple clients reading small cached files. driven programs take advantage of multiprocessors is

in specifying which events may be handled in parallel.

libasync-smpprovides a simple mechanism to allow the
1 Introduction programmer to incrementally add parallelism to unipro-
cessor applications as an optimization. This mechanism
allows the programmer to assigealor to each callback.

To obtain high performance, servers must overlap . : .
: . . : . Callbacks with different colors can execute in parallel.
computation with 1/0. Programs typically achieve this Callbacks with the same color execute serially. By de-
overlap using threads or events. Threaded programs typ- Y- BY

ically process each request in a separate thread; wheﬁlu“' libasync-smpassigns all callbacks the same color,

one thread blocks waiting for 1/0, other threads can run>° existing programs continue to work correctly without

Threads provide an intuitive programming model and
can take advantage of multiprocessors; however, the

modification. As programmers discover opportunities to
safely execute callbacks in parallel, they can assign dif-
Yerent colors to those callbacks.

*Stanford University . ) . . .
fNew York University libasync-smpis based on thdibasync library [16].
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libasyncuses operating system asynchronous I/O facil-packet), and registers a further callback to handle com-
ities to support event-based programs on uniprocessorgletion of that particular I/O operation (perhaps the ar-
The modifications folibasync-smgnclude coordinating rival of a specific response packet). The event-driven ar-
access to the shared internal state of alibasyncmod-  chitecture allows the server to keep state for many con-
ules, adding support for colors, and scheduling callbackgurrent 1/O activities.
on multiple CPUs. Event-driven programs typically use a library to sup-
An evaluation oflibasync-smpdemonstrates that ap- port the management of events. Such a library maintains
plications achieve multiprocessor speedup with littlea table associating incoming events with callbacks. The
programming effort. As an example, we maodified thelibrary typically contains the main control loop of the
SFS [17] file server to usébasync-smp This server program, which alternates between waiting for events
uses more than 260 distinct callbacks. Most of the CPUand calling the relevant callbacks. Use of a common li-
time is spent in just two callbacks, those responsible fotbrary allows callbacks from mutually ignorant modules
encrypting and decrypting client traffic; this meant thatto co-exist in a single program.
coloring just a few callbacks was sufficient to gain sub-  An event-driven library’s control loop typically calls
stantial parallel speedup. The changes affected 90 linegeady callbacks one at a time. The fact that the callbacks
in two modules, out of a total of about 12,000 lines. never execute concurrently simplifies their design. How-

When run on a machine with four Intel Xeon CPUs, the ever, it also means that an event-driven program typically
modified SFS server was able to serve large cached filegannot take advantage of a multiprocessor.

to _multlple clients 2.5 times as fast as an unmodified o multiprocessor event-driven library described in
uniprocessor SFS server on one CPU. this paper is based on thiasyncuniprocessor library
Even servers without CPU-intensive operations suclyriginally developed as part of SFS [17, 16]. This sec-
as cryptography can achieve speedup approaching thgbn describes uniprocesstibasyncand the program-
offered by the operating system, especially if the O/S kerming style involved in using it. Existing systems, such
nel can take advantage of a multiprocessor. For exampleys named [7] and Flash [19], use event-dispatch mecha-
with a workload of multiple clients reading small cached nisms similar to the one described here. The purpose of
files, an event-driven web server achieves 1.5 speedup afijs section is to lay the foundations for Section 3's de-
four CPUs. scription of extensions for multiprocessors.
The next section (Section 2) introducésasyng on
which libasync-smgs based, and describes its support2.1 libasync
for uniprocessor event-driven programs. Section 3 and 4
describe the design and implementatiofitedisync-smp libasyncis a UNIX C++ library that provides both
and show examples of how applications use it. Section &n event dispatch mechanism and a collection of event-
uses two examples to show that usdilbhsync-smpge-  pased utility modules for functions such as DNS host
quires little effort to achieve parallel speedup. Section 6name lookup and Sun RPC request/reply dispatch [16].
discusses related work, and Section 7 concludes. Applications and utility modules register callbacks with
thelibasyncdispatcherlibasyncprovides a single main
loop which waits for new events with the UNIXe-
| ect () system call. When an event occurs, the main
loop calls the corresponding registered callback. Mul-
tiple modules can uskbasyncwithout knowing about
Many applications use an event-driven architectureeach other, which encourages modular design and re-
to overlap slow 1/O operations with computation. Input usable code.
from outside the program arrives in the form of events; |ibasync handles a core set of events as well as a
events can indicate, for example, the arrival of networkset of events implemented by utility modules. The core
data, a new client connection, completion of disk I/O, orevents include new connection requests, the arrival of
a mouse click. The programmer structures the prograngata on file descriptors, timer expiration, and UNIX sig-
as a set of callback functions, and registers interest imhals. The RPC utility module allows automatic parsing
each type of event by associating a callback with thatof incoming Sun RPC calls; callbacks registered per pro-
event type. gram/procedure pair are invoked when an RPC arrives.
In the case of complex event-driven servers, such a¥he RPC module also allows a callback to be registered
named [7], the complete processing of a client requesto handle the arrival of the reply to a particular RPC call.
may involve a sequence of callbacks; each consumes afhe DNS module supports non-blocking concurrent host
event, initiates some 1/0O (perhaps by sending a requestame lookups. Finally, a file /O module allows applica-

2 Uniprocessor Event-driven Design
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. . . . (0]
tions to perform non-blocking file system operations by:"
/1 listen on TCP port 80

sending RPCs to the NFS server in the local kernel; this int ard = i net socket (socx_strReam 80):

regi ster callback for new connections

. . . 11
allows non-blocking access to all file system operations, [deb(ald. READ, wap(accept_cb. af));
. . . amai n() ; start main | oo
including (for example) file name lookup. ’

Typical programs based dibasyncregister a callback !/ calted when a new connection arrives

accept _cb(int afd)

at every point at which an equivalent single-threaded set ) _
A . . A |ntfd—accep!(afd, L)
guential program might block waiting for input. The re-  str inBut(**); // new ref-counted buffer

Il register callback for incomng data

sult is that programs create callbacks at many points ir fac(id. REp wap(rea.cb. fd, fneuh));
the code. For example, the SFS server creates callbacks

call ed when data arrives

at about 100 points. rea_ch(int fd. str indui)
In order to make callback creation easjpasync — Looeid’iout 1o ihiur:
provides a type-checked facility similar to function- {5 res ot hack ¢

fdcb(fd, READ, NULL);

currying [23] in the form of thear ap() macro [16].
wrap() takes a function and values as arguments . e Seoueci (ol sorvername, 1ile):

and returns an anonymous function calledveap. If {1 resolve serverName and connect
w=wrap(fn, x, y), for example, then a subsequent |, oih are ssynenronous | _
callw( z) will result in a call tof n(x, y, z).Awrap ) else { wrap(connectcb. fd. Ti1e):

/1 do nothing; wait for nore calls to req_cb()

can be called more than onddgasyncreference-counts
wraps and automatically frees them in order to save apt
plications tedious book keeping. Similarly, the lIOrary tomec “ocrer oriom ra e tirec i sorver 1)
also provides support for programmers to pass referenCe- ;; u e tne request vhen the socket is ready
counted arguments to wrap. The benefivwfap() is e e oeb. tile, server fd)):
that it simplifies the creation of callback structures that’

carry state.

2.2 Event-driven Programming Figure 1: Outline of a web proxy that usisasync

Figure 1 shows an abbreviated fragment of a program
written usinglibasync The purpose of the application is
to act as a web proxy. The example code accepts TCP
connections, reads an HTTP request from each new coreallback to the next. If multiple clients connect to the
nection, extracts the server name from the request, corproxy, the result will be multiple callbacks waiting for
nects to the indicated server, etc. One way to view thanput from the client connections.
example code is that it is the result of writing a single se- \When a complete request has arrived, the proxy server
quential function with all these steps, and then splitting itneeds to look up the target web server’'s DNS host name
into callbacks at each point that the function would blockand connect to it. The functioncpconnect () per-
for input. forms both of these tasks. The DNS lookup itself in-
mai n() callsi net socket () to create a socket volves waiting for a response from a DNS server, per-
that listens for new connections on TCP port 80. UNIX haps more than one in the case of timeouts; thus the
makes such a socket appear readable when new cotibasyncDNS resolver is internally structured as a set
nections arrive, sorai n() calls thelibasyncfunction  of callbacks. Waiting for TCP connection establishment
fdcb() to register a read callback. Finallyai n() to complete also involves callbacks. For these reasons,
callsamai n() to enter thdibasyncmain loop. t cpconnect () takes a wrap as one of its argument,
The libasync main loop will call the callback wrap carries that wrap along in its own callbacks, and finally
with no arguments when a new connection arrives or¢alls the wrap when the connection process completes
af d. The wrap callsccept _cb() with the other ar-  Or fails. This style of programming is reminiscent of the
guments passed tr ap( ) , in this case the file descrip- continuation-passing style [21], and makes it easy for
tor af d. After allocating a buffer in which to accumu- Programmers to compose modules.
late client inputaccept cb() registers a callback to A number of applications are based ldrasync Fig-
reg-cb() to read input from the new connection. The ure 2 lists some of them, along with the number of dis-
server keeps track of its state for the connection, whichinct calls towr ap() in each program. These numbers
consists of the file descriptor and the buffer, by includ-give a feel for the level of complexity in the programs’
ing it in eachwr ap() call and thus passing it from one use of callbacks.
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Name | #Wraps | Lines of Code
SFS[17] 229 39871
SFSRO [13] 58 4836
Chord [22] 65 5445
CFS[10] 87 4960

Figure 2: Applications based dibbasync along with the
approximate number of distinct callsw ap() in each
application. The numbers are exclusive of the wraps cre
ated bylibasyncitself, which number about 30.

2.3 Interaction with multiprocessors

A single event-driven process derives no direct ben
efit from a multi-processor. There may be an indirect

speedup if the operating system or helper processes céﬁ

make use of the multiprocessor’s other CPUs.
It is common practice to run multiple independent

copies of an event-driven program on a multiprocessor

This N-copyapproach might work in the case of a web
server, since the processing of different client request
can be made independent. The N-copy approach do

not work if the program maintains mutable state that is
shared among multiple clients or requests. For example,
a user-levelfile server might maintain a table of leases fof

uler activations [2] could be used to dynamically deter-
mine the number of available CPUs.

There are a number of design challenges to making
the single address space approach work, the most inter-
esting of which is coordination of access to application
data shared by multiple callbacks. An effective concur-
rency control mechanism should allow the programmer
to easily (and incrementally) identify which parts of a
server can safely be run in parallel.

3.1 Coordinating callbacks

The design of the concurrency control mechanisms
in libasync-smps motivated by two observations. First,
system software often has natural coarse-grained paral-
lism, because different requests don’t interact or be-
cause each request passes through a sequence of inde-
pendent processing stages. Second, existing event-driven
programs are already structured as non-blocking units of
execution (callbacks), often associated with one stage of
the processing for a particular client. Together, these ob-

e§ervations suggest that individual callbacks are an appro-

Eriate unit of coordination of execution.

libasync-smpassociates aolor with each registered
allback, and ensures that no two callbacks with the same

client cache consistency. In other cases, running multipl«?Olor execute in parallel. Colors are arbitrary 32-bit val-

independent copies of a server may lead to a decreas®

in efficiency. A web proxy might maintain a cache of re-

cently accessed pages: multiple copies of the proxy coul

maintain independent caches, but content duplicated if

these caches would waste memory.

3 Multiprocessor Design

The focus of this paper iBbasync-smpa multipro-
cessor extension ¢ibasync The goal ofibasync-smyis

s. Application code can optionally specify a color for
each callback it creates; if it specifies no color, the call-
ack has color zero. Thus, by default, callbacks execute
equentially on a single CPU. This means that unmod-
ified event-driven applications written fdibasyncwill
execute correctly witlibasync-smp

The orthogonality of color to the callback’s code eases
the adaptation of existinigoasynebased servers. A typi-
cal arrangement is to run the code that accepts new client
connections in the default color. If the processing for dif-
ferent connections is largely independent, the program-
mer assigns each new connection a new unique color that

to execute event-driven programs faster by running call-applies to all the callbacks involved in processing that
backs on multiple CPUs. Much of the desigriiblsync-  connection. If a particular stage in request processing
smpis motivated by the desire to make it easy to adaptshares mutable data among requests (e.g. a cache of web
existing libasynebased servers to multiprocessors. Thepages), the programmer chooses a color for that stage
goal of thelibasync-smplesign is to allow both the par- and applies it to all callbacks that use the shared data, re-
allelism of the N-copy arrangement and the advantagegardless of which connection the callback is associated
of shared data structures. with.

A server based ofibasync-smpconsists of a single In some cases, application code may need to be re-
process containing one worker thread per available CPUstructured to permit callbacks to be parallelized. For ex-
Each thread repeatedly chooses a callback from a set @mple, a single callback might use shared data but also
runnable callbacks and runs it. The threads share an adhave significant computation that does not use shared
dress space, file descriptors, and signals. The library asdata. It may help to split such a callback; the first half
sumes that the number of CPUs available to the process isould use a specidibasync-smpcall (cpuchb()) to
static over its running time. A mechanism such as schedschedule the second half with a different color.

2003 USENIX Annual Technical Conference USENIX Association



PID 123 PID 123
while (Q.head) Color 1 7000

:M@/ Qahead (); ‘\

\

‘ CPU1 ‘ cpu1 | [ cpu2 J[ cpus | [ _cpuN

@) (b)

Figure 3: The single process event driven architecture (left) ankibh&ync-smprchitecture (right). Note that in the
libasync-smmrchitecture callbacks of the same color appear in the same queue. This guarantees that callbacks with
the same color are never run in parallel and always run in the order in which they were scheduled.

L]
R

| while (Qhead) ! | while (Qhead) |
head (:

o e @nead) | ;
| Qnead: || Qhead(; || Qnead: | | OQhead(i |
K : L L [ ! u

select () | b [ : : ; K

The color mechanism is less expressive than lockingmodules accidentally choose the same color. This might
for example, a callback can have only one color, whichreduce performance, but not correctness.
is equivalent to holding a single lock for the complete  |ibasync-smpprovides acpuch() function that
duration of a callback. However, experience suggestschedules a callback for execution as soon as a CPU is
that fine-grained and sophisticated locking, while it mayidle. Thecpucb() function can be used to register a
be necessary for correctness with concurrent threads, igallback with a color different from that of the currently
rarely necessary to achieve reasonable speedup on mxecuting callback. A common use opucb() is to
tiple CPUs for server applications. Parallel speedup ususplit a CPU-intensive callback in two callbacks with dif-
ally comes from the parts of the code that don’t needferent colors, one to perform a computation and the other
much locking; coloring allows this speedup to be easilyto synchronize with shared state. To minimize program-
captured, and also makes it easy to port existing eveniming errors associated with splitting an existing callback

driven code to multiprocessors. into a chain ofcpuch() callbacksJibasync-smmuar-
antees that all CPU callbacks of the same color will be
3.2 libasync-smpAPI executed in the order they were scheduled. This main-

tains assumptions about sequential execution that the
original single callback may have been relying on. Ex-

The API thatlibasync-smppresents differs slightly  ecution order isn't defined for callbacks with different
from that exposed biibasync Thecw ap() function  ¢gjors.

is analogous to ther ap() function described in Sec-
tion 2 but takes an optional color argument; Table 1
shows thew ap() interface. The color specified at the
callback’s creation (i.e. wheowr ap() is called) dic- )
tates the color it will be executed under. Embedding color  Consider the web proxy example from Sec-
information in the callback object rather than in an ar-ion 2. For illustrative purposes assume that the
gument tof dcb() (and other calls which register call- Par Sé.request () routine uses a large amount of
backs) allows the programmer to write modular functionsCPU time and does not depend on any shared data. We
which accept callbacks and remain agnostic to the colofPUld re-writer eq.cb() to parse different requests
under which those callbacks will be executed. Note thatn Parallel on different CPUs by callingpucb() and
colors are not inherited by new callbacks created insidé*SSigning the callback a unique color. Figure 4 shows
a callback running under a non-zero color. While colorthis change toreq.cb() . In this example only the
inheritance might seem convenient, it makes it very diffi-Par S€-request () workload is distributed across
cult to write modular code as colors “leak” into modules CPUS- As a further optimization, reading requests could

which assume that callbacks they create carry color zerd?® Parallelized by creating the read request ,Ca”baCk

Since colors are arbitrary 32-bit values, programmersusmg. cwrap() and sp,eC|fy|ng the requests file

have considerable latitude in how to assign colors. Onéjescnptor as the callback’s color.
g

reasonable convention is to use each request’s file de- )

scriptor number as the color for its parallelizable call-3-4 Scheduling callbacks

backs. Another possibility is to use the address of a data

structure to which access must be serialized; for exam- Scheduling callbacks involves two operations: placing

ple, a per-client or per-request state structure. Dependzallbacks on a worker thread’s queue and, at each thread,

ing on the convention, it could be the case that unrelatedeciding which callback to run next.

3.3 Example
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callback cwrap ((func *)(), argl, arg2, ..., argN, color c =0) // Create a callback object with colar.
void cpucb (callback cb) /l Add cb to the runnable callback queue immediately.

Table 1: Sample calls from tHibasync-smAPI.

Queue cpuch \ \ \ Queue
ond — cpuchl—~ cpuch2— L | fdch1l—~ fdch2l—~| select— o

Figure 5: The callback queue structurdiasync-smpcpuchb() adds new callbacks to the left of the dummy element
marked “cpucb Tail.” New I/O callbacks are added at “Queue Tail.” The scheduler looks for work starting at “Queue
Head.

/1 called when data arrives

reach(int fd. st ineuf) same color appear on the same queue, the library main-
read(ta. buf, ..); tains a mapping of colors to threads: thté element of
append input to inBuf; . . .
i?f/conpl et request i | nBuf) a 1024 element array indicates which thread should exe-
un-register cal ac .
Fdeb(1d, READ, NULL): cute all colors which are congruentto (mod 1024).
/1 parse the HITP request under color fd This array is initialized in such a way as to give the initial
cpuch (cwap (parse_request_cb, fd, inBuf, . . . .
e ¢ (col or)fd)) distribution described above.
el se
1 do nothing; wait for Eachlibasync-smpvorker thread uses a simple sched-

/1 nore calls to req_ch()

. uler to choose a callback to execute next from its queue.
The scheduler considers priority and callback/thread

/1 bel ow parsing done w color fd

parse_reach (int fd. str ineur) affinity when choosing colors; its design is loosely based
parse_request (inBuf, serverName, file); on that of the Linux SMP kernel [8]
J1 start conection 1o server The scheduler favors callbacks of the same color as the

tcpconnect (serverName, wap(connect_cbh, fd, file));

last callback executed by the worker in order to increase
performance. Callback colors often correspond to par-
ticular requests, sbbasync-smgends to run callbacks
Figure 4: Changes to the asynchronous web proxy to takom the same request on the same CPU. This processor-
advantage of multiple CPUs callback affinity leads to greater cache hit rates and im-
proved performance.

A callback is olaced hread’ . ‘ Whenlibasync-smystarts, it adds a “select callback”
ca ?Cd IS place I?n at rte)a S qt:)eue in onhe %o the run queue of the worker thread responsible for
two ways: due to a call twpuch() or because the color zero. This callback callsel ect () to detect I/O

Ii_basync—s.mpﬂain loop detgcted the arrival of an 1O, events. The select callback enqueues callbacks in the
timer, or signal event for which a callback had been reg'appropriate queue based on which file descripses
istered. A callbacks with colot is placed in the queue | ect () indicates have become ready

of worker threadc mod N where N is the number of Th lect callback miaht block th ker thread that
worker threads. This simple rule distributes callbacks ap- € select caflback mig ock the worker thread tha
calls it if no file descriptors are ready; this would pre-

proximately evenly among the worker threads. It also ; .
preserves the order of activation of callbacks with theéighzn?rf;/gig?r?se?rfgggregcﬁglI%tgfl: I;Zl;selgtlt(s)work
same color and may improve cache locality. - N .
it ker th g P K . y to poll without blocking. Ifsel ect () returns some file

. ?work?rt rea fhtasthque(;{e IS empt)gt ?Ntter;pts tct)descriptors, the select callback adds callbacks for those
steal work from another thread's queue [9]. Work mus descriptors to the work queue, and then puts itself back
be stolen at the granularity of all callbacks of the same . the queue. If no file descriptors were returnelpak-
color and the color to be stolen must no_t be executlnqng select callback is placed back on the queue instead.
currently to preserve guarantees on ordering of caIIback%e blocking select callback is only run if it is the only

¥.V'tlgm thf same tcholohbasygc-smp:.onsultls atper-threatd callback on the queue, and callsl ect () with a non-
I€l0 containing the currently running color to guarante€, o timeout. In all other aspects, it behaves just like the

the latter reqwrgment. non-blocking select callback.
When a color is moved from one thread to another, fu- The use of the two select callbacks along with work

ture Ca_‘”baCkS .Of that”gololi W'Ll Ee a35|gned| to thehne‘"’stealing guarantees that a worker thread never blocks in
queue, otherwise, caflbacks of the same color mig L3¢l ect () when there are callbacks eligible to be exe-
ecute in parallel. To ensure that all callbacks with the
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cuted in the system. good parallel speedup.

Figure 5 shows the structure of a queue of runnable The two sample applications are the SFS file server
callbacks. In general, new runnable callbacks are addednd a caching web server. SFS is an ideal candidate for
on the right, butcpuch() callbacks always appear to achieving parallel speedup usiligasync-smpit is writ-
the left of I/O event callbacks. A worker thread’s sched-ten usindgibasyncand performs compute intensive cryp-
uler considers callbacks starting at the left. The schedtographic tasks. Additionally, the SFS server maintains
uler examines the first few callbacks on the queue. Ifstate that can not be replicated among independent copies
among these callbacks the scheduler finds a callbackf the server. A web server is a less promising candidate:
whose color is the same as the last callback executed omeb servers do little computation and all state maintained
the worker thread, the scheduler runs that callback. Othby the server can be safely shared. Accordingly we ex-
erwise the scheduler runs the left-most eligible callbackpect good SMP speedup from the SFS server and a mod-

The scheduler favorspuch() callbacks in order to  €stimprovementin performance from the web server.
increase the performance of chainsagfucb() call- All tests were performed on a SMP server equipped
backs from the same client request. The state used bwith four 500 MHz Pentium Ill Xeon processors. Each
a cpucb() callback is likely to be in cache because processor has 512KB of cache and the system has
the creator of thepucb() callback executed recently. 512MB of main memory. The disk subsystem consists
Thus, early execution afpuchb() callbacks increases of a single ultra-wide 10,000 RPM SCSI disk. Load was
cache locality. generated by four fast PCs running Linux, each con-

nected to the server via a dedicated full-duplex gigabit
Ethernet link. Processor scaling results were obtained by

4 Implementation completely disabling all but a certain number of proces-
sors on the server.
libasync-smpis an extension ofibasyng the asyn- The server runs a slightly modified version of Linux

chronous library [16] distributed as part of the SFS file kernel 2.4.18. The modification removes a limit of 128
system [17]. The library runs on Linux, FreeBSD and on the number of new TCP connections the kernel will

Solaris. Applications written folibasyncwork without ~ dueéue awaiting an application’s callaccept () . This
modification withlibasync-smp limit would have prevented good server performance

The worker threads used Hipasync-smpto execute with large numbers of concurrent TCP clients.

callbacks are kernel threads created by a call to the
cl one() system call (under Linux),f or k() (under 9.1 HTTP server
FreeBSD) ot hr cr eat e() (under Solaris).
Although programs which uskbasync-smpshould To explore whether we can usébasync-smpto
not need to perform fine grained locking, thigasync-  achieve multiprocessor speedup in applications where
smpimplementation uses spin-locks internally to protectthe majority of computation is not concentrated in a
its own data structures. The most important locks protecsmall portion of the code, we measured the performance
the callback run queues, the callback registration tablepf an event-driven HTTP 1.1 web server.
retransmit timers in the RPC machinery, and the memory The web server uses an NFS loop-back server to per-
allocator. form non-blocking disk 1/0. The server process main-
The source code fdibasync-smps available as part tains two caches in its memory: a web page cache and
of the SFS distribution aht t p: // ww. f s. net on  a file handle cache. The former holds the contents of re-
the CVS branch mp-async. cently served web pages while the latter caches the NFS
file handles of recently accessed files. The page cache
is split into a small number (10) of independent caches
5 Evaluation to allow simultaneous access [6]. Both of the file handle
cache and the individual page caches must be protected

I . . from simultaneous access.
In evaluatinglibasync-smpwve are interested in both

its performance and its usability. This section evaluates

the parallel speedup achieved by two sample applicas 1.1 Pparallelizing the HTTP server

tions usingibasync-smpand compares it to the speedup

achieved by existing similar applications. We also evalu-Figure 6 illustrates the concurrency present in the web
ate usability in terms of the amount of programmer effortserver when it is serving concurrent requests for pages
required to modify existing event-driven programs to getnot in the cache. Each vertical set of circles represents a
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single callback, and the arrows connect successive call- & & & &
backs involved in processing a request. Callbacks that
can execute in parallel for different requests are indicated
by multiple circles. For instance, the callback that reads
an HTTP request from the client can execute in paral-
lel with any other callback. Other steps involve access
to shared mutable data such as the page cache; callbac
must execute serially in these steps.

When the server accepts a new connection, it colors
the callback that reads the connection’s request with its

file descriptor number. The callback that writes the re-_. 6 Th ¢ callback d when th
sponse back to the client is similarly colored. The share .t|)gure - 'he ssquenceho Z? acks exec]tjte when the
caches are protected by coloring all operations that ac,Pasync-smpven server handes a request fora page not
cess a given cache the same color. Only one callbac the cache. Nodes represent callbacks, arrows indicate
may access each cache simultaneously; however, tw at the node at the source scheduled the callback repre-
callbacks may access two distinct caches simultaneousl| ented by the node .at'the tip. Nodes on the same.vert!cal
pe are run under distinct colors (and thus potentially in

(i.e. one request can read a page cache while anoth . . W "
reads the file handle cache). The code that sends RPCs P@rallel). The stacked circles in the "Check page cache

the loop-back NFS server to read files is also serialized'20® indicate that a small number of threads (less than

using a single color. This was necessary since the unt_he number of concurrent requests) can access the cache

derlying RPC machinery maintains state about pendingimultaneously). Labels at the top of the figure describe

RPCs which could not safely be shared. The state main@aCh step of the processing.

tained by the RPC layer is a candidate for protection via
internal mutexes; if this state were protected within the
library the “read file” step could be parallelized in the

web server. To demonstrate that the web server can take advantage
While this coloring allows the caches and RPC layerof multiprocessor hardware, we tested the performance
to operate safely, it reveals a limitation of coloring as aof the parallelized web server on a cache-based work-
concurrency control mechanism. Ideally, we should al-load while varying the number of CPUs available to the
low any number of callbacks to read the cache, but limitserver. The workload consisted of 720 files whose sizes
the number of callbacks accessing the cache to one if th@ere distributed according to the SPECweb99 bench-
cache is being written. This read/write notion is not ex-mark [20]; the total size of the data set was 100MB
pressible with the current locking primitives offered by which fits completely into the server's in-memory page
libasync-smlthough they could be extended to include cache. Four machines simulated a total of 800 concurrent
it [4]. We did not implement read/write colors since di- clients. A single instance of the load generation client
viding the page cache into smaller, independent cacheig capable of reading over 20MB/s from the web server.
provided much of the benefit of read/write locks without Each client made 10 requests over a persistent connec-
requiring modifications to the library. tion before closing the connection and opening a new
The server also delegates computation to additionabne. The servers were started with cold caches and run
CPUs using calls tepuchb() . When parsing a request for 4 minutes under load. The server's throughput was
the server looks up the longest match for the pathnam#en measured for 60 seconds, to capture its behavior in
in the file handle cache (which is implemented as a haslthe steady state.
table). To move the computation of the hash function out Figure 7 shows the performance (in terms of total
of the cache color, we useapucb() callback to first  throughput) with different numbers of CPUs for the
hash each prefix of the path name, and then, in a callbackbasync-smpveb server. Even though the HTTP server
running as the cache color, search for each hash value inas no particularly processor-intensive operations, we
the file handle cache. can still observe noticeable speedup on a multiprocessor
In all, 23 callbacks were modified to include a color system: the server’s throughput is 1.28 times greater on
argument or to be invoked viacpuch() (or both). The two CPUs than it is on one and 1.5 times greater on four
web server has 1,260 lines of code in total, and 39 call$PUs.
to wrap. To provide an upper bound for the multiprocessor
speedup we can expect from thibasync-smgbased
web server we contrast its performance with N inde-

5.1.2 HTTP server performance

246 2003 USENIX Annual Technical Conference USENIX Association



60 60

40 40+ = Apache-MT

@ Apache-MP
m libasync-smp
m Flash-AMPED
o N-Copy

== libasync-smp
=== N-Copy

Throughput (MBytes/s)

20 20

Throughput (MBytes/s)

0 1 2 3 4
Number of CPUs

0 1 2 3 4
Number of CPUs

Figure 7: The performance of thkbasync-smpweb  Figure 8: The performance of several web servers on
server serving a cached workload and running on dif-mytiprocessor hardware. Shown are the throughput of
ferent number of CPUs relative to the performance Othelibasync-smipased server (light bars), Apache 2.0.36

one CPU (light bars). The performance of N copies of qark bars), and Flash (black bars) on 1,2,3 and 4 proces-
alibasyncweb server is also shown relative the perfor- gqg.

mance of the thdéibasyncserver’s performance on one
CPU (dark bars)
connections and checking caches. In the N-copy case, all
of these operations run in parallel. In addition, locking

pendent copies of a single process version of the weloverhead penalizes tlibasync-smserver: some data is
server (where N is the number of CPUs provided to thenecessarily shared across threads and must be protected
libasync-smgbased server). This single process versionby expensive atomic operations although the server has
is based on an unmodified versionlifasyncand thus  been written in such a way as to minimize such sharing.
does not suffer the overhead associated withibizesync- Because the N-copy server can perform all of these
smplibrary (callback queue locking, etc). Each copy of pperations in parallel and, in addition, extract additional
the N-copy server listens for client connections on a dif-parallelism from the operating system which locks some
ferent TCP port number. structures on a per-process basis, the performance of the

The speedup obtained by thibasync-smpserver is  N-copy server represents a true upper bound for any ar-
well below the speedup obtained by N copies of thechitecture which operates in a single address space.
libasyncserver. Even on a single CPU, titeasyncbased To provide a more realistic performance goal than
server achieved higher throughput thanlthasync-smp  the N-copy server, we compared tilsasync-smgserver
server. The throughput of tHébasyncserver was 35.4  with two commonly used HTTP servers. Figure 8 shows
MB/s while the libasync-smpserver’'s throughput was  the performance of Apache 2.0.36 (in both multithreaded
30.4 MB/s. and multiprocess mode) and Flash v8490914 on dif-

Profiling the single CPU case explains the base penaltferent numbers of processors. Apache in multiprocess
that libasync-smpincurs. While running thdibasync-  mode was configured to run with 32 servers. Apache-MT
smpweb server under load, roughly 35% of the CPU is a multithreaded version of the Apache server. It cre-
time is spent in user-level includiniipasync-smpand  ates a single heavyweight process and 32 kernel threads
the web server. Of that time, at least 37% is spent perwithin that process by callinglone. The number of
forming tasks needed only Hippasync-smpAtomic ref-  processes and threads used by the Apache servers were
erence counting uses 26% of user-level CPU time, and¢hosen to maximize throughput for the benchmarks pre-
task accounting such as enqueuing and dequeuing taskented here. Flash is an event-driven server; when run on
takes another 11%. The overall CPU time used for atomianultiprocessors it forks to create N independent copies,
reference counting and task management is 13%, whiclwvhere N is the number of available CPUs
explains thdibasync-smpweb server's decreased single  The performance of thébasync-smpHTTP server
CPU performance. is comparable to the performance of these servers: the

The reduced performance of tlibasync-smpserver  libasync-smpserver shows better absolute performance
is partly due to the fact that many of thibasync-smp than both versions of the Apache server and slightly
server’s operations must be serialized, such as acceptirigwer performance than N-copies of the Flash server.
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%0 5.2 SFS server

40 To evaluate the performance lihasync-smppn ex-
isting libasync programs, we modified the SFS file
server [17] to take advantage of a multiprocessor system.

The SFS server is a single user-level process. Clients

communicate with it over persistent TCP connections.

20 All communication is encrypted using a symmetric
stream cipher, and authenticated with a keyed crypto-
graphic hash. Clients send requests using an NFS-like
protocol. The server process maintains significant muta-
ble per-file-system state, such as lease records for client
cache consistency. The server performs non-blocking
disk 1/0 by sending NFS requests to the local kernel
NFS server. Because of the encryption, the SFS server is

Figure 9: The performance of the web server on a cache§PMpPute-bound under some heavy workloads and there-
workload as the number of concurrent clients is varied. 0re We expect that by usirlpasync-smpve can extract
significant multiprocessor speedup.

30

Throughput (MBytes/s)

10

T T T T T T T T ]
200 400 600 800 1000
Number of concurrent clients

5.2.1 Parallelizing the SFS server

We used thepct [5] statistical profiler to locate perfor-

These servers show better speedup tharilblasync-  mance bottlenecks in the original SFS file server code.
smpserver: Flash achieves 1.68 speedup on four CPUENcryption appeared to be an obvious target, using 75%
while thelibasync-smgserver is 1.5 times faster on four of CPU time. We modified the server so that encryption
CPUs. Because Flash runs four heavyweight processes,dperations for different clients executed in parallel and
is able to take advantage of many of the benefits of the Nindependently of the rest of the code. The resulting paral-
copy approach: as a result its speedup and absolute pdel SFS server spent about 65% of its time in encryption.
formance are greater than that of tiasync-smyserver.  The reduction from 75% is due to the time spent coor-
Although this approach is workable for a web server, indinating access to shared mutable data structures inside
applications that must coordinate shared state such repliitbasync-smpas well as to additional memory-copy op-
cation would be impossible. erations that allow for parallel execution of encryption.

Like the libasync-smgserver, Flash and multiprocess ~ The modifications to the SFS server are concentrated
Apache do not show the same performance achieved bin the code that encrypts, decrypts, and authenticates data
the N-copy server. Although these servers fully paral-sent to and received from the clients. We split the main
lelize access to their caches and do not perform locksend callback-function into three smaller callbacks. The
ing internally, they do exhibit some shared state. Forfirst and last remain synchronized with the rest of the
instance, the servers must serialize access taathe  server code (i.e. have the default color), and copy data
cept () system call since all requests arrive on a singleto be transmitted into and out of a per-client buffer. The
TCP port. second callback encrypts the data in the client buffer, and

The main reason to parallelize a web server is to inuns in parallel with other callbacks (i.e., has a different
crease its performance under heavy load. A key par@OlOl’ for each client). This involved modifying about 40
of the ability to handle heavy load is stability: non- lines of code in a single callback, largely having to do
decreasing performance as the load increases past théth variable name changes and data copying.
server’s point of peak performance. To explore whether Parallelization of the SFS server’s receive code was
servers based dibasync-smpan provide stable perfor- slightly more complex because more code interacts with
mance, we measured the web server’s throughput witlit. About 50 lines of code from four different callbacks
varying numbers of simultaneous clients. Each client sewere modified, splitting each callback into two. The first
lects a file according to the SPECweb99 distribution;of these two callbacks received and decrypted data in
the files all fit in the server’s cache. The server uses alparallel with other callbacks (i.e., with a different color
four CPUs. Figure 9 shows the results. The event-driverior every client), and usecpucb() to execute the sec-
HTTP server offers consistent performance over a wideond callback. The second callback remained synchro-
variety of loads. nized with the rest of the server code (i.e., had the de-
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hardware and operating system, we also measured the
total performance of multiple independent copies of the
15 originallibasyncSFS server code, as many separate pro-
cesses as CPUs. In practice, such a configuration would
not work unless each server were serving a distinct
104 == Libasync-smp file system. An SFS server maintains mutable per-file-
= N-Copy system state, such as attribute leases, that would require
shared memory and synchronization among the server
5] processes. This test thus gives an upper bound on the per-
formance that SFS witlibasync-smpould achieve.
The results of this test are labeled “N-copy” in Fig-
0 ure 10. The SFS server witlbasync-smpoughly fol-
0 . 2 8 4 lows the aggregate performance of multiple independent
Number of CPUs . .
server copies. The performance difference between the
f_Iibasync—smpbased SFS server and the N-copy server is
ue to the penalty incurred due to shared state maintained
one CPU. The light bars indicate the performance of th;gy the server, such as file lease data and user ID mapping
server usindibasync-smpdark bars indicate the perfor- tables.
mance ofn separate copies of the original server. Each Despite comparatively modest changes to the SFS

bar represents the average of three runs; the variatioh€"ver to expose parallelism, the server's parallel per-
from run to run was not significant. formance was close to the maximum speedup offered

by the underlying operating system (as measured by the
speedup obtained by multiple copies of the server).

fault color), and performed the actual processing of the

decrypted data.

Throughput (MBytes/s)

Figure 10: Performance of the SFS file server using di
ferent numbers of CPUs, relative to the performance o

5.3 Library Optimizations
5.2.2 Performance improvements

We measured the total throughput of the file server to all

clients, in bits per second, when multiple clients read @ T4p1e 2 shows how much the use of per-thread work
200 MByte file whose contents remained in the server’squeues improves performance. The numbers in the ta-
disk buffer cache. We repeated this experiment for dif-pe jngicate how fast a synthetic benchmark executes
ferent numbers of processors. This test reflects how SFg,sks. The benchmark program creates 16 callbacks with
is used in practice: an SFS client machine sends all of itg,ique colors. Each callback performs a small amount of
requests over a single TCP connection to the server.  compytation, and then registers a child callback of the

The bars labeled “libasync-smp” in Figure 10 show same color. The benchmark intentionally assigns colors
the performance of the parallelized SFS server on theo that all but one of the task queues are populated, in
throughput test. On a single CPU, the parallelized serveprder to explore the effects of work stealing. The bench-
achieves 96 percent of the throughput of the originalmark was run with four CPUs.

uniprocessor server. The parallelized server is 1.66, 2.20, The first line shows the task rate with a single task

and 2.5 times as fast as the original yniprocessor SeV§fueue shared among all the worker threads. The entry
on two, three and four CPUs, respectively. shows the task completion rate when using per-thread
Because only 65% of the cycles (just encryption) haverask queues. The increase in task completion rate is dra-
been parallelized, the remaining 35% creates a bottlematically higher due to better cache locality, and because
neck. In particular, when the remaining 35% of the codethere is no contention for the task-queue locks. The third
runs continuously on one processor, we can achieve fine shows the task completion rate when per-thread task
maximum utilization of 7%= = 2.85 processors. This free-lists are used in addition to per-thread queues. The
number is close to the maximum speedup (2.5) of the parfourth configuration adds work stealing between worker
allelized server. Further parallelization of the SFS Servethreads. Without work Stea"ng, tasks were never run on
code would allow it to incrementally take advantage of one of the four CPUs. Work stealing allows the worker
maore processors. thread on that CPU to find work, at the expense of in-
To explore the performance limits imposed by the creased contention for the other threads’ task queues.
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Library Configuration Tasks/ser It divides request processing into a series of well-defined

Base 61420 stages, connected by queues of requests. Within each
+ Per-thread Queues 240618 stage, one or more threads dequeue requests from input
+ Per-thread Task Object Freelists 293997 queue(s), perform that stage’s processing, and enqueue
+ Work Stealing 384765 the requests for subsequent stages. A thread can block (to

wait for disk I/O, for example), so a stage often contains

. . multiple threads in order to achieve 1/O concurrency.
Table 2: A synthetic benchmark shows improved task SEpDA take advant £ multi y_
processing rates as thread affinity optimizations are can lake advantage of mulliprocessors, since

a SEDA server may contain many concurrent threads.
added. : ) :

One of SEDA's primary goals is to dynamically manage

the number of threads in each stage in order to achieve
6 Related Work good I/0 and CPU concurrency but avoid unstable be-

havior under overload. Botlibasync-smpand SEDA

There is a large body of work exploring the relative use a mixture of events and concurrent threads; from a

merits of thread-based I/O concurrency and the eventprogrammer’s perspective, SEDA exposes more thread-
driven architecture [18, 11, 12, 15, 1]. This paper doeshased concurrency which the programmer may need to
not attempt to argue that either is superior. Instead, w&ynchronize, whildibasync-smyries to preserve the se-
present a technique which improves the performance ofial callback execution model.

the event-driven model on multiprocessors. The work cohort scheduling organizes threaded computation
described below also considers performance of eveninto stages in order to increase performance by increas-
driven software. ing cache locality, reducing TLB pressure, and reducing
Pai et al. characterized approaches to achievingranch mispredicts [14]. The staged computation model
concurrency in network servers in [19]. They eval- used by cohort scheduling is more general than the col-
uate a number of architectures: multi-process, multi-ored callback model presented here. However, the parti-
threaded, single-process event-driven, and asymmetrigoned stage scheduling policy is somewhat analagous to
multi-process event-driven (AMPED). In this taxonomy, coloring callbacks for parallel execution (the key corre-
libasync-smgould be characterized as symmetric multi- sponds to a callback color). Like SEDA, cohort schedul-
threaded event-driven; its main difference from AMPED ing exposes more thread-based concurrency to the pro-
is that its goal is to increase CPU concurrency rather thagyrammer. Cohort scheduling can also take advantage of
I/O concurrency. multiprocessor hardware.
Like libasync-smpthe AMPED architecture intro-
duces limited concurrency into an event driven sys-
tem. Under the AMPED architecture, a small number7 Conclusion
of helper processes are used to handle file I/O to over-
come the lack of non-blocking support for file I/O in  This paper describes a library that allows event-driven
most operating systems. In contragtasync-smpuses  programs to take advantage of multiprocessors with a
additional execution contexts to execute callbacks in parminimum of programming effort. When high loads make
allel. libasync-smmchieves greater CPU concurrency on multiple events available for processing, the library can
multiprocessors when compared to the AMPED archi-execute event handler callbacks on multiple CPUs. To
tecture but places greater demands on the programmebntrol the concurrency between events, the program-
to control concurrency. Like the AMPED-based Flashmer can specify @olor for each event: events with the
web serverlibasync-smpmust also cope with the is- same color (the default case) are handled serially; events
sue of non-blocking file I/Otibasync-smpses an NFS-  ith different colors can be handled in parallel. The pro-
loopback server to access files asynchronously. This algrammer can incrementally expose parallelism in exist-
lows libasync-smpto use non-blocking local RPC re- ing event-driven applications by assigning different col-
quests rather than blocking system calls. ors to computationally-intensive events that don't share
The Apache web server serves concurrent requestsiutable state.
with a pool of independent processes, one per active re- Experience withlibasync-smpdemonstrates that ap-
quest [3]. This approach provides both I/O and CPU conplications can achieve multi-processor speedup with lit-
currency. Apache processes cannot easily share mutabj: programming effort. Parallelizing the cryptography in
state such as a page cache. the SFS file server required about 90 lines of changed
The staged, event-driven architecture (SEDA) is acode in two modules, out of a total of about 12,000 lines.
structuring technique for high-performance servers [24] Multiple clients were able to read large cached files from
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the libasync-smpSFS server running on a 4-CPU ma- [10] DABEK, F., KAASHOEK, F., KARGER, D., MORRIS, R.,

chine 2.5 times as fast as from an unmodified uniproces-  AND SToICA, |. Wide-area cooperative storage with

sor SFS server on one CPU. Applications without com- ~ CFS. InProc. ACM Symposium on Operating Systems

putationally intensive tasks also benefit: an event-driven ~ Principles (SOSPjBanff, Canada, Oct. 2001), pp. 202—-

Web server achieves 1.5 speedup on four CPUs with mul- 215.

tiple clients reading small cached files relative to its per-[11] DRAVES, R., BERSHAD, B., RASHID, R., AND DEAN,

formance on one CPU. R. Using continuations to implement thread management
and communication in operating systems.Pioc. ACM
Symposium on Operating Systems Principles (SOSP)
(Oct. 1991), pp. 122-136.

[12] FORD, B., HIBLER, M., LEPREAU, J., MCGRATH, R.,
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