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Abstract
We propose a new approach for I/O scheduling that per-
forms on-line simulation of the underlying disk. When
simulation is integrated within a system, three key chal-
lenges must be addressed: first, the simulator must be
portable across the full range of devices; second, all con-
figuration must be automatic; third, the computation and
memory overheads must be low. Our simulator, the Disk
Mimic, achieves these goals by building a table-based
model of the disk as it observes the times for previous
requests. We show that a shortest-mimicked-time-first
(SMTF) scheduler performs nearly as well as an approach
with perfect knowledge of the underlying device and that
it is superior to traditional scheduling algorithms such as
C-LOOK and SSTF; our results hold as the seek and ro-
tational characteristics of the disk are varied.

1 Introduction
High-performance disk schedulers explored in the re-

search literature are becoming progressively more tuned

to the performance characteristics of the underlying disks.

Each generation of disk schedulers has accounted for

more of the behavior of storage devices at the time. For

example, disk schedulers analyzed in the 1970s and 1980s

focused on minimizing seek time, given that seek time

was often an order of magnitude greater than the expected

rotational delay [10, 26, 29]. In the early 1990s, the fo-

cus of disk schedulers shifted to take rotational delay into

account, as rotational delays and seek costs became more

balanced [13, 21, 31].

At the next level of sophistication, a disk scheduler

takes all aspects of the underlying disk into account: track

and cylinder switch costs, cache replacement policies,

mappings from logical block number to physical block

number, and zero-latency writes. For example, Worthing-

ton et al. demonstrate that algorithms that effectively uti-

lize a prefetching disk cache perform better than those that

do not [31].

However, the more intricate the knowledge a scheduler

has of the disk, the more barriers there are to its realization

within operating system kernels. Specifically, there are

three obstacles that must be overcome. First, the scheduler

must discover detailed knowledge of the underlying disk.

Although a variety of tools have been described that auto-

matically acquire portions of this knowledge [19, 25, 32],

it must still be embedded into the disk model employed by

the scheduler; the resulting scheduler is then configured to

handle only a single disk with those specific characteris-

tics. Second, the disk scheduler must also have knowl-

edge of the current state of the disk, such as the exact

position of the disk head. Given that head position is

not exposed by current disk controllers and its position

is not predictable due to low-level disk techniques such

as wear leveling, predictive failure analysis, and log up-

dates, the scheduler must control the current position us-

ing non-trivial techniques [11, 33]. Finally, the computa-

tional costs of detailed modeling can be quite high [31]; it

is not uncommon for the time to model request time to be

larger than the time to service the request [4].

Due to these difficulties, few disk schedulers that lever-

age more than basic seek costs have been implemented

for real disks. When considering rotational position, most

previous work has been performed within simulation en-

vironments [13, 21, 23, 31]. The schedulers that have

recently been implemented by researchers have either

contained substantial simplifications [12] or have been

painstakingly tuned for a small group of disks [11, 33].

Not surprisingly, the disk schedulers found in modern op-

erating systems such as Linux, NetBSD, and Solaris, at-

tempt only to minimize seek time.

1.1 A Different Approach
We believe that a promising alternative approach to em-

bedding detailed knowledge of the disk into the sched-

uler is to embed an on-line simulator of the disk into the

scheduler. An I/O scheduler is able to use on-line simula-

tion of the underlying storage device to predict which re-

quest in its queue will have the shortest positioning time.

Although a variety of disk simulators exist [4, 14, 30],

most are targeted for performing traditional, off-line sim-

ulations, and unfortunately, the infrastructure for perform-

ing on-line simulation is fundamentally different.

In many respects, the requirements of an on-line sim-

ulator are more stringent than those of an off-line simu-

lator. First, the on-line simulator must be portable; that

is, the simulator must be able to model the behavior of

any disk drive that could be used in practice. Second, the

on-line simulator must have automatic run-time configu-
ration, since one cannot know the precise characteristics
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of the underlying device when constructing the simula-

tor; it is highly undesirable if a human administrator must

interact with the simulator. Finally, the on-line simula-

tor must have low overhead; the computation and mem-

ory overheads of an on-line simulator must be minimized

such that the simulator does not adversely impact system

performance.

In addition to the complexity it introduces, an on-line

simulator also provides ample opportunities for simplifi-

cation. First, the on-line simulator has the opportunity to

observe the run-time behavior of the device; not only does

this allow the simulator to configure itself on the fly, it also

allows the simulator to adjust to changes in the behavior of

the device over time. Second, the on-line simulator can be

specialized for the problem domain in question. Finally,

the on-line simulator does not need to be parameterizable;

that is, since an on-line simulator is not exploring different

versions of the device itself, the simulator does not need

to contain a functional model of the device.

1.2 Contributions
We address how to implement an I/O scheduler that is

aware of the underlying disk technology in a simple,

portable, and robust manner. To achieve this goal, we in-

troduce the Disk Mimic, which meets the requirements of

an on-line simulator for disk scheduling. The Disk Mimic

is based upon a simple table-based approach, in which in-

put parameters to the simulated device are used to index

into a table; the corresponding entry in the table gives the

predicted output for the device. A table-based approach is

appropriate for on-line simulation because it can portably

capture the behavior of a variety of devices, requires no

manual configuration, and can be performed with little

computational overhead. However, there is a significant

challenge as well: to keep the size of the table tractable,

one must identify the input parameters that significantly

impact the desired outputs. The method for reducing this

input space depends largely upon the domain in which the

on-line simulator is deployed.

We show that for disk scheduling, two input parameters

are sufficient for predicting the positioning time: the log-

ical distance between two requests and the request type.

However, when using inter-request distance for predic-

tion, two issues must be resolved. First, inter-request dis-

tance is a fairly coarse predictor of positioning time; as

a result, there is high variability in the times for differ-

ent requests with the same distance. The implication is

that the Disk Mimic must observe many instances for a

given distance and use an appropriate summary metric

for the distribution; experimentally, we have found that

summarizing a small number of samples with the mean

works well. Second, given the large number of possible

inter-request distances on a modern disk drive, the Disk

Mimic cannot record all distances in a table of a reason-

able size. We show that simple linear interpolation can be

used to represent ranges of missing distances, as long as

some number of the interpolations within each range are

checked against measured values.

We propose a new disk scheduling algorithm, shortest-

mimicked-time-first (SMTF), which picks the request that

is predicted by the Disk Mimic to have the shortest posi-

tioning time. We demonstrate that the SMTF scheduler

can utilize the Disk Mimic in two different ways; specif-

ically, the Disk Mimic can either be configured off-line

or on-line, and both approaches can be performed auto-

matically. When the Disk Mimic is configured off-line,

it performs a series of probes to the disk with different

inter-request distances and records the resulting times; in

this scenario, the Disk Mimic has complete control over

which inter-request distances are observed and which are

interpolated. When the Disk Mimic is configured on-line,

it records the requests sent by the running workload and

their resulting times. Note that regardless of whether the

Disk Mimic is configured off-line or on-line, the simula-

tion itself is always performed on-line, within an active

system.

We show that the Disk Mimic can be used to signif-

icantly improve the throughput of disks with high uti-

lization. Specifically, for a variety of simulated and real

disks, C-LOOK and SSTF perform between 10% and

50% slower than SMTF. Further, we demonstrate that the

Disk Mimic can be successfully configured on-line; we

show that while the Disk Mimic learns about the storage

device, SMTF performs no worse than a base schedul-

ing algorithm (e.g., C-LOOK or SSTF) and quickly per-

forms close to the off-line configuration (i.e., after approx-

imately 750,000 requests).

The rest of the paper is organized as follows. In Sec-

tion 2 we describe the SMTF scheduler in more detail and

in Section 3 we describe the Disk Mimic. We describe our

basic methodology for evaluation in Section 4. Next, we

investigate the issues of configuring the Disk Mimic off-

line in Section 5. We then describe the additional com-

plexities of configuring the Disk Mimic on-line and show

its performance in Section 6. Finally, we describe related

work in Section 7 and conclude in Section 8.

2 I/O Scheduler
Many modern disks implement scheduling in the device

itself. While this might suggest that file system I/O

scheduling is obsolete, there are several reasons why the

file system should perform scheduling. First, disks are

usually able to schedule only a limited number of simulta-

neous requests since they have more restrictive space and

computational power constraints. Second, there are in-

stances when increased functionality requires the schedul-

ing to be done at file system level. For example, Iyer and

Druschel introduce short waiting times in the scheduler
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to preserve the continuity of a stream of requests from

a single process rather than interleaving streams from dif-

ferent processes [12]. Further, Shenoy and Vin implement

different service requirements for applications by imple-

menting a scheduling framework in the file system [23].

We now briefly describe the approach of a new file sys-

tem I/O scheduler that leverages the Disk Mimic. We

refer to the algorithm implemented by this scheduler as

shortest-mimicked-time-first, or SMTF. The basic func-

tion that SMTF performs is to order the queue of requests

such that the request with the shortest positioning time, as

determined by the Disk Mimic, is scheduled next. How-

ever, given this basic role, there are different optimiza-

tions that can be made. The assumptions that we use for

this paper are as follows.

First, we assume that the goal of the I/O scheduler is to

optimize the throughput of the storage system. We do not

consider the fairness of the scheduler. We believe that the

known techniques for achieving fairness (e.g., weighting

each request by its age [13, 21]) can be added to SMTF as

well.

Second, we assume that the I/O scheduler is operating

in an environment with heavy disk traffic. Given that the

queues at the disk may contain hundreds or even thou-

sands of requests [13, 21], the computational complex-

ity of the scheduling algorithm is an important issue [2].

Given these large queue lengths, it is not feasible to per-

form an optimal scheduling decision that considers all

possible combinations of requests. Therefore, we con-

sider a greedy approach, in which only the time for the

next request is minimized [13].

To evaluate the performance of SMTF, we compare to

the algorithms most often used in practice: first-come-

first-served (FCFS), shortest-seek-time-first (SSTF), and

C-LOOK. FCFS simply schedules requests in the order

they were issued. SSTF selects the request that has the

smallest difference from the last logical block number

(LBN) accessed on disk. C-LOOK is a variation of SSTF

where requests are still serviced according to their LBN

proximity to the last request serviced, but the scheduler

picks requests only in ascending LBN order. When there

are no more such requests to be serviced, the algorithm

picks the request in the queue with the lowest LBN and

then continues to service requests in ascending order.

To compare our performance to the best possible case,

we have also implemented a best-case-greedy scheduler

for our simulated disks; this best-case scheduler knows

exactly how long each request will take on the simulated

disk and greedily picks the request with the shortest posi-

tioning time next. We refer to this scheduler as the greedy-

optimal scheduler.

3 The Disk Mimic
The Disk Mimic is able to capture the behavior of a disk

drive in a portable, robust, and efficient manner. To pre-

dict the performance of a disk, the Disk Mimic uses a sim-

ple table, indexed by the relevant input parameters to the

disk. Thus, the Disk Mimic does not attempt to simulate

the mechanisms or components internal to the disk; in-

stead, it simply reproduces the output as a function of the

inputs it has observed.

3.1 Reducing Input Parameters
Given that the Disk Mimic uses a table-driven approach to

predict the time for a request as a function of the observ-

able inputs, the fundamental issue is reducing the number

of inputs to the table to a tractable number. If the I/O de-

vice is treated as a true black box, in which one knows

nothing about the internal behavior of the device, then the

Disk Mimic must assume that the service time for each

request is a function of all previous requests. Given that

each request is defined by many parameters (i.e., whether

it is a read or a write, its block number, its size, the time

of the request, and even its data value), this leads to a pro-

hibitively large number of input parameters as indices to

the table.

Therefore, the only tractable approach is to make as-

sumptions about the behavior of the I/O device for the

problem domain of interest [3]. Given that our goal is for

the I/O scheduler to be portable across the realistic range

of disk drives, and not to necessarily work on any hypo-

thetical storage device, we can use high-level assumptions

of how disks behave to eliminate a significant number of

input parameters; however, the Disk Mimic will make as

few assumptions as possible.

Our current implementation of the Disk Mimic predicts

the time for a request from two input parameters: the re-
quest type and the inter-request distance. We define inter-

request distance as the logical distance from the first block

of the current request to the last block of the previous re-

quest. The conclusion that request type and inter-request

distance are key parameters agrees with that of previous

researchers [18, 27].

We now briefly argue why inter-request distance and

request type are suitable parameters in our domain. We

begin by summarizing the characteristics of modern disk

drives. Much of this discussion is taken from the classic

paper by Ruemmler and Wilkes [18]; the interested reader

is referred to their paper for more details.

3.1.1 Background
A disk drive contains one or more platters, where each

platter surface has an associated disk head for reading

and writing. Each surface has data stored in a series of

concentric circles, or tracks. A single stack of tracks at

a common distance from the spindle is called a cylinder.

Modern disks also contain RAM to perform caching; the
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caching algorithm is one of the most difficult aspects of

the disk to capture and model [24, 32].

Accessing a block of data requires moving the disk

head over the desired block. The time for this has two

dominant components. The first component is seek time,

moving the disk head over the desired track. The seek

time for reads is likely to be less than that for writes, since

reads can be performed more aggressively. A read can

be performed when a block is not yet quite available be-

cause the read can be repeated if it was performed from

the wrong sector; however, a write must first verify that it

is at the right sector to avoid overwriting other data. The

second component is rotation latency, waiting for the de-

sired block to rotate under the disk head. The time for

the platter to rotate is roughly constant, but it may vary

around 0.5 to 1% of the nominal rate; as a result, it is

difficult to predict the location of the disk head after the

disk has been idle for many revolutions. Besides these

two important positioning components there are other me-

chanical movements that need to be accounted for: head

and track switch time. A head switch is the time it takes

for the mechanisms in the disk to activate a different disk

head to access a different platter surface. A track switch

is the time it takes to move a disk head from the last track

of a cylinder to the first one of the next.

The disk appears to its client as a linear array of logi-

cal blocks; these logical blocks are then mapped to phys-

ical sectors on the platters. This indirection has the ad-

vantage that the disk can reorganize blocks to avoid bad

sectors and to improve performance, but it has the disad-

vantage that the client does not know where a particular

logical block is located. If a client wants to derive this

mapping, there are multiple sources of complexity. First,

different tracks have different numbers of sectors; specif-

ically, due to zoning, tracks near the outside of a platter

have more sectors (and subsequently deliver higher band-

width) than tracks near the spindle. Second, consecutive

sectors across track and cylinder boundaries are skewed

to adjust for head and track switch times; the skewing

factor differs across zones as well. Third, flawed sectors

are remapped through sparing; sparing may be done by

remapping a bad sector (or track) to a fixed alternate loca-

tion or by slipping the sector (or track) and all subsequent

ones to the next sector (or track).

3.1.2 Input Parameters
As previously explained, read and write operations take

different times to execute. In addition, the type of the

last operation issued also influences service time [4, 18].

To account for these factors in our table-based model, we

record the request type (read or write) of the current and

previous requests as one of the input parameters.

The other input parameter is the inter-request distance

between logical block addresses, which captures some

of the aforementioned underlying characteristics of the

disk, while missing others. We note that ordering requests

based on the time for a given distance is significantly dif-

ferent than using the distance itself. Due to the complex-

ity of disk geometry, some requests that are separated by a

larger logical distance can be positioned more rapidly; the

relationship between the logical block address distance

and positioning time is not linear.

In the opinion of Ruemmler and Wilkes [18], the fol-

lowing aspects of the disk should be modeled for the best

accuracy: seek time (calculated with two separate func-

tions depending upon the seek distance from the current

and final cylinder position of the disk head and different

for reads and writes), head and track switches, rotation la-

tency, data layout (including reserved sparing areas, zon-

ing, and track and cylinder skew), and data caching (both

read-ahead and write-behind). We briefly discuss the ex-

tent to which each of these components is captured with

our approach.

Our approach accounts for the combined costs of seek

time, head and track switches, and rotation layout, but in

a probabilistic manner. That is, for a given inter-request

distance, there is some probability that a request crosses

track or even cylinder boundaries. Requests of a given

distance that cross the same number of boundaries have

the same total positioning time: the same number of track

seeks, the same number of head and/or track switches, and

the same amount of rotation.

We note that the table-based method for tracking posi-

tioning time can be more accurate than that advocated by

Ruemmler and Wilkes; instead of expressing positioning

time as a value computed as a sum of functions (seek time,

rotation time, caching, etc.), the Disk Mimic records the

precise positioning time for each distance.

The cost incurred by the rotation of the disk has two

components: the rotational distance between the previ-

ous and current request, and the elapsed time between the

two requests (and thus, the amount of rotation that has

already occurred). Although using inter-request distance

probabilistically captures the rotational distance, the Disk

Mimic does not record the amount of time that has elapsed

since the last request. This omission is not an issue for

disk scheduling in the presence of a full queue of requests;

in this case, the inter-arrival time between requests at the

disk is negligible and, thus, can be ignored. Ignoring time

causes inaccuracies when scheduling the first request after

an idle period; however, if the disk is often idle, then I/O

scheduling is not an important problem.

Data layout is incorporated fairly well by the Disk

Mimic as well. The number of sectors per track and num-

ber of cylinders impact our measured values in that these

sizes determine the probability that a request of a given

inter-request distance crosses a boundary; thus, these sizes

impact the probability of each observed time in the distri-
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Figure 1: Distribution of Off-Line Probe Times for Three Inter-Request Distances. Each graph shows a different
inter-request distance: 132 KB, 224 KB, and 300 KB. Along the x-axis, we show each of the 1000 probes performed
(sorted by time) and along the y-axis we show the time taken by that probe. These times are for the IBM 9LZX disk.

bution. Although zoning behavior and bad sectors are not

tracked by our model, previous research has shown that

this level of detail does not help with scheduling [31].

The aspect which we model the least directly is that of

general caching. However, the Disk Mimic will capture

the effects of simple prefetching, which is the most impor-

tant aspect of caching for scheduling [31]. For example,

if a read of one sector causes the entire track to be cached,

then the Disk Mimic will observe the faster performance

of accesses with distances less than that of a track. In this

respect, configuring the Disk Mimic on-line by observing

the actual workload could be more accurate than configur-

ing off-line, since the locality of the workload is captured.

Given the complexity associated with the inter-request

distance, we concentrate on the issues related to this in-

put parameter. For different values of the request type,

the output of the Disk Mimic has the same characteristics,

and thus we do not need to explore all the possible combi-

nations of the two input parameters in our further discus-

sions. Hence when we refer to inter-request distance we

assume the request type is fixed.

3.2 Results
To illustrate some of the complexity of using inter-request

distance as predictor of request time, we show the dis-

tribution of times observed. For these experiments, we

configure the Disk Mimic off-line as follows.

The Disk Mimic configures itself by probing the I/O de-

vice using fixed-size requests (e.g., 1 KB). For each of the

possible inter-request distances covering the disk (both

negative and positive), the Disk Mimic samples a num-

ber of points of the same distance: it accesses a block the

specified distance from the previous block. To avoid any

caching or prefetching performed by the disk, the Disk

Mimic accesses a random location before each new probe

of the required distance. The observed times are recorded

in a table, indexed by the inter-request distance and the

corresponding operation type.

In Figure 1 we show a small subset of the data collected

on an IBM 9LZX disk. The figure shows the distribution

of 1000 samples for three inter-request distances of 132

KB, 224 KB, and 300 KB. In each case, the y-axis shows

the request time of a sample and the points along the x-

axis represent each sample, sorted by increasing request

time.

We make two important observations from the sampled

times. First, for a given inter-request distance, the ob-

served request time is not constant; for example, at a dis-

tance of 132 KB, about 10% of requests require 1.8 ms,

about 90% require 6.8 ms, and a few require almost 8 ms.

Given this multi-modal behavior, the time for a single

request cannot be reliably predicted from only the inter-

request distance; thus, one cannot usually predict whether

a request of one distance will be faster or slower than a

request of a different distance. Nevertheless, it is often

possible to make reasonable predictions based upon the

probabilities: for example, from this data, one can con-

clude that a request of distance 132 KB is likely to take

longer than one of 224 KB.

Second, from examining distributions for different

inter-request distances, one can observe that the number

of transitions and the percentage of samples with each

time value varies across inter-request distances. The num-

ber of transitions in each graph corresponds roughly to

the number of track (or cylinder) boundaries that can be

crossed for this inter-request distance.

This data shows that a number of important issues re-

main regarding the configuration of the Disk Mimic. First,

since there may be significant variation in request times

for a single inter-request distance, what summary met-

ric should be used to summarize the distribution? Sec-

ond, how many samples are required to adequately cap-

ture the behavior of this distribution? Third, must each

inter-request distance be sampled, or is it possible to inter-

polate intermediate distances? We investigate these issues

in Section 5.

4 Methodology
To evaluate the performance of SMTF scheduling, we

consider a range of disk drive technology, presented in
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Configuration rotation seek head cyl track cyl sectors num
time 1 cyl 400 3000 switch switch skew skew per track heads

1 Base 6 0.8 6.0 8 0.79 1.78 36 84 272 10

2 Fast seek 6 0.16 1.32 1.6 0.79 1.00 36 46 272 10

3 Slow seek 6 2.0 33.0 40.0 0.79 2.80 36 127 272 10

4 Fast rotate 2 0.8 6.0 8 0.79 1.78 108 243 272 10

5 Slow rotate 12 0.8 6.0 8 0.79 1.78 18 41 272 10

6 Fast seek+rot 2 0.160 1.32 1.6 0.79 1.00 108 136 272 10

7 More capacity 6 0.8 6.0 8 0.79 1.78 36 84 544 20

8 Less capacity 6 0.8 6.0 8 0.79 1.78 36 84 136 5

Table 1: Disk Characteristics. Configurations of eight simulated disks. Times for rotation, seek, and head and
cylinder switch are in milliseconds, the cylinder and track skews are expressed in sectors. In most experiments, the
base disk is used.

Table 1. We have implemented a disk simulator that accu-

rately models seek time, fixed rotation latency, track and

cylinder skewing, and a simple segmented cache. The first

disk, also named the base disk, simulates a disk with per-

formance characteristics similar to an IBM 9LZX disk.

The seek times, cache size and number of segments, head

and cylinder switch times, track and cylinder skewing and

rotation times are either measured by issuing SCSI com-

mands and measuring the elapsed time, or directly query-

ing the disk, similar to the approach used by Schindler

and Ganger [19], or by using the values provided by the

manufacturer. The curve corresponding to the seek time

is modeled by probing an IBM 9LZX disk for a range of

seek distances (measured as the distance in cylinders from

the previous cylinder position to the current one) and then

curve fitting the values to use the two-function equation

proposed by Ruemmler and Wilkes [18]. For short seek

distances the seek time is proportional to the square root

of the cylinder distance, and for longer distances the seek

time is proportional to the cylinder distance. The middle

value in the seek column represents the cylinder distance

where the switch between the two functions occurs. For

example, for the base disk, if the seek distance is smaller

than 400 cylinders, we use the square root function.

For the other disk configurations we simulate, we start

from the base disk and vary different parameters that in-

fluence the positioning time. For example, disk configura-

tion number 2 (Fast seek) represents a disk that has a fast

seek time and the numbers used to compute the seek curve

are adjusted accordingly, as well as the number of sectors

that constitute the cylinder skew. Similarly for disk con-

figuration number 4 (Fast rotate) the time to execute a ro-

tation is decreased by a factor of three and the number of

track and cylinder skew sectors are increased. The other

disk configurations account for disks that have a slower

seek time, slower rotation time, faster seek time, faster ro-

tation time and more or less capacity than the base disk.

In addition to using the described simulated disks we also

run our experiments on an IBM 9LZX disk.
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Figure 2: Sensitivity to Summary Metrics. This graph
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performed and 100 samples are obtained for each data
point. The x-axis shows the compression factor applied
to the workload. The y-axis reports the time spent at the
disk.

To evaluate scheduling performance, we show results

from a set of traces collected at HP Labs [17]; in most

cases, we focus on the trace for the busiest disk from the

week of 5/30/92 to 6/5/92. For our performance metric,

we report the time the workload spent at the disk. To con-

sider the impact of heavier workloads and longer queue

lengths, we compress the inter-arrival time between re-

quests. When scaling time, we attempt to preserve the de-

pendencies across requests in the workload by observing

the blocks being requested; we assume that if a request is

repeated to a block that has not yet been serviced, that this

request is dependent on the previous request first complet-

ing. Thus, we hold repeated requests, and all subsequent

requests, until the previous identical request completes.
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Figure 3: Demerit Figures for SMTF with Probability, Mean, and Maximum Summary Metrics. Each graph
shows the demerit figure for a different summary metric. These distributions correspond to the one day from the
experiments shown in Figure 2 with a compression factor of 20.

5 Off-Line Configuration
The SMTF scheduler can be configured both on-line and

off-line. We now explore the case when the Disk Mimic

has been configured off-line; again, although the Disk

Mimic is configured off-line, the simulation and predic-

tions required by the scheduler are still performed on-line

within the system. As described previously, configuring

the Disk Mimic off-line involves probing the underlying

disk with requests that have a range of inter-request dis-

tances. We note that even when the model is configured

off-line, the process of configuring SMTF remains en-

tirely automatic and portable across a range of disk drives.

The main drawback to configuring the Disk Mimic off-

line is a longer installation time when a new device is

added to the system: the disk must be probed before it

can be used for workload traffic.

5.1 Summary Data
To enable the SMTF scheduler to easily compare the ex-

pected time of all of the requests in the queue, the Disk

Mimic must supply a summary value for each distribu-

tion as a function of the inter-request distance. Given

the multi-modal characteristics of these distributions, the

choice of a summary metric is not obvious. Therefore,

we evaluate five different summary metrics: mean, me-
dian, maximum, minimum, and probabilistic,

which randomly picks a value from the sampled distri-

bution according to its probability.

The results for each of these summary metrics on the

base simulated disk are shown in Figure 2. For the work-

load, we consider the week-long HP trace, scaled by the

compression factor noted on the x-axis. The graph shows

that FCFS, SSTF, and C-LOOK all perform worse than

each of the SMTF schedulers; as expected, the SMTF

schedulers perform worse than the greedy-optimal sched-

uler, but the best approach is always within 7% for this

workload. These results show that using inter-request dis-

tance to predict positioning time merits further attention.

Comparing performance across the different SMTF ap-

proaches, we see that each summary metric performs
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Figure 4: Sensitivity to Number of Samples. The graph
shows that the performance of SMTF improves with more
samples. The results are on the simulated disk and the
week-long HP trace with a compression factor of 20. The
x-axis indicates the number of samples used for SMTF.
The y-axis shows the time spent at the disk.

quite differently. The ordering of performance from best

to worse is: mean, median, maximum, probabilis-
tic, and minimum. It is interesting to note that the

scheduling performance of each summary metric is not

correlated with its accuracy. The accuracy of disk mod-

els is often evaluated according to its demerit figure [18],

which is defined as the root mean square of the horizon-

tal distance between the time distributions for the model

and the real disk. This point is briefly illustrated in Fig-

ure 3, which shows the distribution of actual times versus

the predicted times for three different metrics: proba-
bilistic, mean, and maximum.

As expected, the probabilistic model has the

best demerit figure; with many requests, the distribution

it predicts is expected to match that of the real device.

However, the probabilistic model performs rela-

tively poorly within SMTF because the time it predicts

for any one request may differ significantly from the ac-
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Figure 5: Mean Values for Samples as a Function of Inter-request Distance. The graph on the left shows the mean
time for the entire set of inter-request distances on our simulated disk. The graph on the right shows a close-up for
inter-request distances; other distances have qualitatively similar saw-tooth behavior.

tual time for that request. Conversely, although the max-
imum value results in a poor demerit figure, it performs

adequately for scheduling; in fact, SMTF with maximum
performs significantly better than with minimum, even

though both have similar demerit figures. Finally, using

the mean as a summary of the distribution achieves the

best performance, even though it does not result in the

best demerit figure; we have found that mean performs

best for all other days from the HP traces we have exam-

ined as well. Thus, for the remainder of our experiments,

we use the mean of the observed samples as the summary

data for each inter-request distance.

5.2 Number of Samples
Given the large variation in times for a single inter-request

distance, the Disk Mimic must perform a large number

of probe samples to find the true mean of the distribu-

tion. However, to reduce the time required to configure

the Disk Mimic off-line, we would like to perform as few

samples as possible. Thus, we now evaluate the impact of

the number of samples on SMTF performance.

Figure 4 compares the performance of SMTF as a func-

tion of the number of samples to the performance of

FCFS, C-LOOK, SSTF, and optimal. As expected, the

performance of SMTF increases with more samples; on

this workload and disk, the performance of SMTF contin-

ues to improve up to approximately 10 samples. How-

ever, most interestingly, even with a single sample for

each inter-request distance, the Disk Mimic performs bet-

ter than FCFS, C-LOOK, and SSTF.

5.3 Interpolation
Although the number of samples performed for each inter-

request distance impacts the running time of the off-line

probe process, an even greater issue is whether each dis-

tance must be explicitly probed or if some can be inter-
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Figure 6: Sensitivity to Interpolation. The graph shows
performance with interpolation as a function of the per-
cent of allowable error. Different lines correspond to dif-
ferent numbers of check points, N . The x-axis is the per-
cent of allowable error and the y-axis is the time spent at
the disk. These results use the base simulated disk and the
week-long HP trace with a compression factor of 20.

polated from other distances. Due to the large number

of potential inter-request distances on a modern storage

device (i.e., two times the number of sectors for both neg-

ative and positive distances), not only does performing all

of the probes take a significant amount of time, but storing

each of the mean values is prohibitive as well. For exam-

ple, given a disk of size 10 GB, the amount of memory

required for the table can exceed 800 MB. Therefore, we

explore how some distances can be interpolated without

making detailed assumptions about the underlying disk.

To illustrate the potential for performing simple inter-

polations, we show the mean value as a function of the

inter-request distance in Figure 5. The graph on the left



2003 USENIX Annual Technical ConferenceUSENIX Association 305

Check Points Acceptable
N Error
1 1 %

2 2 %

3 5 %

4 10 %

5 15 %

10 20 %

Table 2: Allowable Error for Interpolation. The table
summarizes the percentage within which an interpolated
value must be relative to the probed value in order to infer
that the interpolation is successful. As more check points
are performed between two inter-request distances, the al-
lowable error increases. The numbers were gathered by
running a number of different workloads on the simulated
disks and observing the point at which performance with
interpolation degrades relative to that with no interpola-
tion.

shows the mean values for all inter-request distances on

our simulated disk. The curve of the two bands emanat-

ing from the middle point corresponds to the seek curve

of the disk (i.e., for short seeks, the time is proportional

to the square root of the distance, whereas for long, the

time is linear with distance); the width of the bands is rel-

atively constant and corresponds to the rotation latency of

the disk. The graph on the right shows a close-up of the

inter-request distances. This graph shows that the times

follow a distinct saw-tooth pattern; as a result, a simple

linear model can likely be used to interpolate some dis-

tances, but care must be taken to ensure that this model is

applied to only relatively short distances.

Given that the length of the linear regions varies across

different disks (as a function of the track and cylinder

size), our goal is not to determine the particular distances

that can be interpolated successfully. Instead, our chal-

lenge is to determine when an interpolated value is “close

enough” to the actual mean such that scheduling perfor-

mance is impacted only negligibly.

Our basic off-line interpolation algorithm is as follows.

After the Disk Mimic performs S samples of two inter-

request distances left and right, it chooses a random dis-

tance middle between left and right; it then linearly inter-

polates the mean value for middle from the means for left
and right. If the interpolated value for middle is within

error percent of the probed value for middle, then the in-

terpolation is considered successful and all the distances

between left and right are interpolated. If the interpola-

tion is not successful, the Disk Mimic recursively checks

the two smaller ranges (i.e., the distances between left and

middle and between middle and right) until either the in-

termediate points are successfully interpolated or until all

points are probed.

For additional confidence that linear interpolation is

valid in a region, we consider a slight variation in which N
points between left and right are interpolated and checked.

Only if all N points are predicted with the desired level of

accuracy is the interpolation considered successful. The

intuition of performing more check points is that a higher

error rate can be used and interpolation can still be suc-

cessful.

Figure 6 shows the performance of SMTF when dis-

tances are interpolated; the graph shows the effect of in-

creasing the number of intermediate points N that are

checked, as well as increasing the acceptable error, error,

of the interpolation. We make two observations from this

graph.

First, SMTF performance decreases as the allowable er-

ror of the check points increases. Although this result is to

be expected, we note that performance decreases dramat-

ically with the error not because the error of the checked

distances is increased, but because the interpolated dis-

tances are inaccurate by much more. For example, with a

single check point (i.e., N = 1) and an error level of 5%,

we have found that only 20% of the interpolated values

are actually accurate to that level and the average error of

all interpolated values increases to 25% (not shown). In

summary, when error increases significantly, there is not a

linear relationship for the distances between left and right
and interpolation should not be performed.

Second, SMTF performance for a fixed error increases

with the number of intermediate check points N . The ef-

fect of performing more checks is to confirm that linear

interpolation across these distances is valid. For example,

with N = 10 check points and error = 5%, almost all in-

terpolated points are accurate to that level and the average

error is less than 1% (also not shown).

Table 2 summarizes our findings for a wider number

of check points. The table shows the allowable error per-

centage as a function of the number of check points, N , to

achieve scheduling performance that is very similar to that

with all probes. Thus, the final probe process can operate

as follows. If the interpolation of one distance between

left and right has an error less than 1%, it is deemed suc-

cessful. Otherwise, if two distances between left and right
have errors less than 2%, the interpolation is successful

as well. Thus, progressively more check points can be

made with higher error rates to be successful. With this

approach, 90% of the distances on the disk are interpo-

lated instead of probed, and yet scheduling performance

is virtually unchanged; thus, interpolation leads to a 10-

fold memory savings.

5.4 Disk Characteristics
To demonstrate the robustness and portability of the Disk

Mimic and SMTF scheduling, we now consider the full

range of simulated disks described in Table 1. The per-

formance of FCFS, C-LOOK, SSTF, and SMTF relative
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Figure 7: Sensitivity to Disk Characteristics. This fig-
ure explores the sensitivity of scheduling performance to
the disk characteristics shown in Table 1. Performance is
shown relative to greedy-optimal. We report values for
SMTF using interpolation. The performance of SMTF
without interpolation (i.e., all probes) is very similar.

to greedy-optimal for each of the seven new disks is sum-

marized in Figure 7. We show the performance of SMTF

with interpolation. The performance of SMTF with and

without interpolation is nearly identical. As expected,

FCFS performs the worst across the entire range of disks,

sometimes performing more than a factor of two slower

than greedy-optimal. C-LOOK and SSTF perform rela-

tively well when seek time dominates performance (e.g.,
disks 3 and 4); SSTF performs better than C-LOOK in

these cases as well. Finally, SMTF performs very well

when rotational latency is a significant component of re-

quest positioning (e.g., disks 2 and 5). In summary, across

this range of disks, SMTF always performs better than

both C-LOOK and SSTF scheduling and within 8% of the

greedy-optimal algorithm.

To show that SMTF can handle the performance vari-

ation of real disks, we compare the performance of our

implementation of SMTF to that of C-LOOK when run

on the IBM 9LZX disk. On the one week HP trace, we

achieve a performance improvement of 8% for SMTF

compared C-LOOK and an improvement of 12% if idle

time is removed from the trace. This performance im-

provement is not as significant as it could be for two rea-

sons. First, the IBM 9LZX disk has a relatively high ratio

of seek to rotation time; the performance improvement of

SMTF relative to C-LOOK is greater when rotation time

is a more significant component of positioning. Second,

the HP trace exercises a large amount of data on the disk;

when the locality of the workload is low as in this trace,

seek time further dominates positioning time.

To explore the effect of workload locality we create a

synthetic workload of random 1 KB reads and writes with

no idle time; the maximum inter-request distance is var-

ied, as specified on the x-axis of Figure 8. This graph

shows that the performance improvement of SMTF rela-
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Figure 8: Real Disk Performance. This graph shows the
slowdown of C-LOOK when compared to the SMTF con-
figured off-line. The workload is a synthetically generated
trace and the numbers are averages over 20 runs. The
standard deviation is also reported. The x-axis shows
the maximum inter-request distance existent in the trace
and the y-axis reports the percentage slowdown of the C-
LOOK algorithm.

tive to C-LOOK varies between 32% and 8% as the inter-

request distance varies from 25 MB to 1.3 GB. Given that

most file systems (e.g., Linux ext2) try to optimize locality

by placing related files in the same cylinder group, SMTF

can optimize accesses better than C-LOOK in practice.

Thus, we believe that SMTF is a viable option for schedul-

ing on real disks.

6 On-Line Configuration
We now explore the SMTF scheduler when all configu-

ration is performed on-line. With this approach, there is

no overhead at installation time to probe the disk drive;

instead, the Disk Mimic observes the behavior of the disk

as the workload runs. As in the off-line version, the Disk

Mimic records the observed disk times as a function of

its inter-request distance, but in this case it has no control

over the inter-request distances it observes.

6.1 General Approach
For the on-line version, we assume that many of the

lessons learned from off-line configuration hold. First, we

continue to use the mean to represent the distribution of

times for a given inter-request distance. Second, we con-

tinue to rely upon interpolation; note that when the Disk

Mimic is configured on-line, interpolation is useful not

only for saving space, but also for providing new infor-

mation about distances that have not been observed.

The primary challenge that SMTF must address in

this situation is how to schedule requests when some of

the inter-request distances have unknown times (i.e., this

inter-request distance has not yet been observed by the
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Figure 9: Performance of On-Line SMTF. The first graph compares the performance of different variations of on-
line SMTF; the performance of the last day of the week-long HP trace is shown relative to off-line SMTF. The second
graph shows that the performance of Online-Set improves over time as more inter-request distances are observed.

Disk Mimic and the Disk Mimic is unable to confirm that

it can be interpolated successfully). We consider two al-

gorithms for comparison. Both algorithms assume that

there is a base scheduler (either C-LOOK or SSTF) which

is used when the Disk Mimic does not have sufficient in-

formation.

The first algorithm, Online-Priority, schedules only

those requests for which the Disk Mimic has information.

Specifically, Online-Priority gives strict priority to those

requests in the queue that have an inter-request distance

with a known time; among those requests with known

times, the request with the minimum mean time is picked.

With Online-Priority, the base scheduler (e.g., C-LOOK

or SSTF) is only used when no inter-request distances for

the current queue are known. There are two problems with

this approach. First, given its preference for scheduling al-

ready known inter-request distances, Online-Priority may

perform worse than its base scheduler. Second, schedules

with a diversity of distances may never be produced and

thus the Disk Mimic may never observe some of the most

efficient distances.

The second algorithm, Online-Set, improves on both of

these limitations by using the decision of the base sched-

uler as its starting point, and scheduling a different re-

quest only when the Disk Mimic has knowledge that per-

formance can be improved. Specifically, Online-Set first

considers the request that the base scheduler would pick.

If the time for the corresponding distance is not known by

the Disk Mimic, then this request is scheduled. However,

if the time is known, then all of the requests with known

inter-request distances are considered and the one with the

fastest mean is chosen. Thus, Online-Set should only im-

prove on the performance of the base scheduler and it is

likely to schedule a variety of inter-request distances when

it is still learning.

6.2 Experimental Results
To evaluate the performance of the on-line algorithms, we

return to the base simulated disk. The left-most graph

of Figure 9 compares the performance of Online-Priority
and Online-Set, when either C-LOOK or SSTF is used as

the baseline algorithm and both with and without interpo-

lation. Performance is expressed in terms of slowdown

relative to the off-line version of SMTF. We make three

observations from this graph.

First, and somewhat surprising, although C-LOOK per-

forms better than SSTF for this workload and disk, SMTF

performs noticeably better with SSTF than with C-LOOK

as a base; with C-LOOK, the Disk Mimic is not able to ob-

serve inter-request distances that are negative (i.e., back-

ward) and thus does not discover distances that are close

together. Second, Online-Set performs better than Online-
Priority with SSTF as the base scheduler. Third, although

interpolation does significantly improve the performance

of Online-Priority and of Online-Set with C-LOOK, it

leads to only a small improvement with Online-Set and

SSTF. Thus, as with off-line configuration, the primary

benefit of interpolation is to reduce the memory require-

ments of the Disk Mimic, as opposed to improving per-

formance.

The right-most graph of Figure 9 illustrates how the

performance of Online-Set improves over time as more

inter-request distances are observed. We see that the per-

formance of the Online-Set algorithms (with and with-

out interpolation) is better than the base-line schedulers

of SSTF and C-LOOK even after one day of the original

trace (i.e., approximately 150,000 requests). The perfor-

mance of Online-Set with SSTF converges to within 3% of

the off-line version after four days, or only about 750,000

requests.

At this point, we feel that there are two opportunities
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for further improving the performance of on-line SMTF

relative to off-line SMTF. First, in our current on-line im-

plementations, if a slow time for a particular distance is

observed initially, the scheduler will avoid that distance

even if the mean is much faster. One can address this by

requiring that a distance has a minimum number of sam-

ples before being classified as known. Second, our cur-

rent algorithm does not leverage idle time [6]. One can

perform probes of unknown inter-request distances dur-

ing idle times so that the Disk Mimic can learn more of

the characteristics of the disk.

7 Related Work
The approach we propose brings together two areas of

study: disk modeling and disk scheduling. We present

related work in both areas and compare it to our method.

7.1 Disk Modeling
The classic paper describing models of disk drives is that

by Ruemmler and Wilkes [18]. The main focus of this

work is to enable an informed trade-off between sim-

ulation effort and the resulting accuracy of the model.

Ruemmler and Wilkes evaluate the aspects of a disk that

should be modeled for a high level of accuracy, using

the demerit figure. Other researchers have noted that ad-

ditional non-trivial assumptions must be made to model

disks to the desired accuracy level [14]; modeling cache

behavior is a particularly challenging aspect [24].

Given that the detailed knowledge for modeling disks is

not available from documentation, researchers have devel-

oped innovative methods to acquire the information. For

example, Worthington et al. describe techniques for SCSI

drives that extract time parameters such as the seek curve,

rotation speed, and command overheads as well as infor-

mation about the data layout on disk and the caching and

prefetching characteristics [32]; many of these techniques

are automated in later work [19].

Modeling storage devices using tables of past perfor-

mance has also been explored in previous work; in most

previous work [1, 7], high-level system parameters (e.g.,
load, number of disks, and operation type) are used as in-

dices into the table. Anderson [1] also uses the results on-

line, to assist in the reconfiguration of disk arrays. The ap-

proach most similar to ours is that of Thornock et al. [27].

In this work, the authors use stochastic methods to build

a model of the underlying drive. However, the application

of this model is to standard, off-line simulation; specif-

ically, the authors study block reorganization, similar to

earlier work by Ruemmler and Wilkes [16].

At a higher level, Seltzer and Small suggest in situ sim-

ulation as a method for building more adaptive operating

systems [22]. In this work, the authors suggest that oper-

ating systems can utilize in-kernel monitoring and adap-

tation to make more informed policy decisions. By trac-

ing application activity, the VINO system can determine

whether the current policy is behaving as expected or if

another policy should be switched into place. However,

actual simulations of system behavior are performed off-

line, as a “last resort” when poor performance is detected.

7.2 Disk Scheduling
Disk scheduling has long been a topic of study in com-

puter science [29]. Rotationally-aware schedulers came

into existence in the early 1990’s, through the work of

Seltzer et al. [21] and Jacobson and Wilkes [13]. How-

ever, perhaps due the difficulty of implementation, those

early works focused solely upon simulation to explore

the basic ideas. Only recently have implementations of

rotationally-aware schedulers been described within the

literature, and those are crafted with extreme care [11, 33].

More recently, Worthington et al. [31] examine the

benefits of even more detailed knowledge of disk drives

within OS-level disk schedulers. They find that algo-

rithms that mesh well with the modern prefetching caches

perform best, but that detailed logical-to-physical map-

ping information is not currently useful.

Anticipatory scheduling is a recent scheduling devel-

opment that is complementary to our on-line simulation-

based approach [12]. An anticipatory scheduler makes the

assumption that there is likely to be locality in a stream of

requests from a given process; by waiting for the next re-

quest (instead of servicing a request from a different pro-

cess), performance can be improved. The authors also

note the difficulty of building a rotationally-aware sched-

uler, and instead use an empirically-generated curve-fitted

estimate of disk access-time costs; the Disk Mimic would

yield a performance benefit over this simplified approach.

8 Conclusions
In this paper, we have explored some of the issues of using

simulation within the system to make run-time scheduling

decisions; in particular, we have focused on how a disk

simulator can automatically model a range of disks with-

out human intervention. We have shown that the Disk

Mimic can model the time of a request by simply ob-

serving the request type and the logical distance from the

previous request and predicting that it will behave simi-

larly to past requests with the same parameters. The Disk

Mimic can configure itself for a given disk by either prob-

ing the disk off-line or, at a slight performance cost, by ob-

serving requests sent to the disk on-line. We have demon-

strated that a shortest-mimicked-time-first (SMTF) disk

scheduler can significantly improve disk performance rel-

ative to FCFS, SSTF, and C-LOOK for a range of disk

characteristics.

In the future, we plan to show that SMTF scheduling

is appropriate for a range of storage devices other than

disk drives. For example, RAID systems [15], network-



2003 USENIX Annual Technical ConferenceUSENIX Association 309

attached storage devices [5], MEMS-based devices [20],

tapes [9], and non-volatile memory [28] may all be used as

building blocks in a storage system. Each of these devices

has its own complex performance characteristics and it

would be ideal if the I/O scheduler could automatically

adapt to any of these devices.
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