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Abstract

This paper proposes CUP, a protocol for performing
Controlled Update Propagation to maintain caches of
metadata in peer-to-peer networks. To moderate prop-
agation without imposing a global policy, CUP intro-
duces the notion of individual node investment return.
CUP allows each node to determine when it has eco-
nomic incentive to receive and to propagate updates. A
node participates in propagation only when the benefit
(investment return) it secures from receiving and propa-
gating updates outweighs its cost of propagation.

We extensively evaluate the CUP protocol in main-
taining caches of metadata for locating content in peer-
to-peer networks. We demonstrate that propagation of
updates reduces the average latency of content search
queries by as much as an order of magnitude across a
variety of workloads. We propose and evaluate the use
of popularity-based incentives to drive a node’s propa-
gation policy. These include incentives based on prob-
abilistic as well as history-based models of investment
return. Using these policies, we show that CUP nodes
recover their propagation overhead by a factor of 2 to
300, thus offering a lean but powerful protocol.

1 Introduction

Peer-to-peer networks are self-organizing distributed
systems where participating nodes both provide and
receive services from each other in a cooperative ef-
fort without distinguished roles as pure clients or pure
servers. Peer-to-peer networks have recently gained
much attention, primarily because of the great num-
ber of features they offer applications that are built on
top of them. These features include scalability, avail-
ability, fault tolerance, decentralized administration, and
anonymity.

Along with these desirable features has come an ar-
ray of technical challenges. For example, a fundamen-
tal problem in peer-to-peer systems is that of locating
content. Given the name or a set of keyword attributes
(metadata) of an object of interest, how do you locate
the object within the peer-to-peer network? Most peer-
to-peer networks return a set of metadata in response
to a search query. This metadata typically consists of

index entries that point to the locations of nodes that
serve replicas of the content of interest, but could also
include other information such as pricing, trust, con-
nection speed, or load information about these serving
nodes.

Recent work suggests that metadata-based search
queries for locating content can be a performance bot-
tleneck in peer-to-peer systems [CRSB02]. As a result,
designers of peer-to-peer systems suggest caching meta-
data at intermediate nodes that lie on the path taken by
a search query [gnu, SBK02, RFH*01, SMK*01]. We
refer to this as Path Caching with Expiration (PCX) be-
cause cached metadata entries typically have expiration
times after which they are considered stale and require a
new search.

PCX is desirable because it distributes query load for
popular metadata items across multiple nodes, it reduces
latency, and it alleviates hot spots. However, little atten-
tion has been given to how to maintain these interme-
diate caches. The cache maintenance problem is chal-
lenging because the peer-to-peer model assumes that the
global set of valid metadata will change constantly as
peer nodes join and leave the network, content is added
to and deleted from the network, and replicas of exist-
ing content are added to alleviate bandwidth congestion
at nodes holding the content. Nodes that cache meta-
data to serve queries in a more timely fashion need to
know about changes to the metadata to serve queries
better. Keeping cached metadata up-to-date therefore
requires tracking which metadata items need to be up-
dated, as well as tracking when interest in updating par-
ticular items at each cache has subsided to avoid unnec-
essary update propagation for the maintenance of these
items.

In this paper we propose a protocol for perform-
ing Controlled Update Propagation (CUP) to maintain
caches of metadata in a peer-to-peer network. CUP
asynchronously builds caches of metadata while answer-
ing search queries. It then propagates updates of meta-
data to maintain these caches. To moderate this prop-
agation, CUP introduces the notion of individual node
investment return. Rather than imposing a global prop-
agation policy, in CUP, nodes receive and propagate up-
dates only when they have personal economic incentive
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to do so. This occurs when the investment return (or ben-
efit) a node secures by propagation outweighs the cost of
propagation and thus, all overhead is recovered.

A node proactively receives updates for metadata
items from a neighbor only if the node has registered
interest with the neighbor. A node that proactively re-
ceives an update for a metadata item saves itself from
handling a follow-up query for the same item that, with-
out the application of the update, would otherwise miss
at the node. Handling a miss involves generating net-
work traffic to forward the query on to one’s neighbor(s)
and to receive a response. Therefore, from a node’s per-
spective, a received update is justified if the update saves
the node from the cost of handling queries. A node will
only have interest in receiving updates as long as it con-
tinues to receive queries for that item.

In CUP, each node uses its own incentive-based pol-
icy to determine when to cut off its incoming supply of
updates for an item. This way the propagation of up-
dates is moderated and does not flood the network. We
introduce several popularity-based incentives to drive a
node’s decisions to receive metadata updates. The first
class of policies is probabilistic where a node computes
the probability that a received update is justified using
an estimate of the number of nodes that depend on this
node for answers to queries for the item. The second
class is “history-based,” where the node compares the
ratio of query arrivals to update arrivals in a sliding win-
dow of update arrivals. These policies favor the receipt
of updates for popular items since these items generate
queries most often.

Similarly, nodes decide individually when to propa-
gate updates to interested neighbors. This is necessary
because a node may not always be able or willing to for-
ward updates to interested neighbors. In fact, a node’s
ability or willingness to propagate updates may vary
with its workload. A salient feature of CUP is that even
when a node’s capacity to push updates becomes zero,
nodes dependent on the node for updates fall back to
the case of PCX and incur no overhead.

We compare CUP against PCX under typical work-
loads that have been observed in measurements of real
peer-to-peer networks. We show that CUP reduces the
average query latency by as much as an order of mag-
nitude. CUP propagation overhead is more than com-
pensated for by its savings in cache misses. The cost
of saved misses can be two to 300 times the cost of
updates pushed. Finally, since nodes make propaga-
tion decisions independently and without coordination
from other nodes, CUP is simple to implement, which is
crucial for a peer-to-peer network with potentially thou-
sands of participants.

2003 USENIX Annual Technical Conference

2 Background Terminology

The following terms give some background on how
structured peer-to-peer networks perform their indexing
and lookup operations. These help clarify the descrip-
tion of CUP over structured networks in the next section.

Node: This is a node in the peer-to-peer network.
Each node periodically exchanges “keep-alive” mes-
sages with its neighbors to confirm their existence and
to trigger recovery mechanisms should one of the neigh-
bors fail.

Global Index: A fundamental operation in a peer-
to-peer network is that of locating content. The basic
idea in structured peer-to-peer networks is that a hashing
scheme maps keys (names of content files or keywords)
onto a virtual coordinate space using a uniform hash
function that evenly distributes the keys to the space.
The coordinate space serves as a global index that stores
index entries which are (key, value) pairs. The value in
an index entry is a pointer (typically an IP address) to
the location of a node that stores a replica of the content
associated with the entry’s key. There can be several in-
dex entries for the same key, one for each replica of the
content.

Authority Node: Each node N in a structured peer-to-
peer system is dynamically allocated a subspace of the
coordinate space (i.e., a partition of the global index) and
all index entries mapped into its subspace are owned by
N. We refer to N as the authority node of these entries.
Replicas of content whose key corresponds to an author-
ity node N send birth messages to N to announce they
are willing to serve the content. Depending on the ap-
plication supported, replicas might periodically send re-
fresh messages to indicate they are still serving a piece
of content. They might also send deletion messages that
explicitly indicate they are no longer serving the con-
tent. These deletion messages notify the authority node
to delete the corresponding index entry from its local in-
dex directory.

Local index directory: This is the subset of global in-
dex entries owned by a node.

Search Query: A search query posted at a node N is
a request to locate a replica for key K. The response to
such a search query is a set of index entries that point to
replicas that serve the content associated with K.

Search/Routing Mechanism: In structured networks,
when a node issues a query for key K, the query will be
routed along a well-defined path with a bounded number
of hops from the querying node to the authority node
for K. The routing mechanism is designed so that each
node on the path hashes K using the same hash function
to deterministically choose which of its neighbors will
serve as the next hop. The CUP protocol is aware of but
neither affects nor is affected by the underlying routing
mechanism.
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Query Path for Key K: This is the path a search query
for key K takes. Each hop on the query path is in the di-
rection of the authority node that owns K. If an interme-
diate node on this path has unexpired entries cached, the
path ends at the intermediate node; otherwise the path
ends at the authority node. The reverse of this path is the
Reverse Query Path for key K.

PCX: Recently, researchers have suggested caching
metadata with expiration times along the reverse query
path [gnu, SBK02, RFH*01, SMK*01] as the query re-
sponse is propagated down to the querying node.

Cached index entries: This is the set of index en-
tries cached by a node N in the process of passing up
queries and propagating down query responses for keys
for which N is not the authority. The set of cached index
entries and the local index directory are disjoint sets.

Lifetime of index entries: Each index entry cached at
anode has associated with it a lifetime during which it is
considered fresh and after which it is considered expired.

3 CUP Protocol Design

We give a brief overview of CUP and then describe the
components of the CUP protocol in detail.

3.1 CUP Overview

CUP is not tied to any particular search mechanism
and therefore can be applied in both networks that per-
form structured search as well as networks that per-
form unstructured search. As described above, in struc-
tured search, queries follow a well-defined path from the
querying node to an authority node that holds the in-
dex entries pertaining to the query [RFH101, RDOla,
SMK*01, ZKJO1]; in unstructured search, queries hap-
hazardly travel through the network via flooding or ran-
dom walks in search of index entries [gnu, LCCt02].

In the interest of space, in this paper we describe and
evaluate how CUP works to maintain caches of index
entries in structured peer-to-peer networks. The basic
idea is that every node in the peer-to-peer network main-
tains two logical channels per neighbor: a query chan-
nel and an update channel. The query channel is used
to forward search queries for objects of interest to the
neighbor that is closest to the authority node holding the
entries for those objects. The update channel is used to
forward query responses asynchronously to a neighbor
and to update index entries that are cached at the neigh-
bor.

Queries for an item travel “up” the query channels of
nodes along the path toward the authority node for that
item. Updates travel “down” the update channels along
the reverse path taken by a query. Figure 1 shows this
process. The process of querying for items and updating
cached index entries pertaining to those items forms a
CUP tree, similar to an application-level multicast tree

£
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Figure 1: CUP Query & Update Channels. A; and A,
are authority nodes for some objects. A query arriving
at node N, for an item for which A; is the authority
is pushed onto query channel Qn, to Ny. If Ny has a
cached unexpired entry for the item, it returns it to Ny
through Uy, . Otherwise, it forwards the query towards
A;. Any update for an item originating from authority
node A; flows downstream to IN; which may forward
it onto Ny through Up,. The analogous process holds
for queries at Ny for items for which A, is one of the
authority nodes.

where vertices are peer nodes interested in receiving up-
dates for cached index entries.

The query channel enables “query coalescing”. If a
node receives two or more queries for an item for which
it does not have a fresh response, the node pushes only
one instance of the query for that item up its query chan-
nel. This approach can have significant savings in traf-
fic, because bursts of queries for an item are coalesced
into a single request. Through simple bookkeeping (set-
ting an interest bit) the node registers the interest of its
neighbors so it knows which of its neighbors to push the
query response to when it arrives.

The cascaded propagation of updates from author-
ity nodes down the reverse paths of search queries has
many advantages. First, updates extend the lifetime of
cached entries allowing intermediate nodes to continue
serving queries from their caches without re-issuing new
queries. It has been shown that up to fifty percent of
content hits at caches are instances where the content
is valid but stale and therefore cannot be used without
first being re-validated [CKO1c]. These occurrences are
called freshness misses. Second, a node that proactively
pushes updates to interested neighbors reduces its load
of queries generated by those neighbors. Third, the fur-
ther down an update gets pushed, the shorter the distance
subsequent queries need to travel to reach a fresh cached
answer. As a result, search query latency is reduced.
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Reducing search query latency is important because the
user must wait until the search query has successfully re-
turned a set of index entries before choosing from which
replica node to download the content. Finally, updates
can help prevent errors by invalidating outdated entries.
For example, an update to delete a fresh but invalid in-
dex entry prevents a node from erroneously answering
queries using the entry before it expires.

3.2 CUP Update Types

We classify updates into three categories: deletes, re-
freshes, and appends. Deletes, refreshes, and appends
originate from the replicas of a piece of content and are
directed toward the authority node that owns the index
entries for that content.

Deletes are directives to remove a cached index en-
try. Deletes can be triggered by two events: 1) a replica
sends a message indicating it no longer serves a piece of
content to the authority node that owns the index entry
pointing to that replica. 2) The authority node notices a
replica has stopped sending “keep-alive” messages and
assumes the replica has failed. In either case, the author-
ity node deletes the corresponding index entry from its
local index directory and propagates the delete to inter-
ested neighbors.

Refreshes are directive messages that extend the life-
times of cached index entries. Refreshes that arrive at a
cache do not prevent errors as deletes do, but help pre-
vent freshness misses.

Finally, appends are directives to add index entries for
new replicas of content. These updates help alleviate
the demand for content from the existing set of repli-
cas since they add to the number of replicas from which
clients can download content.

3.3 CUP Node Bookkeeping

At each node, index entries are grouped together by key.
For each key K, the node stores a “Pending-Response”
flag that indicates whether the node is waiting to receive
a response to a query for K, and an interest bit vector.
Each bit in the vector corresponds to a neighbor and is
set or clear depending on whether that neighbor is or is
not interested in receiving updates for K.

Each node tracks the popularity or request frequency
of each non-local key K for which it receives queries.
The popularity measure for a key K can be the number
of queries for K a node receives between arrivals of con-
secutive updates for K or a rate of queries in a sliding
window of time. On an update arrival for K, a node uses
its popularity measure to re-evaluate whether it is ben-
eficial to continue caching and receiving updates for K.
We elaborate on this cut-off decision in Section 4.4.

Node bookkeeping in CUP involves no network over-
head and a few megabytes for hundreds of thousands of
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entries. With increasing CPU speeds and memory sizes,
this bookkeeping is negligible when we consider the re-
duction in query latency achieved.

3.4 Handling Queries in CUP

Upon receipt of a query for a key K, there are three basic
cases to consider. In each of the cases, the node updates
its popularity measure for K and sets the appropriate bit
in the interest bit vector for K if the query originates
from a neighbor. Otherwise, if the query is from a lo-
cal client, the node maintains the connection until it can
return a fresh answer to the client. To simplify the pro-
tocol description we use the phrase “push the query” to
indicate that a node pushes a query upstream toward the
authority node. We use the phrase “push the update” to
indicate that a node pushes an update downstream in the
direction of the reverse query path.

Case 1: Fresh Entries for key K are cached. The
node uses its cached entries for K to push the response
to the querying neighbor or local client.

Case 2: Key K is not in cache. The node adds K
to its cache and marks it with a Pending-Response flag.
The flag’s purpose is to coalesce bursts of queries for K
into one query. A subsequent query for K will be sup-
pressed since the node is already awaiting the response
for the first query of the burst. Query coalescing results
in significant network savings, for both PCX and CUP.
In some of the workloads we evaluate, coalesced queries
can form up to 90 percent of the total number of queries
that miss.

With every query push, a timer is set so that if the
query response is delayed, the node pushes up another
query.

Case 3: All cached entries for key K have expired.
The node must obtain the fresh index entries for K. If
the Pending-Response flag is set, the node does not need
to push the query; otherwise, the node sets the flag and
pushes the query.

3.5 Handling Updates in CUP

A key feature of CUP is that a node does not forward
an update for K to its neighbors unless those neighbors
have registered interest in K. Therefore, with some light
bookkeeping, CUP does not push unwanted updates.

Upon receipt of an update for key K there are three
cases to consider.

Case 1: Pending-Response flag is set. This means
that the update is a query response carrying a set of index
entries in response to a query. The node stores the index
entries in its cache, clears the Pending-Response flag,
and pushes the update to neighbors whose interest bits
are set and to local client connections open at the node.

Case 2: Pending-Response flag is clear. If all the
interest bits for K are clear, the node decides whether
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it wants to continue receiving updates for K. The node
bases its decision on K’s popularity measure. Each node
uses its own policy for deciding whether the popularity
of a key is high enough to warrant receiving further up-
dates for it. If the node decides K’s popularity is low,
it pushes a Clear-Bit control message to the sender of
the update to notify it that is no longer interested in K’s
updates. Otherwise, if the popularity is high or some of
the neighbor’s interest bits are set, the node applies the
update to its cache and pushes the update to those neigh-
bors.

Note that a node can choose not to push updates for a
key K to interested neighbors. This forces downstream
nodes to fall back to PCX for K. However, by choos-
ing to cut off downstream propagation, a node runs the
risk of receiving subsequent queries from its neighbors
which would cost it more, since it must both receive and
respond to these queries. Therefore, although each node
has the choice of stopping the update propagation at any
time, it is in its best interest to push updates for which
there are interested neighbors.

Case 3: Incoming update has expired. This could
occur when the network path has long delays and the
update does not arrive in time. The node does not ap-
ply the update and does not push it downstream. If the
Pending-Response flag is set then the node re-issues an-
other query for K and pushes it upstream.

3.6 Handling Clear-Bit Messages in CUP

A Clear-Bit control message is pushed by a node to in-
dicate to its neighbor that it is no longer interested in
receiving updates for a particular key from that neigh-
bor.

When a node receives a Clear-Bit message for key K,
it clears the interest bit for the neighbor from which the
message was sent. If the node’s popularity measure for
K is low and all of its interest bits are clear, the node
also pushes a Clear-Bit message for K. This propagation
of Clear-Bit messages toward the authority node for K
continues until a node is reached where the popularity
of K is high or where at least one interest bit is set.

Clear-Bit messages can be piggybacked onto queries
or updates intended for the neighbor, or if there are no
pending queries or updates, they can be pushed sepa-
rately.

3.7 Node Arrivals and Departures in CUP

The peer-to-peer model assumes that participating nodes
will continuously join and leave the network. CUP
must be able to handle both node arrivals and departures
seamlessly.

Arrivals. When a new node N enters a structured
peer-to-peer network, it becomes responsible for a por-
tion of another node M’s share of the global index

and becomes the authority node for those index entries
mapped into that portion. N, M, and all surrounding
affected nodes (old neighbors of M) update the book-
keeping structures they maintain for indexing and rout-
ing purposes. This is a necessary part of maintaining
the connectivity of any structured peer-to-peer network
when the set of nodes in the network changes.

For CUP, the issues at hand are updating the interest
bit vectors of the affected nodes and deciding what to do
with the index entries stored at M. This may require bit
vector translation. For example, if a node that previously
had M as its neighbor now has N as its neighbor, the
node must make the bit ID that pointed to M now point
to N.

To deal with its stored index entries, M could sim-
ply not hand over any of its entries to N. This would
cause entries at some of M’s previous neighbors to ex-
pire and subsequent queries from those nodes would es-
tablish new update propagations from N. Alternatively,
M could give a copy of its stored index entries to N.
Both N and M would then go through each entry and
patch their bit vectors. Both solutions are viable. The
first solution requires no bit translation but temporarily
loses the CUP update benefits and behaves like PCX for
the untransferred entries. The second solution gets the
CUP benefits for the transferred entries, at the expense
of transferring them and performing the bit vector patch-
ing. The metadata and bit vectors for thousands of index
entries can be compressed into a few kilobytes and can
be piggybacked onto messages that are already being ex-
changed to reconfigure the topology. Once the transfer
occurs, the bit vector patching is an in-memory, local
operation that with today’s CPU and memory capacities
takes only a few seconds for a few million entries.

Departures. Node departures can be either grace-
ful (planned) or ungraceful (due to sudden failure of a
node). In either case the peer-to-peer index mechanism
dictates that a neighboring node M take over the depart-
ing node N’s portion of the global index. To support
CUP, the interest bit vectors of all affected nodes must
be patched to reflect N’s departure.

If N leaves gracefully, N can choose not to hand over
to M its index entries. Any entries at surrounding nodes
that were dependent on N to be updated will simply ex-
pire and subsequent queries will establish new update
propagations. Again, alternatively N may give M its
set of entries. M must then merge its own set of in-
dex entries with N’s, by eliminating duplicate entries and
patching the interest bit vectors as necessary. If N’s de-
parture is due to a failure, there can be no hand-over of
entries and all entries in the affected neighboring nodes
will expire as in PCX.
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4 Evaluation

The main goal of CUP is to continuously harvest the
benefits of PCX. In doing so, there are two key perfor-
mance questions to address. First, by how much does
CUP reduce the average query latency? Second, how
much overhead does CUP incur in providing this reduc-
tion?

We first define the notion of a CUP tree. We use this
definition to present a cost model based on economic in-
centive used by each node to determine when to cut off
the propagation of updates for a particular key. We give
a simple analysis of how the cost per query is reduced
(or eliminated) through CUP. We then describe our ex-
perimental results comparing the performance of CUP
with that of PCX.

4.1 CUP Trees

Figure 2 shows a snapshot of CUP in progress for a net-
work with seven peer nodes. The left half of each node
shows the set of keys for which the node is the authority.
The right half shows the set of keys for which the node
has cached index entries as a result of handling queries.
For example, node C owns K1 and K2 and has cached
entries for K3, K4, and K5.

The process of querying for a key K and updating
cached index entries pertaining to K forms a tree which
we refer to as the Real CUP Tree. This tree, denoted
R(A,K), is similar to an application-level multicast tree
and has as its root the authority node A for K. The ex-
act structure of R(A,K) depends on the actual workload
of queries for K. The branches of the tree are formed
by the paths traveled by queries from other nodes in the
network. For example, in Figure 2, the tree R(C,K1) has
grown branch {F, D, C} as the result of a query for K1
at node F. Updates for K1 originate at the root (authority
node) C and travel down the tree to interested nodes A,
D, E, and F. The entire workload of queries for all keys
results in a collection of criss-crossing Real CUP Trees
with overlapping branches.

We define the Spanning CUP Tree for key K, S(A,K)
as the tree that contains all possible query paths for K.
This is the tree that would be generated by issuing a
query for K from every node in the peer-to-peer network.
For example, in Figure 2, S(C,K1) is rooted at C (level
0), has nodes A, B, D, E at level 1, and nodes F and G at
level 2.

4.2 Cost Model

Consider a node N within spanning tree S(A,K) that is at
distance D from A. We define the cost per query for K
at N as the number of hops in the peer-to-peer network
that must be traversed to return an answer to N. When
a query for K is posted at N for the first time, it travels
toward A. If none of the nodes between N and A have a
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Figure 2: CUP Trees

fresh response cached, the cost of the query at N is 2D:
D hops up and D hops for the response to travel down. If
a node on the query path has a fresh answer cached, the
cost is less than 2D. Subsequent queries for K at N that
occur within the lifetime of the entries now cached at N
have a cost of zero. As a result, caching at intermediate
nodes can significantly lower average query latency.

We can gauge the performance of CUP by calculat-
ing the percentage of updates CUP propagates that are
“justified”, i.e., those whose cost is recovered by a sub-
sequent query. Updates for popular keys are likely to be
justified more often than updates for less popular keys.

A refresh update is justified if a query arrives some-
time between the previous expiration of the cached entry
and the new expiration time supplied by the refresh up-
date. An append update is justified if at least one query
arrives between the time the append is performed and
the time of its expiration. Finally, a deletion update is
justified if at least one query arrives between the time
the deletion is performed and the expiration time of the
entry to be deleted.

For each update, let T be the critical time interval de-
scribed above during which a query must arrive in order
for the update to be justified. Consider a node N at dis-
tance D from A in R(A,K). An update propagated down
to N is justified if at least one query is posted within 7’
time units at any of the nodes of the spanning subtree
S(N,K). For example, if we assume a Poisson query ar-
rival rate A of one query per second at nodes in S(N,K)
and T' = 6, then the probability that an update arriving
at N is justifiedis 1 — e T = 1 — e~1*6 = 99,

The benefit of a justified CUP update goes beyond just
recovery of its cost. For each hop a justified update w is
pushed down to the root N of subtree S(N,K), exactly
one hop is saved since without u’s propagation, entries
in all nodes of S(N,K) will expire and the first subse-
quent query landing at a node N; in S(N,K) within T'
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time units will cause two hops, from N to its parent and
back. This halves the number of hops traveled between
N and its parent which in turn reduces query latency. In
fact all subsequent queries posted somewhere in S(N,K)
within 7" time units will benefit from N receiving u. The
cumulative benefit an update u brings to subtree S(N,K)
increases when N is closer to the authority node since
there is a higher probability that queries will be posted
within S(N,K). We define “investment return” as the cu-
mulative savings in hops achieved by pushing a justified
update to node N. The experiments show that the return
is large even when CUP’s reduction in latency is modest
and is substantially large when the latency reduction is
high.

4.3 Experiment Setup and Metrics

We evaluate CUP by comparing it with PCX with coa-
lescing. We perform our simulation experiments using
models derived from measurements of real peer-to-peer
workloads [Mar02, SGG02, LCC*02, Sri01].

For our experiments, we simulate a content-
addressable network (CAN) [RFHT01] using the Stan-
ford Narses simulator [MGBO1]. Again, we stress that
CUP is independent of the specific search mechanism
used by the peer-to-peer network and can be used as a
cache maintenance protocol in any peer-to-peer network.

As in previous studies (e.g., [RFHT01, SMK*01,
RDO1b, CRSB02, RKCDO01, RD0O1a, ZKJ01]), we mea-
sure CUP performance in terms of the number of hops
traversed in the overlay network. Miss cost is the total
number of hops incurred by all misses, i.e. freshness
and first-time misses. CUP overhead is the total num-
ber of hops traveled by all updates sent downstream plus
the total number of hops traveled by all clear-bit mes-
sages upstream. (We assume clear-bit messages are not
piggybacked onto updates. This somewhat inflates the
overhead measure.) Total cost is the sum of the miss
cost and all overhead hops incurred. Note that in PCX,
the total cost is equal to the miss cost. Average query la-
tency is the average number of hops a query must travel
to reach a fresh answer plus the number of hops the an-
swer must travel downstream to reach the node where
the query was posted. For coalesced queries, we count
the number of hops each coalesced query waits until
the answer arrives. Thus, the average latency is over
all queries, including hits, coalesced misses and non-
coalesced misses.

We compute investment return (IR) as the overall ratio
of saved miss cost to overhead incurred by CUP:

IR — MissCostpcx — MissCostcyp

QOverheadCostcyp

Thus, as long as IR is greater than or equal to 1, CUP
fully recovers its cost.

The simulation takes as input the number of nodes in
the overlay peer-to-peer network, the number of keys
owned per node, the distribution of queries for keys,
the distribution of query inter-arrival times, the num-
ber of replicas per key, the lifetime of index entries in
the system, and the fraction of an entry’s lifetime re-
maining at which refreshes for the entry are pushed out
from the authority node. We present experiments for
n = 2F nodes where k ranges from 7 to 14. After a
warm-up period for allowing the peer-to-peer network to
connect, the measured simulation time is 3000 seconds.
Since both Poisson and Pareto query inter-arrival dis-
tributions have been observed in peer-to-peer environ-
ments [LCCt02, Mar02], we present experiments for
both distributions. Nodes are randomly selected to post
queries. We also performed experiments where queries
are posted at particular “hot spots” in the network and
found similar results. These, as well as other results
which we omit in the interest of space, can be found
elsewhere [Rou02].

We present results for experiments where index entry
lifetimes are five minutes and refreshes occur one minute
before expiration. We choose these values to reflect the
dynamic and unpredictable nature of peer-to-peer net-
works. It has been found that the median user session du-
ration of a peer is approximately sixty minutes [SGGO02].
However, content may become available on a peer or be
deleted from the peer at any point during the user ses-
sion. This results in actual content availability that is on
the order of a few minutes [CLL02]. We therefore take
the safe approach of validating that the content is still
available every few minutes. This is also in line with
designers of structured peer-to-peer networks who ad-
vocate periodic refreshes (keep-alive messages) between
the peers storing replicas of a particular content and the
authority node for that content [RFHT01, RDO1a]. If
there were some way to ensure that lifetimes of entries
could be set for longer, then we find that CUP continues
to provide benefits, albeit reduced, since PCX would in-
cur fewer misses. Unfortunately, making such guaran-
tees would require placing a global availability policy
across autonomous peer nodes.

We present six sets of experiments. First, we compare
the effect on CUP performance of different incentive-
based cut-off policies and compare the performance of
these policies to that of PCX. Second, using the best cut-
off policy of the first experiment, we study how CUP
performs as we scale the network. Third, we study
the effect on CUP performance of varying the topology
of the network by increasing the average node degree,
thus decreasing the diameter of the network. Fourth, we
study the effect on CUP performance of limiting the out-
going update capacities of nodes. Fifth, we study how
CUP performs when queries arrive in bursts, as observed
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Table 1: Total cost per key per query rate for varying cut-off policies.

Policy 1 g/s Total Cost | 10 q/s Total Cost | 100 g/s Total Cost | 1000 g/s Total Cost
PCX 61568 (1.00) 154502 (1.00) 476420 (1.00) 2296869 (1.00)
Linear, @ = 0.25 55475 (0.90) 72022 (0.47) 49341 (0.10) 196650 (0.09)
Linear, « = 0.10 41281 (0.67) 34311 (0.22) 47132 (0.10) 196650 (0.09)
Logarithmic, @ = 0.5 31658 (0.51) 27311 (0.18) 47785 (0.10) 196797 (0.09)
Logarithmic, @ = 0.25 30683 (0.50) 24695 (0.16) 48330 (0.10) 196797 (0.09)
Second-chance 16958 (0.28) 23702 (0.15) 48330 (0.10) 196797 (0.09)
Optimal push level 15746 (0.26) 23696 (0.15) 45325 (0.095) 153309 (0.07)

with Pareto inter-arrivals. These five experiments show
the per-key benefits of CUP when keys are queried for
according to a uniform distribution. In the last experi-
ment, we show the overall benefits of CUP when keys
are queried for according to a Zipf-like distribution.

4.4 Varying the Cut-Off Policies

As discussed in Section 4.2, the propagation of updates
is beneficial only if the updates are justified; when a
node’s incentive to receive updates for a particular key
fades, continuing update propagation to that node simply
wastes network bandwidth. Therefore, each node needs
an independent and decentralized way of controlling its
intake of updates.

We base a node’s incentive to receive updates for a key
on the popularity of the key at the node. The more popu-
lar a key is, the more incentive there is to receive updates
for that key, because updates for that key are more likely
to be justified. For a key K, the popularity is the number
of queries a node has received for K since the last update
for K arrived at the node. (Note that the popularity met-
ric is node-dependent and could be defined in another
way such as with a moving average of query arrivals for
K)

We examine two types of thresholds against which to
test a key’s popularity when making the cut-off decision:
probability-based and history-based.

A probability-based threshold uses the distance of a
node N from the authority node A to approximate the
probability that an update pushed to N is justified. Per
our cost model of section 4.2, the further N is from A, the
less likely an update at N will be justified. We examine
two such thresholds, a linear one and a logarithmic one.
With a linear threshold, if an update for key K arrives at
a node at distance D and the node has received at least
a.D queries for K since the last update for some constant
a > 0, then K is considered popular and the node con-
tinues to receive updates for K. Otherwise, the node cuts
off its intake of updates for K by pushing up a clear-bit
message. The logarithmic popularity threshold is simi-
lar. A key K is popular if the node has received a lg(D)
queries since the last update. The logarithmic threshold
is more lenient than the linear in that it increases at a
slower rate as we move away from the root.
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A history-based threshold is one that is based on the
recent history of the last n update arrivals at the node. If
within n updates, the node has not received any queries,
then the key is not popular and the node pushes up a
clear-bit message. A specific example of a history-based
policy is the “second-chance policy”, n = 2. When an
update arrives, if no queries have arrived since the last
update, the policy gives the key a “second chance” and
waits for the next update. If at the next update, still
no queries for K have been received, the node pushes
a clear-bit message. The philosophy behind this policy
is that pushing these two updates down from the node’s
parent costs the same as one query miss occurring at the
node, since a query miss incurs one hop up to the par-
ent and one hop down. This means that just one query
arriving at the node between the first update and the ex-
piration of the second update is enough to recover their
propagation cost.

Table 1 compares PCX with CUP using the linear and
logarithmic polices for various « values, with CUP using
second chance, and with a version of CUP that does not
use any cut-off policy but instead pushes updates until
the optimal push level is reached. To determine the op-
timal push level we make CUP propagate updates to all
querying nodes that are at most p hops from the author-
ity node. By varying the push level p, we determine the
level which achieves minimum total cost. This is shown
by the row labeled “optimal push level” and used as a
baseline against which to compare PCX and CUP with
the cut-off policies described.

In Table 1 we show the cut-off policy results for a net-
work of 1024 nodes and Poisson A rates of 1, 10, 100
and 1000 queries per second. In each table entry, the
first number is the total cost and the number in paren-
theses is the total cost normalized by the total cost for
PCX. First, we see that regardless of the cut-off pol-
icy used, CUP outperforms PCX. Second, for the lower
query rates, the performance of the linear and the loga-
rithmic policies is greatly affected by the choice of pa-
rameter o, whereas for the higher query rates, the choice
of o is less dramatic. These results show that choosing a
priori an « value for the linear and logarithmic policies
that will perform well across all workloads is difficult.

For the higher query rates, the history-based second-

USENIX Association



Table 2: Per-Key Comparison of CUP with PCX for varying network sizes, Poisson arrivals of 1 query/second.

Network Size 128 256 512 1024 2048 4096 8192 16384
CUP/PCX MissCost 0.10 0.10 0.15 0.17 0.19 0.22 0.20 021
PCX AvgLat (0) 151277 | 2.67(3.96) | 449 (5.92) | 6.74(8.25) | 1101 (12.11) | 1747 (1749) | 29.29 (27.79) | 45.56 (4031)
CUP AvgLat (0) 021 (1.10) | 046 (1.60) | 125(3.19) | 2.17 (437 2.18(7.13) | 7.70(11.28) | 11.48(15.08) | 19.17 (23.75)
TR/CUPOvhd Hop 415 2.88 6.29 783 1.3 16.14 24.85 35.98
chance policy performs comparably to the probability- YT
based policies, and for the lower query rates outperforms 1000 ¢ 120 ggtg; e
the probability-based policies. In fact, across all rates, 1000 g/stkey --e--
the second-chance policy achieves a total cost very near - R e ——- e
the optimal push level total cost. In all remaining ex- 2 100 }
. . o
periments, we use second-chance as the cut-off policy. £
£
. k7]
4.5 Scaling the Network g Ll
In this section we study CUP performance as we scale
the size of the network.
Table 2 compares CUP and PCX for network sizes be-

tween 27 = 128 and 2'* = 16384 nodes for a Poisson A
rate of 1 query per second. The first row shows the CUP
miss cost as a fraction of the PCX miss cost. The second
and third rows show the average query latency in hops
for PCX and CUP respectively. The number in parenthe-
ses is the standard deviation. As can be observed, CUP
reduces average query latency respectively by 9.77, and
17.81, and 26.39 hops for the 4096, 8192, and 16384
node networks. This is a substantial reduction in aver-
age query latency that improves with increasing network
size. Comparing the standard deviations of CUP and
PCX we see that CUP also has less variability around
its average query latency.

The fourth row in Table 2 shows the IR per overhead
push performed by CUP. We observe a growth in the rate
of return with 16.14, 24.85, and 35.98 for the last three
network sizes. These numbers are quite strong, consid-
ering that the overhead is completely recovered.

Figure 3 shows the IR of CUP versus network size for
Poisson with A = 1, 10, 100, and 1000 queries per sec-
ond. From the figure we see that for a particular network
size, if we increase the query rate the IR increases, and
for a particular query rate, if we increase the network
size, the IR also increases. This demonstrates that CUP
scales to higher query rates and higher network sizes.

4.6 Varying the Network Topology

In general, different peer-to-peer networks exhibit dif-
ferent topologies and thus different network diameters.
The particular topology created depends on the protocol
the peer nodes use to join the network and to keep it con-
nected. The CAN design is based on a d-dimensional
coordinate space, with our experiments thus far having
been for d = 2. Increasing the number of dimensions
results in a topology where nodes have higher degree

10000

1000
Number of Nodes

Figure 3: IR vs. net size. (Log-scale axes.)

and the network has smaller diameter. Smaller diameter
means that the average path length of a query on a miss
is shorter for both PCX and CUP, which implies that the
benefits of CUP may be less pronounced. On the other
hand, CUP total update cost also decreases since there
will be shorter distances for updates to travel. As a re-
sult, we find that CUP continues to provide significant
savings in terms of both overall total cost, latency reduc-
tion, and IR per overhead push.

In this set of experiments we study the effect of in-
creasing the number of CAN dimensions on a network
with 1024 nodes. The dimensions chosen for this exper-
iment are 2, 3, 5, and 10. These dimensions result in
network diameters of 24, 12, 8, and 8 respectively. (For
a network of 1024 nodes, increasing beyond five dimen-
sions does not reduce the network diameter any further.)
The queries arrive according to a Poisson process with A
rate of 1, 10, 100, and 1000 queries per second. Figure
4 shows the IR versus the query rate for each dimension.
From the figure we see that the curves for dimensions
5 and 10 are very similar because they have equal net-
work diameters. We also see that dimension 2 achieves
the highest IR across all query rates, and that the IR de-
creases with dimension. However, even for the higher
dimensions (5 and 10), the IR is at least 2.1 for 1 g/s and
increases to 36.6 for 1000 g/s.

4.7 Varying Outgoing Update Capacity

Our experiments thus far show that CUP outperforms
PCX under conditions where all nodes have full outgo-
ing update capacity. A node with full outgoing capac-
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Figure 4: IR vs. query rate, varying dimensions. (Log-
scale axes.)

ity is a node that can and does propagate all updates for
which there are interested neighbors. In reality, an indi-
vidual node’s outgoing capacity will vary with its work-
load, network connectivity, and willingness to propagate
updates. In this section we study the effect on CUP per-
formance of reducing the outgoing update capacity of
nodes.

We present an experiment run on a network of 1024
nodes. In this experiment, after a five minute warm up
period, we randomly select twenty percent of the nodes
and reduce their outgoing capacity to a fraction of their
full capacity. These nodes operate at reduced capacity
for ten minutes after which they return to full capacity.
After another five minutes for stabilization, we randomly
select another set of twenty percent of the nodes and
reduce their capacity for ten minutes. We proceed this
way for the entire 3000 seconds during which queries
are posted, so capacity loss occurs three times during
the simulation.

Figure 5 shows the ratio of CUP total cost to PCX total
cost versus capacity c for this experiment and for four
different Poisson query rates A. The capacity ¢ ranges
from 0, implying that no updates are propagated, to 1,
where nodes have full outgoing capacity. ¢ = .25 means
that a node is only capable/willing of pushing out one-
fourth the updates it receives.

Note that even when one fifth of the nodes do not
propagate any updates, the total cost incurred by CUP
is about half that of PCX. As the outgoing capacity in-
creases, the total cost decreases smoothly until ¢ = 1
where CUP achieves its full potential. A key observa-
tion from these experiments is that CUP’s performance
degrades gracefully as the capacity c decreases. This is
because reduction in update propagation also results in
reduction of its associated overhead. Therefore, the ca-
pacity reduction should be seen as a missed opportunity
for higher returns rather than as an overall loss. Clearly
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Figure 5: Total cost ratio vs. update propagation capac-
ity

though, CUP achieves its full potential when all nodes
have maximum propagation capacity.

4.8 Pareto Query Arrivals

Recent work has observed that in some peer-to-peer net-
works, query inter-arrivals exhibit burstiness on several
time scales [Mar02], making the Pareto distribution a
good candidate for modeling these inter-arrival times.
Therefore, in this section we compare CUP with PCX
under Pareto inter-arrivals.

The Pareto distribution has two parameters associated
with it: the shape parameter o > 0 and the scale parame-
ter ¥ > 0. The cumulative distribution function of inter-
arrival time durations is F'(z) = 1— ((x_’in) )“. This dis-
tribution is heavy-tailed with unbounded variance when
a < 2. For a > 1, the average number of query arrivals
per time unit is equal to (a;l). For a <= 1, the ex-
pectation of an inter-arrival duration is unbounded and
therefore the average number of query arrivals per time
unit is 0.

We ran experiments for a range of o and k values
but can only present representative results here. Table 3
compares CUP with PCX for a equal to 1.25 and 1.1
respectively for a network of 1024 nodes. We set the
value of k in each run so that the average rate of arrivals
@ equals 1, 10, 100, and 1000 queries per second to
match the A rate of the Poisson experiments in previous
sections.

As «a decreases toward 1, query interarrivals be-
come more bursty. Queries arrive in more frequent and
more intense bursts, followed by idle periods of varying
lengths. If an idle period occasionally falls in the heavy-
tail portion of the Pareto distribution (i.e., it is a very
long idle period), then second chance CUP propagation
cost could be unrecoverable, since the next query may
arrive long after the cached entry has expired. However,
CUP does well under bursty conditions because when
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Table 3: Per-Key, Per-Query Rate Comparison of CUP with PCX for Pareto arrivals.

Average Rate (qg/s) 1 1 10 10 100 100 1000 1000
Pareto rate (a) 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1
CUP/PCX MissCost 0.24 0.14 0.08 0.07 0.07 0.09 0.08 0.08
PCX AvgLat () 7.77(9.28) | 6.99(9.43) | 3.84(841) | 4.01(8.75) | 1.75(5.88) | 1.61(5.53) | 1.00(4.02) | 1.10 (4.16)
CUP AvgLat (o) 3.16(5.75) | 1.71 (4.44) | 0.42(3.03) | 0.37 (2.80) | 0.13(1.66) | 0.15(1.71) | 0.08 (1.17) | 0.09 (1.24)
IR/CUPOvhd Hop 6.41 7.49 13.09 16.03 43.25 53.57 223.97 293.30

it is able to refresh a cache before a burst of queries, it
saves a large penalty which by far outweighs any unre-
covered overhead that occurs during the occasional, very
long idle period. Therefore, refreshing the cache in time
provides greater benefits with increasing burstiness. The
table results confirm this. In going from o = 1.25 to
a = 1.1, we see that the average query latency reduction
CUP achieves generally improves and the IR increases
for all query rates.

4.9 Zipf-like Key Distributions

A recent study has shown that queries for multiple keys
in a peer-to-peer network follow a Zipf-like distribu-
tion, with a small portion of the keys getting the most
queries [SriO1]. That is, the number of queries received
by the i’th most popular key is proportional to z% for
constant a.

In this section we compare CUP with PCX in a net-
work of 1024 nodes, where each node owns one key. The
query distribution among the 1024 keys follows a Zipf-
like distribution with parameter o = 1.2. Table 4 shows
results for Poisson arrivals where the overall ) rates are
100, 1000, 10000, and 100000 queries per second. (We
also ran experiments with & = 0.80 and 2.40 and with
Pareto arrivals, and the results were similar.)

From the table we see that CUP outperforms PCX
with IR ranging from 6.57 to 30.02. The latency reduc-
tion ranges from 3.2 (for 100 g/s) to an order of mag-
nitude reduction (for 100000 g/s, latency dropped from
1.53 to 0.13). The Zipf-like distribution causes some of
the keys to get a large percentage of the queries, leaving
others to be asked for quite rarely. For rare keys, caching
does not help since the entry expires by the time the key
is queried for again, and the query rate for these keys
is not high enough to recover the update propagation.
However, the IR for the very hot keys is high enough to
by far offset the unrecovered cost of the unpopular keys.
As a result, CUP achieves an overall IR of at least 6.57
for 100 g/s and as much as 30.02 for 100000 g/s.

5 Related Work

We describe related work specifically in the peer-to-peer
literature, followed by related work in the systems liter-
ature in general.

5.1 Related Peer-to-Peer Work

To our knowledge, CUP is the first protocol aimed at
maintaining caches of index entries to improve search
queries in peer-to-peer networks. While designers
of peer-to-peer systems advocate caching index en-
tries to improve performance [gnu, RFHT01, SMK*01,
RDOla], there has been little follow-up work studying
when and where to cache entries and how to maintain
these cached entries in a peer-to-peer system.

Cox et al. [CMMO2] study providing DNS service
over a peer-to-peer network as an alternative to tradi-
tional DNS. They cache index entries, which are DNS
mappings, along search query paths. Similarly, the Ter-
raDir Distributed Directory caching scheme [SBKO02]
has nodes along the search query path cache pointers to
other nodes previously traversed by the query. In each
of these examples, cached index entries have expiration
times and are not refreshed or maintained until a miss or
failure occurs.

Path caching of content in peer-to-peer systems
has received more attention. Freenet [CSWHOO],
CFS [DKK't01], PAST [RDOlb], and Lv et
al. [LCCT02] each perform path caching, or caching of
content along the search path of a query. These studies
do not focus on cache maintenance, but rather depend
on expiration or cache size constraints to implicitly
prevent the use of stale content.

CUP trees are similar to application-level multi-
cast trees, particularly those built on peer-to-peer
networks. These include Scribe [RKCDO1] and
Bayeaux [ZZJ101]. Scribe is a publish-subscribe in-
frastructure built on top of Pastry [RD01a] where sub-
scribers interested in a topic join its corresponding mul-
ticast group. Scribe creates a multicast tree rooted at
the rendez-vous point of each multicast group. Pub-
lishers send a message to the rendez-vous point which
then transmits the message to the entire group by send-
ing it down the multicast tree. The multicast tree is
formed by joining the Pastry routes from each subscriber
node to the rendez-vous point. Scribe could benefit from
our CUP ideas to provide update propagation for cache
maintenance in Pastry.
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Table 4: Cross-Key Comparison of CUP with PCX, for Poisson arrivals and Zipf-like key distribution

Overall AvgRate q/s 100
CUP/PCX MissCost 0.45
PCX AvgLat (o) 10.6 (9.9)
CUP AvgLat (o) 7.4 (8.5)
IR 6.57

1000 10000 100000
0.23 0.10 0.08
6.9(8.9) | 34(1)5) 1.53 (5.47)
26(52) | 0427 | 0.13(1.67)
8.52 10.98 30.02

5.2 Related Distributed Caching Work

DNS [Moc87a, Moc87b] is the largest and best known
distributed directory service for the Internet. Name
servers, like CUP nodes, can be viewed as distributed
caches that hold index entries (DNS name-to-IP address
mappings) with Time-to-Live (TTL) fields indicating
how long they should be considered valid. The main-
tenance of DNS caches has typically been pull-driven,
where name servers either pull a fresh version of a stale
cached mapping in response to a client request, or proac-
tively, in anticipation of a request [CKO1b]. CUP main-
tains caches through a proactive push-driven approach,
where updates are pushed to all interested nodes in the
overlay network. DNS is generally intended to support
slowly-changing mappings with TTLs on the order of
hours (e.g., 24 hours) [CKO1b], whereas CUP is geared
toward maintaining caches of metadata that change fre-
quently, on the order of minutes.

Distributed caching techniques have been looked at
in the context of distributed file systems (e.g., [HO93,
ADNT95], where the focus is on achieving cache co-
herence amongst groups of participating file writers that
have cached files and communicate over a local-area net-
work. CUP is designed for peer-to-peer environments,
where there may be thousands of participating nodes
spread across the Internet, and where updates for a par-
ticular metadata item are typically generated by only one
peer node.

Distributed caching techniques have also been looked
at in the context of web caching. Many previous studies
have focused on cache replacement policies since cache
size becomes a finite source when caching content for
potentially thousands of clients [Mog96, WAST96]. In
CUP, cache size is not an issue since metadata are small.

Data caching and movement techniques based on
economic models of locally computed interest have
been studied in the context of the Mariposa Distributed
Database Management System [SDK*94]. Mariposa
builds a market-based system with a virtual currency
where servers advertise prices to provide resources such
as CPU cycles and storage services for query processing
such that they maximize their local revenue income per
time unit. If a server is underutilized, it will lower the
price of its resources to attract more requests. In CUP,
the notion of economic benefit is different; a node that
derives benefit by propagating an update is saving itself
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from future work (query requests).

Many schemes have been proposed for the mainte-
nance of cached web content. Some propose push-based
invalidation schemes where a web server/proxy noti-
fies proxies/clients when cached objects are modified
(e.g., [LCI9]), pull-based validation schemes, where the
proxy/client validates with the server/proxy cached ob-
jects that have expired [CKOlc], and hybrid schemes,
where the server piggybacks validations on responses to
requests for related objects (e.g., [KW97]. CUP dif-
fers from previous web maintenance schemes by using
push-driven propagation that is driven by the individual
economic incentive of participating nodes.

Cooperative caching has been proposed to allow
groups of participating caches to exchange cached web
content amongst themselves. The overall goal is to bring
a particular web object to the cache that is closest to
the clients requesting that web object. Previous propos-
als include hierarchical cache schemes (e.g., [CDN196,
KLL*97, squ, CKO1a]), hash-based schemes [KLL197,
VRIS], directory-based schemes [FCAB98, MIBIS,
TDVK99], and multicast-based schemes (e.g., [Tou98]).
Of these cooperative caching studies, those most related
to CUP are work on refreshment policies for cascaded
caches by Cohen et al. [CKOla] and work on distribut-
ing location hints across a hierarchy of caches by Tewari
et al. [TDVK99].

Cohen and Kaplan study the effect that aging through
cascaded caches has on the miss rates of web client
caches [CKO1a]. For each object an intermediate cache
refreshes its copy of the object when its age exceeds
a fraction v of the lifetime duration. The intermediate
cache does not push this refresh to the client cache; in-
stead, the client cache waits until its own copy has ex-
pired at which point it fetches the intermediate cache’s
copy with the remaining lifetime. For some sequences
of requests at the client cache and some v’s, the client
cache can suffer from a higher miss rate than if the in-
termediate cache only refreshed on expiration. A CUP
tree could be viewed as a series of cascaded caches in
that each node depends on the previous node in the tree
for updates to an index entry. The key difference is that
in CUP, refreshes are pushed down the entire tree of in-
terested nodes. Therefore, whenever a parent cache gets
a refresh so does the interested child node. In such sit-
uations, we find the miss rate at the child node actually
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improves.

Tewari et al. [TDVK99] cache location hints in addi-
tion to web content at web caches in a web cache hierar-
chy. Location hints are used by requesting leaf caches
to access copies of web content directly from remote
caches holding the content, rather than waiting for the
content to travel through the root and down to them.
Propagation of hint updates is considered inexpensive,
and occurs proactively and independently of the request
pattern of the web object the hint represents. CUP em-
phasizes recovering propagation overhead. CUP makes
the propagation decision by comparing the cost of prop-
agating a particular update with the benefit (investment
return) the update will bring to the tree below the node.
CUP only propagates updates that are likely to benefit
subsequent queries in the subtree below.

6 Conclusions

CUP provides a general purpose framework for main-
taining caches of metadata in peer-to-peer networks,
where continuous updates are expected, yet nodes must
have personal economic incentive to participate in the
maintenance. CUP is a complete protocol with query
channels for coalescing bursts of queries and update
channels for asynchronous delivery of query responses
and updates of cached metadata. To moderate propaga-
tion without imposing a global policy, CUP introduces
the notion of investment return for motivating each node
to participate in the update propagation and policies for
estimating when the benefit ceases to outweigh the over-
head. For the case of locating content in a peer-to-peer
network, we find that CUP secures an investment return
of 2 to 300 times the propagation cost and significantly
reduces query latency.

We have leveraged the CUP protocol to deliver meta-
data required for effective load-balancing of content
downloads across multiple replica nodes [Rou02]. As
with regular searches, the economic incentive-based
model helps to moderate and control the amount of
metadata update propagation in a highly dynamic envi-
ronment where load information changes very rapidly.
Future work includes the use of CUP to enhance
management of dynamic content replication, publish-
subscribe applications, and price negotiation and auc-
tioning of services amongst nodes in a peer-to-peer net-
work.
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