
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 151

StarFish: highly-available block storage

Eran Gabber Jeff Fellin Michael Flaster Fengrui Gu

Bruce Hillyer Wee Teck Ng BanüOzden Elizabeth Shriver

Information Sciences Research Center
Lucent Technologies – Bell Laboratories

600 Mountain Avenue, Murray Hill, NJ 07974�
eran, jkf, mflaster, fgu, bruce, weeteck, ozden, shriver� @research.bell-labs.com

Abstract
In this paper we present StarFish, a highly-available
geographically-dispersed block storage system built
from commodity servers running FreeBSD, which are
connected by standard high-speed IP networking gear.
StarFish achieves high availability by transparently
replicating data over multiple storage sites. StarFish is
accessed via a host-site appliance that masquerades as
a host-attached storage device, hence it requires no spe-
cial hardware or software in the host computer. We show
that a StarFish system with 3 replicas and a write quo-
rum size of 2 is a good choice, based on a formal anal-
ysis of data availability and reliability: 3 replicas with
individual availability of 99%, a write quorum of 2, and
read-only consistency gives better than 99.9999% data
availability. Although StarFish increases the per-request
latency relative to a direct-attached RAID, we show how
to design a highly-available StarFish configuration that
provides most of the performance of a direct-attached
RAID on an I/O-intensive benchmark, even during the
recovery of a failed replica. Moreover, the third replica
may be connected by a link with long delays and limited
bandwidth, which alleviates the necessity of dedicated
communication links to all replicas.

1 Introduction
It is well understood that important data need to be pro-
tected from catastrophic site failures. High-end and mid-
range storage systems, such as EMC SRDF [4] and Net-
App SnapMirror [17], copy data to remote sites both to
reduce the amount of data lost in a failure, and to de-
crease the time required to recover from a catastrophic
site failure. Given the plummeting prices of disk drives
and of high-speed networking infrastructure, we see the
possibility of extending the availability and reliability
advantages of on-the-fly replication beyond the realm
of expensive, high-end storage systems. Moreover, we
demonstrate advantages to having more than one remote
replica of the data.

In this paper, we describe the StarFish sys-

tem, which provides host-transparent geographically-
replicated block storage. The StarFish architecture con-
sists of multiple replicas called storage elements (SEs),
and a host element (HE) that enables a host to transpar-
ently access data stored in the SEs, as shown in Fig-
ure 1. StarFish is a software package for commodity
servers running FreeBSD that communicate by TCP/IP
over high-speed IP networks. There is no custom hard-
ware needed to run StarFish. StarFish is mostly OS
and machine independent, although it requires two de-
vice drivers (SCSI/FC target-mode driver and NVRAM
driver) that we have implemented only for FreeBSD.

The StarFish project is named after the sea creature,
since StarFish is designed to provide robust data recov-
ery capabilities, which are reminiscent of the ability of a
starfish to regenerate its rays after they are cut off.

StarFish is not a SAN (Storage Area Network), since
SAN commonly refers to a Fibre Channel network with
a limited geographical reach (a few tens of kilometers).

StarFish has several key achievements. First, we show
that a StarFish system with the recommended configu-
ration of 3 replicas (see Section 4) achieves good per-
formance even when the third replica is connected by
a communication line with a large delay and a limited
bandwidth — a highly-available StarFish system does
not require expensive dedicated communication lines to
all replicas. Second, we show that StarFish achieves
good performance during recovery from a replica fail-
ure, despite the heavy resource consumption of the data
restoration activity. Generally, StarFish performance is
close to that of a direct-attached RAID unit. Moreover,
we present a general analysis that quantifies how the data
availability and reliability depend on several system pa-
rameters (such as number of replicas, write quorum size,
site failure rates, and site recovery speeds). This analy-
sis leads to the suggestion that practical systems use 3
replicas and a write quorum size of 2.

In many real-world computing environments, a
remote-replication storage system would be disqualified
from consideration if it were to require special hardware

Awarded Best Paper!

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association152

Host SCSI/ HE

SE1

SE2

SE3
WAN

MAN

Local

Near

Far

FC

Figure 1: StarFish architecture and recommended setup.

in the host computer, or software changes in the oper-
ating system or applications. Replicating storage at the
block level rather than at the file system level is gen-
eral and transparent: it works with any host software and
hardware that is able to access a hard disk. In particu-
lar, the host may use any local file system or a database
that requires access to a hard disk, and not just a remote
file system, such as NFS. The StarFish system design in-
cludes a host-site appliance that we call the host element
(HE), which connects to a standard I/O bus on the host
computer, as shown in Figure 1. The host computer de-
tects the HE to be a pool of directly-attached disk drives;
the HE transparently encapsulates all the replication and
recovery mechanisms. In our prototype implementation,
the StarFish HE connects to an Ultra-2 SCSI port (or al-
ternately, to a Fibre Channel port) on the host computer.

If an application can use host-attached storage, it can
equally well use StarFish. Thus, the StarFish architec-
ture is broadly applicable — to centralized applications,
to data servers or application servers on a SAN, and to
servers that are accessed by numerous client machines
in a multi-tier client/server architecture.

StarFish implements single-owner access semantics.
In other words, only one host element can write to a par-
ticular logical volume. This host element may be con-
nected to a single host or to a cluster of hosts by several
SCSI buses. If we require the ability for several hosts
to write to a single logical volume, this could be imple-
mented by clustering software that prevents concurrent
modifications from corrupting the data.

Large classes of data are owned (at least on a quasi-
static basis) by a single server, for example in shared-
nothing database architectures, and in centralized com-
puting architectures, and for large web server clusters
that partition the data over a pool of servers. The ben-
efits that motivate the single-owner restriction are the
clean serial I/O semantics combined with quick recov-
ery/failover performance (since there is no need for dis-
tributed algorithms such as leader election, group mem-
bership, recovery of locks held by failed sites, etc.).
By contrast, multiple-writer distributed replication in-
curs unavoidable tradeoffs among performance, strong

consistency, and high reliability as explained by Yu and
Vahdat [25].

To protect against a site failure, a standby host and
a standby HE should be placed in a different site, and
they could commence processing within seconds using
an up-to-date image of the data, provided that StarFish
was configured with an appropriate number of replicas
and a corresponding write quorum size. See Section 3
for details.

The remainder of this paper is organized as follows.
Section 2 compares and contrasts StarFish with related
distributed and replicated storage systems. Section 3 de-
scribes the StarFish architecture and its recommended
configuration. Section 4 analyzes availability and relia-
bility. Section 5 describes the StarFish implementation,
and Section 6 contains performance measurements. We
encountered several unexpected hurdles and dead ends
during the development of StarFish, which are listed in
Section 7. The paper concludes with a discussion of fu-
ture work in Section 8 and concluding remarks in Sec-
tion 9.

2 Related work
Many previous projects have established a broad base
of knowledge on general techniques for distributed sys-
tems (e.g., ISIS [2]), and specific techniques applicable
to distributed storage systems and distributed file sys-
tems. Our work is indebted to a great many of these;
space limitations permit us to mention only a few.

The EMC SRDF software [4] is similar to StarFish in
several respects. SRDF uses distribution to increase reli-
ability, and it performs on-the-fly replication and updat-
ing of logical volumes from one EMC system to another,
using synchronous remote writes to favor safety, or us-
ing asynchronous writes to favor performance. The first
EMC system owns the data, and is the primary for the
classic primary copy replication algorithm. By compar-
ison, the StarFish host owns the data, and the HE imple-
ments primary copy replication to multiple SEs. StarFish
typically uses synchronous updates to a subset of the SEs
for safety, with asynchronous updates to additional SEs
to increase availability. Note that this comparison is not

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 153

intended as a claim that StarFish has features, perfor-
mance, or price equivalent to an EMC Symmetrix.

Petal [11] is a distributed storage system from Com-
paq SRC that addresses several problems, including
scaling up and reliability. Petal’s network-based servers
pool their physical storage to form a set of virtual disks.
Each block on a virtual disk is replicated on two Petal
servers. The Petal servers maintain mappings and other
state via distributed consensus protocols. By contrast,
StarFish uses � -way replication rather than 2-way repli-
cation, and uses an all-or-none assignment of the blocks
of a logical volume to SEs, rather than a declustering
scheme. StarFish uses a single HE (on a quasi-static
basis) to manage any particular logical volume, and
thereby avoids distributed consensus.

Network Appliance SnapMirror [17] generates peri-
odic snapshots of the data on the primary filer, and
copies them asynchronously to a backup filer. This pro-
cess maintains a slightly out-of-date snapshot on the
backup filer. By contrast, StarFish copies all updates
on-the-fly to all replicas.

The iSCSI draft protocol [19] is an IETF work that
encapsulates SCSI I/O commands and data for transmis-
sion over TCP/IP. It enables a host to access a remote
storage device as if it were local, but does not address
replication, availability, and system scaling.

StarFish can provide replicated storage for a file sys-
tem that is layered on top of it. This configuration is
similar but not equivalent to a distributed file system
(see surveys in [24] and [12]). By contrast with dis-
tributed file systems, StarFish is focused on replication
for availability of data managed by a single host, rather
than on unreplicated data that are shared across an arbi-
trarily scalable pool of servers. StarFish considers net-
work disconnection to be a failure (handled by failover
in the case of the HE, and recovery in case of an SE),
rather than a normal operating condition.

Finally, Gibson and van Meter [6] give an interest-
ing comparison of network-attached storage appliances,
NASD, Petal, and iSCSI.

3 StarFish architecture
As explained in Section 1, the StarFish architecture con-
sists of multiple storage elements (SEs), and a host ele-
ment (HE). The HE enables the host to access the data
stored on the SEs, in addition to providing storage virtu-
alization and read caching. In general, one HE can serve
multiple logical volumes and can have multiple connec-
tions to several hosts. The HE is a commodity server
with an appropriate SCSI or FC controller that can func-
tion in target mode, which means that the controller can
receive commands from the I/O bus. The HE has to run
an appropriate target mode driver, as explained in Sec-
tion 5.

We replicate the data in � SEs to achieve high avail-
ability and reliability; redundancy is a standard tech-
nique to build highly-available systems from unreliable
components [21]. For good write performance, we use
a quorum technique. In particular, the HE returns a suc-
cess indication to the host after � SEs have acknowl-
edged the write, where � is the write quorum size. In
other words, StarFish performs synchronous updates to
a quorum of � SEs, with asynchronous updates to addi-
tional SEs for performance and availability.

Since StarFish implements single-owner access to the
data, it can enforce consistency among the replicas by
serialization: the HE assign global sequence numbers to
I/O requests, and the SEs perform the I/Os in this order
to ensure data consistency. Moreover, to ensure that the
highest update sequence number is up to date, the HE
does not delay or coalesce write requests. To simplify
failure recovery, each SE keeps the highest update se-
quence number (per logical volume) in NVRAM. This
simple scheme has clear semantics and nice recovery
properties, and our performance measurements in Sec-
tion 6 indicate that it is fast.

Figure 1 shows a recommended StarFish setup with
3 SEs. The “local” StarFish replica is co-located with
the host and the HE to provide low-latency storage. The
second replica is “near” (e.g., connected by a dedicated
high-speed, low-latency link in a metro area) to enable
data to be available with high performance even during a
failure and recovery of the local replica. A third replica
is “far” from the host, to provide robustness in the face of
a regional catastrophe. The availability of this arrange-
ment is studied in Section 4, and the performance is ex-
amined in Section 6.

The HE and the SEs communicate via TCP/IP sock-
ets. We chose TCP/IP over other reliable transmission
protocols, such as SCTP [23], since TCP/IP stacks are
widely available, optimized, robust, and amenable to
hardware acceleration. Since many service providers
sell Virtual Private Network (VPN) services, the HE
may communicate with the far SE StarFish via a VPN,
which provides communication security and ensures
predictable latency and throughput. StarFish does not
deal with communication security explicitly.

StarFish could be deployed in several configurations
depending on its intended use. Figure 2 shows a deploy-
ment by an enterprise that has multiple sites. Note that
in this configuration the local SE is co-located with the
host and the HE. A storage service provider (SSP) may
deploy StarFish in a configuration similar to Figure 1, in
which all of the SEs are located in remote sites belong-
ing to the SSP. In this configuration the local SE may not
be co-located with the host, but it should be nearby for
good performance.

StarFish is designed to protect against SE failures,

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association154

RAID

RAID

host
SCSI/

HE
local
SE

site I

WAN

site(s)
remote

SE

FC

Figure 2: StarFish deployment in an enterprise.

network failure to some SEs, and HE failure. When an
SE (or its RAID or network connection) fails, the HE
continues to serve I/Os to the affected logical volumes,
provided that � copies are still in service. When the
failed SE comes back up, it reconnects to the HE and re-
ports the highest update sequence number of its logical
volumes. This gives the HE complete information about
what updates the SE missed. For each logical volume,
the HE maintains a circular buffer of recent writes (the
“write queue”). If an SE fails and recovers quickly (in
seconds), it gets the missed writes from the HE. This re-
covery is called “quick recovery”. Also, each SE main-
tains a circular buffer of recent writes on a log disk. If
an SE fails and recovers within a moderate amount of
time (in hours — benchmark measurements from Sec-
tion 6 suggest that the log disk may be written at the
rate of several GB per hour) the HE tells the SE to re-
trieve the missed writes from the log disk of a peer SE.
This recovery is called “replay recovery”. Finally, af-
ter a long failure, or upon connection of a new SE, the
HE commands it to perform a whole-volume copy from
a peer SE. This recovery is called “full recovery”. Dur-
ing recovery, the SE also receives current writes from
the HE, and uses sequence number information to avoid
overwriting these with old data. To retain consistency,
the HE does not ask a recovering SE to service reads.

The fixed-size write queue in the HE serves a second
purpose. When an old write is about to be evicted from
this queue, the HE first checks that it has been acknowl-
edged by all SEs. If not, the HE waits a short time (throt-
tling), and if no acknowledgment comes, declares the SE
that did not acknowledge as failed. The size of the write
queue is an upper bound on the amount of data loss, be-
cause the HE will not accept new writes from the host
until there is room in the write queue.

In normal operation (absent failures), congestion can-

not cause data loss. If any SE falls behind or any internal
queue in the HE or the SE becomes full, the HE will stop
accepting new SCSI I/O requests from the host.

The HE is a critical resource. We initially imple-
mented a redundant host element using a SCSI switch,
which would have provided automatic failure detection
and transparent failover from the failed HE to a standby
HE. However, our implementation encountered many
subtle problems as explained in Section 7, so we de-
cided to eliminate the redundant host element from the
released code.

The current version of StarFish has a manually-
triggered failover mechanism to switch to a standby HE
when necessary. This mechanism sends an SNMP com-
mand to the SEs to connect to the standby HE. The
standby HE can resume I/O activity within a few sec-
onds, as explained in Section 6.4. The standby HE will
assume that same Fibre Channel or SCSI ID of the failed
HE. The manually-triggered failover mechanism can be
replaced by an automatic failure detection and reconfig-
uration mechanism external to StarFish. One challenge
in implementing such automatic mechanism is in the
correct handling of network partitions and other com-
munication errors. We can select one of the existing
distributed algorithms for leader election for this pur-
pose. If the HE connects to the host with Fibre Chan-
nel, the failover is transparent except for a timeout of the
commands in transit. However, starting the standby HE
on the same SCSI bus as the failed HE without a SCSI
switch will cause a visible bus reset.

Since the HE acknowledges write completions only
after it receives � acknowledgments from the SEs, the
standby HE can find the last acknowledged write request
by receiving the highest update sequence number of each
volume from � SEs. If any SE missed some updates, the
standby HE instructs it to recover from a peer SE.

4 Availability and reliability analysis
In this section we evaluate the availability and reliability
of StarFish with respect to various system parameters.
This enables us to make intelligent trade-offs between
performance and availability in system design. Our main
objectives are to quantify the availability of our design
and to develop general guidelines for a highly available
and reliable system.

The availability of StarFish depends on the SE fail-
ure (� � � �) and recovery (� � � �) processes, the number of
SEs (�), the quorum size (�), and the permitted prob-
ability of data loss. The latter two parameters also bear
on StarFish reliability. We assume that the failure and
recovery processes of the network links and storage el-
ements are independent identically distributed Poisson
processes [3] with combined (i.e., network + SE) mean
failure and recovery rates of � and � failures and re-

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 155

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.001 0.01 0.1 1

A
va

ila
bi

lit
y

ρ

N=6 (analytical)
N=5 (analytical)
N=4 (analytical)
N=3 (analytical)
N=2 (analytical)

N=2 (simulation)
N=1 (analytical)

N=1 (simulation)

Figure 3: Availability with � � �
, � � 1–6.

coveries per second, respectively. Similarly, the HE has
Poisson-distributed � � � and � � � . Section 9 suggests
ways to achieve independent failures in practice.

At time � , a component SE or HE is available if it is
capable of serving data. We define the availability of
StarFish as the steady-state probability that at least �

SEs are available. For example, a system that experi-
ences an 1-day outage every 4 months is 99% available.
We assume that if the primary HE fails, we can always
reach the available SEs via a backup HE.

We define the reliability of a system as the probability
of no data loss. For example, a system that is 99.9%
reliable has a 0.1% probability of data loss.

4.1 Availability results
The steady-state availability of StarFish, 	 � �
 � � , is de-
rived from the standard machine repairman model [3]
with the addition of a quorum. It is the steady-state prob-
ability that at most � SEs are down and at least � � � � �
SEs are up. Thus, the stead-state availability can be ex-
pressed as

	 � �
 � � �
� � � �� � � � � � � � �

�
� ! � �

� (1)

where � � � # � is called the load, and
� $

�
$

� & �
 � . Eq. 1 is valid for () �) �
(i.e., when

the failure rate is less than the recovery rate). Typical
values of � range from 0.1 to 0.001, which correspond
to hardware availability of 90% to 99.9%. See [5] for
derivation of Eq. 1.

Figure 3 shows the availability of StarFish using Eq. 1
with a quorum size of 1 and increasing number of SEs.
We validate the analytical model up to � � , with an
event-driven simulation written using the smpl simula-
tion library [13]. Because the analytical results are in
close agreement with the simulation results, we will not
present our simulation results in rest of this paper.

We observe from Figure 3 that availability increases
with � . This can also be seen from Eq. 1, which is
strictly monotonic and converges to 1 as � - / . We

also note that availability - �
as � - (. This is because

the system becomes highly available when each SE sel-
dom fails or recovers quickly.

We now examine the system availability for typical
configurations. Table 1 shows StarFish’s availability in
comparison with a single SE. We use a concise avail-
ability metric widely used in the industry, which counts
the number of 9s in an availability measure. For ex-
ample, a system that is 99.9% available is said to have
three 9s, which we denote , 1 3 . We use a standard de-
sign technique to build a highly available system out
of redundant unreliable components [21]. The SE is
built from commodity components and its availability
ranges from 90% [14] to 99.9% [7]. StarFish combines
SEs to achieve a much higher system availability when

� � 6 �
! �

. For example, Table 1 indicates that if the
SEs are at least 99% available, StarFish with a quorum
size of 1 and 3 SEs is 99.9999% available (7 1 3).

We also notice from Table 1 that, for fixed � ,
StarFish’s availability decreases with larger quorum
size. In fact, for � � � � , , StarFish is less avail-
able than a single SE, because the probability of keeping
all SEs concurrently available is lower than the proba-
bility that a single one is available. Increasing quorum
size trades off availability for reliability. We quantify
this trade-off next.

4.2 Reliability results
StarFish can potentially lose data under certain failure
scenarios. Specifically, when �

$;
� # 6 > , StarFish

can lose data if the HE and � SEs containing up-to-
date data fail. The amount of data loss is bounded by
the HE write queue size as defined in Section 3. This
queue-limited exposure to data loss is similar to the no-
tion of time-limited exposure to data loss widely used
in file systems [20]. We make this trade-off to achieve
higher performance and availability at the expense of a
slight chance of data loss. The probability of data loss
is bounded by

� # ? �
, which occurs when � � �

and
� � � � (. This implies that the lowest reliability occurs
when � � �

, and the reliability increases with larger � .
We note that there is no possibility of data loss if

� B ;
� # 6 > and at least � SEs are available. This is

because when we have a quorum size which requires the
majority of SEs to have up-to-date data when available,
failures in the remaining SEs do not affect system relia-
bility as we still have up-to-date data in the � remaining
SEs. However, this approach can reduce availability (see
Table 1) and performance (see Section 6.3).

Another approach is to trade-off the system func-
tionality while still maintaining the performance and
reliability requirements. For example, we may allow
StarFish to be available in a read-only mode during fail-
ure, which we call StarFish with read-only consistency.

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association156

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 157

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association158

Table 4: PostMark parameters
parameter value
files 40904
transactions 204520
median working set size (MB) 256
host VM cache size (MB) 64
HE cache size (MB) 128

represents the distance between New York City and a
back office in New Jersey, and a delay of 8ms represents
the distance between New York City and Saint Louis,
Missouri. The delay values for the far SE when it is
connected by Internet rather than dark fiber (values from
the AT&T backbone [1]) are 23ms (New York to Saint
Louis), 36ms (continental US average), and 65ms (New
York to Los Angeles). We use Internet link bandwidths
that are 20%, 33%, 40%, 60%, and 80% of an OC-3 line,
i.e., 31Mb/s, 51Mb/s, 62Mb/s, 93Mb/s, and 124Mb/s.

We measure the performance of StarFish with a set
of micro-benchmarks (see Section 6.3) and PostMark
version 1.5. PostMark [9] is a single-threaded synthetic
benchmark that models the I/O workload seen by a large
email server. The email files are stored in a UNIX file
system with soft updates disabled. (Disabling soft up-
dates is a conservative choice, since soft updates in-
crease concurrency, thereby masking the latency of write
operations.) We used the PostMark parameters depicted
in Table 4. Initial file size is uniformly distributed be-
tween 500 and 10,000 bytes, and files never grow larger
than 10,000 bytes. In all of the following experiments,
we measured only performance of the transactions phase
of the PostMark benchmark.

In FreeBSD, the VM cache holds clean file system
data pages, whereas the buffer cache holds dirty data [15,
section 4.3.1]. The host VM cache size and the HE
cache size are chosen to provide 25% and 50% read hit
probability, respectively. Because the workload is larger
than the host VM cache, it generates a mixture of phys-
ical reads and writes. We control the VM cache size by
changing the kernel’s physical memory size prior to sys-
tem reboot. We verified the size of the host VM cache for
every set of parameters to account for the memory that is
taken by the OS kernel and other system processes that
are running during the measurements.

Figure 5 depicts our testbed configuration of a single
host computer connected to either (a) a direct-attached
RAID unit, or (b) a StarFish system with 3 SEs. All
RAID units in all configurations are RaidWeb Arena II
with 128MB write-back cache and eight IBM Deskstar
75GXP 75GB 7,200 RPM EIDE disks and an exter-
nal Ultra-2 SCSI connection. The HE and SEs are
connected via an Alteon 180e gigabit Ethernet switch.
The host computer running benchmarks is a Dell Pow-

host
SCSI

RAIDhost
SCSI

RAIDSE

RAIDSE

RAIDSE

GbE
delay

GbE
delay

HE
GbE

switch

(a) direct−attached RAID

(b) StarFish

GbE

GbE
delay

local

near

far
& b/w

Figure 5: Testbed configuration.

0

20

40

60

80

100

120

140

0 1 2 3 4

P
os

tM
ar

k
tr

an
sa

ct
io

ns
 r

at
e

(t
ps

)

One-way delay to local SE (ms)

Q=1 cache=400MB
Q=1 cache=128MB

Q=1 cache=0
Q=2 cache=400MB
Q=2 cache=128MB

Q=2 cache=0

Figure 6: The effect of the one-way delay to the local
SE and the HE cache size on PostMark transaction rate.
The near SE and the far SE have one-way delays of 4
and 8ms, respectively.

erEdge 2450 server with dual 733 MHz Pentium III
processors running FreeBSD 4.5. The HE is a Super-
Micro 6040 server with dual 1GHz Pentium III pro-
cessors running FreeBSD 4.4. The SEs are Dell Pow-
erEdge 2450 servers with dual 866 MHz Pentium III
processors running FreeBSD 4.3.

6.2 Effects of network delays and HE
cache size on performance

In this section we investigate variations from the recom-
mended setup to see the effect of delay to the local SE
and the effect of the HE cache. Figure 6 shows the ef-
fects of placing the local SE farther away from the HE,
and the effects of changing the HE cache size. In this
graph the near SE and the far SE have one-way delays of
4 and 8ms, respectively. If the HE cache size is 400MB,
all read requests hit the HE cache for this workload. The
results of Figure 6 are not surprising. A larger cache im-
proves PostMark performance, since the HE can respond
to more read requests without communicating with any
SE. A large cache is especially beneficial when the lo-
cal SE has significant delays. The benefits of using a

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 159

cache to hide network latency have been established be-
fore (see, for instance, [15]).

However, a larger cache does not change the response
time of write requests, since write requests must receive
responses from � SEs and not from the cache. This is
the reason PostMark performance drops with increasing
latency to the local SE for � �

�
. When � � 6 , the

limiting delay for writes is caused by the near SE, rather
than the local SE. The performance of � � 6 also de-
pends on the read latency, which is a function of the
cache hit rate and the delay to the local SE for cache
misses.

All configurations in Figure 6 but one show decreas-
ing transaction rate with increasing delay to the local
SE. The performance of the configuration � � 6 and
400MB cache size is not influenced by the delay to the
local SE, because read requests are served by the cache,
and write requests are completed only after both the lo-
cal and the near SE acknowledge them.

In summary, the performance measurements in Fig-
ure 6 indicate that with � �

�
StarFish needs the local

SE to be co-located with the HE; with � � 6 StarFish
needs a low delay to the near SE; and the HE cache sig-
nificantly improves performance.

6.3 Normal operation and placement of
the far SE

To examine the performance of StarFish during normal
operation, we use micro-benchmarks to reveal details of
StarFish’s performance, and PostMark to show perfor-
mance under a realistic workload.

The 3 micro-benchmarks are as follows. Read hit:
after the HE cache has been warmed, the host sends
50,000 random 8KB reads to a 100MB range of disk
addresses. All reads hit the HE cache (in the StarFish
configuration), and hit the RAID cache (in the host-
attached RAID measurements). Read miss: the host
sends 10,000 random 8KB reads to a 2.5GB range of
disk addresses. The HE’s cache is disabled to ensure no
HE cache hits. Write: the host sends 10,000 random
8KB writes to a 2.5GB range of disk addresses.

We run a variety of network configurations. There
are 10 different dark-fiber network configurations: ev-
ery combination of one-way delay to the near SE that
is one of 1, 2, or 4ms, and one-way delay to the far SE
that is one of 4, 8, or 12ms. The 10th configuration has
one-way delay of 8ms to both the near and far SEs. In
all configurations, the one-way delay to the near SE is 0.
We also present the measurements of the Internet con-
figurations which are every combination of one-way de-
lay to the far SE that is one of 23, 36, or 65ms, and
bandwidth limit to the far SE that is one of 31, 51, 62,
93, or 124Mbps. In all of the Internet configurations the
one-way delay to the local and near SEs are 0 and 1ms,

Table 5: StarFish average write latency on dark-fiber and
Internet network configurations with � =3. The local SE
has a one-way delay of 0 in all configurations. The In-
ternet configurations have one-way delay to the far SE
that ranges from 23 to 65 ms and bandwidth limit that
ranges from 31 to 124 Mb/s. Maximum difference from
the average is 5%.

configuration write
near SE far SE # latency
delay delay/bandwidth conf. (ms)

RAID - - 1 2.6
dark fiber configurations:

� � �
1–8 4–12 10 2.6

� � �
1 4–12 3 3.4

� � �
2 4–12 3 5.3

� � �
4 4–12 3 9.2

� � �
8 8 1 17.2

Internet configurations:
� � �

1 23–65/31–124 4 2.6
� � �

1 23–65/31–124 4 3.4

Table 6: StarFish micro-benchmarks on dark-fiber net-
works with � =3. Maximum difference from the average
is 7%. The results of the Internet network configurations
are equivalent to the corresponding dark-fiber network
configurations.

config- # single-threaded multi-threaded
uration conf. latency (ms) throughput (MB/s)

read read write read read
miss hit miss hit

RAID 1 7.2 0.4 3.0 4.9 25.6
� � �

10 9.4 0.4 3.0 4.6 26.3
� � �

10 9.4 0.4 3.0 4.6 26.3

respectively.
Table 5 shows the write latency of the single-threaded

micro-benchmark on dark-fiber network configurations.
The write latency with � � �

is independent of the net-
work configuration, since the acknowledgment from the
local SE is sufficient to acknowledge the entire operation
to the host. However, the write latency with � � 6 is de-
pendent on the delay to the near SE, which is needed to
acknowledge the operation. For every millisecond of ad-
ditional one-way delay to the near SE, the write latency
with � � 6 increases by about 2ms, which is the added
round-trip time. The write latency on the Internet con-
figurations is the same as the corresponding dark-fiber
configurations, since the local SE (for � � �

) and near
SE (for � � 6) have the same delay as in the dark-fiber
configuration.

Table 6 shows the micro-benchmark results on the
same 10 dark-fiber network configurations as in Table 5.
Table 6 shows that the read miss latency is independent
of the delays and bandwidth to the non-local SEs be-

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association160

Table 7: Average PostMark performance on dark-fiber
and Internet networks with 2 and 3 SEs. The local SE
has a one-way delay of 0 in all configurations. The In-
ternet configurations have one-way delay to the far SE
that is either 23 or 65ms and bandwidth limit that is ei-
ther of 51 or 124Mbps. Maximum difference from the
average is 2%. For this workload, PostMark performs
85% writes.

configuration Post-
near SE far SE # Mark�
delay delay/band. conf. (tps)

RAID 1 73.12
dark fiber configurations
 =2:
1 1 - 1 71.01
2 1 - 1 65.64
dark fiber configurations
 =3:
1 1–8 4–12 10 68.80
2 1 4–12 3 63.85
2 2 4–12 3 57.97
2 4 4–12 3 48.57
2 8 8 1 35.53
Internet configurations
 =3:
1 1

�
23,65 � /

�
51,124 � 4 67.98

2 1
�
23,65 � /

�
51,124 � 4 62.46

cause StarFish reads from the closest SE. The read hit la-
tency is fixed in all dark-fiber configurations, since read
hits are always handled by the HE. The latency of the In-
ternet configurations is equivalent to the dark-fiber con-
figurations since no read requests are sent to the far SE.
Tables 5 and 6 indicate that as long as there is an SE
close to the host, StarFish’s latency with � � �

nearly
equals a direct-attached RAID.

To examine the throughput of concurrent workloads,
we used 8 threads in our micro-benchmarks, as seen in
Table 6. StarFish throughput is constant across all ten
dark-fiber network configurations and both write quo-
rum sizes. The reason is that read requests are handled
by either the HE (read hits) or the local SE (read misses)
regardless of the write quorum size. Write throughput
is the same for both write quorum sizes since it is deter-
mined by the throughput of the slowest SE and not by
the latency of individual write requests. For all tested
workloads, StarFish throughput is within 7% of the per-
formance of a direct-attached RAID.

It is important to note that Starfish resides between
the host and the RAID. Although there are no significant
performance penalties in the tests described above, the
HE imposes an upper bound on the throughput of the
system because it copies data multiple times. This upper
bound is close to 25.7MB, which is the throughput of
reading data from the SE cache by 8 concurrent threads
with the HE cache turned off. The throughput of a direct-
attached RAID for the same workload is 52.7MB/s.

Table 7 shows that PostMark performance is influ-
enced mostly by two parameters: the write quorum size,
and the delay to the SE that completes the write quo-
rum. In all cases the local SE has a delay of 0, and
it responds to all read requests. The lowest bandwidth
limit to the far SE is 51Mbps and not 31Mbps as in the
previous tests, since PostMark I/O is severely bounded
at 31Mbps. When � �

�
, the local SE responds first

and completes the write quorum. This is why the per-
formance of all network configurations with � � , and

� �
�

is essentially the same. When � � 6 , the re-
sponse of the near SE completes the write quorum. This
is why the performance of all network configurations
with � � , and � � 6 and with the same delay to
the near SE is essentially the same.

An important observation of Table 7 is that there is
no performance reason to prefer � � 6 over � � , ,
and � � , provides higher availability than � � 6 .
As expected, the performance of � � 6 is better than
the corresponding � � , configuration. However, the
performance of � � , and � � 6 with a high delay
and limited bandwidth to the far SE is at least 85% of
the performance of a direct-attached RAID. Another im-
portant observation is that StarFish can provide adequate
performance when one of the SEs is placed in a remote
location, without the need for a dedicated dark-fiber con-
nection to that location.

6.4 Recoveries
As explained in Section 3, StarFish implements a man-
ual failover. We measured the failover time by running
a script that kills the HE process, and then sends SNMP
messages to 3 SEs to tell them to reconnect to a backup
HE process (on a different machine). The SEs report
their current sequence numbers for all the logical vol-
umes to the backup HE. This HE initiates replay recover-
ies to bring all logical volumes up to date. With � � , ,

� � 6 , and one logical volume, the elapsed time to
complete the failover ranges from 2.1 to 2.2 seconds (4
trials), and the elapsed time with four logical volumes
ranges from 2.1 to 3.2 seconds (9 trials), which varies
with the amount of data that needs to be recovered.

Table 8 shows the performance of the PostMark
benchmark in a system where one SE is continuously
recovering. There is no idle time between successive re-
coveries. The replay recovery recovers the last 100,000
write requests, and the full recovery copies a 3GB log-
ical volume. Table 8 shows that the PostMark transac-
tion rate during recovery is within 74–98% of the perfor-
mance of an equivalent system that is not in recovery, or
67–90% of the performance of a direct-attached RAID.

The duration of a recovery is dependent on the the
recovery type (full or replay). Table 8 shows that on
a dark-fiber network, replay recovery transfers 7.53–

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 161

Table 8: Average PostMark performance during recovery. The one-way delay to the local and near SEs in all config-
urations are 0 and 1 ms, respectively. The Internet configurations have one-way delay to the far SE that is either 23
or 65ms, and bandwidth limit that is either 51 or 124Mbps. Maximum difference from the average transaction rate is
7.3%. PostMark transactions rate of a direct-attached RAID is 73.12 tps.

�
far SE recovering # replay recovery full recovery no recovery
delay/bandwidth SE conf. PostMark recovery PostMark recovery PostMark

(tps) rate (MB/s) (tps) rate (MB/s) (tps)
1 8 local,near,far 3 60.65 8.28–9.89 53.24 7.99–10.12 68.80
1

�
23,65 � /

�
51,124 � far 4 63.92 2.52–5.62 60.09 2.97–6.32 67.98

2 8 local,near,far 3 58.41 7.53–9.02 49.64 8.64–9.22 63.85
2

�
23,65 � /

�
51,124 � far 4 59.92 2.53–5.79 56.85 2.68–6.64 62.46

9.89MB/s. If the far SE recovers over a 51Mbps Internet
link, the average replay recovery rate is about 2.7MB/s.
When the Internet bandwidth is 124Mbps and one-way
delay is 65ms, our TCP window size of 512KB becomes
the limiting factor for recovery speed, because it lim-
its the available bandwidth to window size/round-trip
time (�

� 6 # ($
� , (� , 3 , � KB/s). A separate set of ex-

periments for dark fiber show that replay recovery lasts
about 17% of the outage time in the transaction phase
of the PostMark benchmark. I.e., a 60 second outage
recovers in about 10 seconds.

The duration of full recovery is relative to the size
of the logical volume. Table 8 shows that on a dark-
fiber network, the full recovery transfer rate is 7.99-
10.12MB/s. (Experiments show this rate to be indepen-
dent of logical volume size.) If the SE recovers over a
51Mbps Internet link, the average full recovery rate is
2.9MB/s, which is similar to the replay recovery rate for
the same configuration. When the bandwidth to the re-
covering SE increases, as seen before, the TCP window
becomes the limiting factor.

Table 8 indicates that PostMark performance degrades
more during full recovery than during replay recovery.
The reason is that the data source for full recovery is an
SE RAID that is also handling PostMark I/O, whereas
replay recovery reads the contents of the replay log,
which is stored on a separate disk.

7 Surprises and dead ends

Here are some of the noteworthy unexpected hurdles that
we encountered during the development of StarFish:

� The required set of SCSI commands varies by de-
vice and operating system. For example, Windows
NT requires the WRITE AND VERIFY command,
whereas Solaris requires the START/STOP UNIT
command, although both commands are optional.

� We spent considerable effort to reduce TCP/IP
socket latency. We fixed problems ranging from
intermittent 200ms delays caused by TCP’s Nagle
algorithm [22, section 19.4], to delays of several

network

switch
SCSI

I

I

T

T

SHE

PHE

SCSI

SE

SE

Figure 7: Redundant host element (RHE) architecture.

seconds caused by buffer overflows in our memory-
starved Ethernet switch.

� Spurious hardware failures occurred. Most SCSI
controllers would return error codes or have inter-
mittent errors. However, some controllers indicated
success yet failed to send data on the SCSI bus.

� For a long time the performance of StarFish with
multiple SEs was degraded due to a shared lock
mistakenly held in the HE. The shared lock caused
the HE to write data on one socket at time, instead
of writing data on all sockets concurrently. This
problem could have been solved earlier if we had a
tool that could detect excessive lock contention.

There was a major portion of the project that we did
not complete, and thus removed it from the released
code. We have designed and implemented a redundant
host element (RHE) configuration to eliminate the HE as
a single point of failure, as depicted in Figure 7. It con-
sists of a primary host element (PHE), which communi-
cates with the host and the SEs, and a secondary host el-
ement (SHE), which is a hot standby. The SHE backs up
the important state of the PHE, and takes over if the PHE
should fail. We use a BlackBox SW487A SCSI switch to
connect the PHE or SHE to the host in order to perform
a transparent recovery of the host element without any
host-visible error condition (except for a momentary de-
lay). After spending several months debugging the code,
we still encountered unexplained errors, probably due to
the fact that the combination of the SCSI switch and the

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association162

target mode driver was never tested before. In retrospect,
we should have implemented the redundant host element
with a Fibre Channel connection instead of a SCSI con-
nection, since Fibre Channel switches are more common
and more robust than a one-of-a-kind SCSI switch.

8 Future work

Measurements show that the CPU in the HE is the per-
formance bottleneck of our prototype. The CPU over-
head of the TCP/IP stack and the Ethernet driver reaches
60% with 3 SEs. (StarFish does not use a multicast
protocol, it sends updates to every SE separately.) A
promising future addition could be using a TCP acceler-
ator in the HE, which is expected to alleviate this bottle-
neck and increase the system peak performance.

Other future additions to StarFish include a block-
level snapshot facility with branching, and a mechanism
to synchronize updates from the same host to different
logical volumes. The latter capability is essential to en-
sure correct operations of databases that write on mul-
tiple logical volumes (e.g. write transactions on a redo
log and then modify the data).

The only hurdle we anticipate in porting StarFish to
Linux is the target mode driver, which may take some
effort.

9 Concluding remarks

It is known that the reliability and availability of local
data storage can be improved by maintaining a remote
replica. The StarFish system reveals significant benefits
from a third copy of the data at an intermediate distance.
The third copy improves safety by providing replication
even when another copy crashes, and protects perfor-
mance when the local copy is out of service.

A StarFish system with 3 replicas, a write quorum
size of 2, and read-only consistency yields better than
99.9999% availability assuming individual Storage El-
ement availability of 99%. The PostMark benchmark
performance of this configuration is at least 85% of a
comparable direct-attached RAID unit when all compo-
nents of the system are in service, even if one of the
replicas is connected by communication link with long
delays and a limited bandwidth. During recovery from
a replica failure, the PostMark performance is still 67–
90% of a direct-attached RAID. For many applications,
the improved data reliability and availability may jus-
tify the modest extra cost of the commodity storage and
servers that run the StarFish software.

Although we report measurements of StarFish with a
SCSI host interface, StarFish also works with a Qlogic
ISP 1280 Fibre-Channel host interface.

The availability analysis in Section 4 assumes inde-
pendent failures. However, a StarFish system may suffer

from correlated failures due to common OS or applica-
tion bugs. One way to alleviate it is to deploy StarFish on
a heterogeneous collection of servers from different ven-
dors running different OSes (e.g. FreeBSD and Linux).

Source code availability. StarFish source is available
from http://www.bell-labs.com/topic/
swdist/.

Acknowledgments. We would like to thank our shep-
herd, Robert Watson, and the anonymous referees for
their valuable comments. We would also like to thank
Justin Gibbs for his help in the development of the
Adaptec target-mode driver for FreeBSD and for his help
in problem isolation, and Matthew Jacob for his help in
enhancing the Qlogic target-mode driver for FreeBSD.

References
[1] AT&T. AT&T data & IP services: Back-

bone delay and loss, Mar. 2002. Available at
http://ipnetwork.bgtmo.ip.att.
net/delay_and_loss.shtml.

[2] K. P. Birman. Replication and fault-tolerance in
the ISIS system. In Proceedings of the Tenth
ACM Symposium on Operating Systems Principles,
pages 79–86, Dec. 1985.

[3] G. Bolch et al. Queueing Networks and Markov
Chains. John Wiley & Sons, New York, 1998.

[4] EMC Corporation. Symmetrix remote data fa-
cility product description guide, 2000. Available
at www.emc.com/products/networking/
srdf.jsp.

[5] E. Gabber et al. Starfish: highly-available block
storage. Technical Report Internal Technical Doc-
ument number ITD-02-42977P, Lucent Technolo-
gies, Bell Labs, April 2002.

[6] G. Gibson and R. V. Meter. Network attached stor-
age architecture. Communications of the ACM,
32(11):37–45, Nov. 2000.

[7] IBM Corporation. IBM 99.9% avail-
ability guarantee program. Available
at www.pc.ibm.com/ww/eserver/
xseries/999guarantee.html.

[8] A. N. S. Institute. The SCSI-2 common ac-
cess method transport and SCSI interface module,
ANSI x3.232-1996 specification, 1996.

[9] J. Katcher. PostMark: A new file system bench-
mark. Technical Report TR3022, Network Ap-
pliance, 1997. Available at www.netapp.com/
tech_library/3022.html.

[10] N. Lawson. SCSI target mode driver. A part of
FreeBSD 5.0-RELEASE, 2003. See targ(4)
man page.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 163

[11] E. K. Lee and C. A. Thekkath. Petal: Distributed
shared disks. In Proceedings of the 7th Intl. Con-
ference on Arch. Support for Prog. Lang. and Op-
erating Systems, pages 84–92, Oct. 1996.

[12] E. Levy and A. Silberschatz. Distributed file sys-
tems: concepts and examples. ACM Computing
Surveys, 22(4):321–374, Dec. 1990.

[13] M. MacDougall. Simulating Computer Systems.
The MIT Press, Cambridge, Massachusetts, 1987.

[14] A. McEvoy. PC reliability & service: Things
fall apart. PC World, July 2000. Available at
www.pcworld.com/resource/article.
asp?aid=16808.

[15] W. T. Ng et al. Obtaining high performance
for storage outsourcing. In Proceedings of the
USENIX Conference on File and Storage Systems,
pages 145–158, Jan. 2002.

[16] B. Nicols, D. Buttlar, and J. P. Farrel. Pthreads
Programming. O’Reilly & Associates, 1996.

[17] H. Patterson et al. SnapMirror: File system based
asynchronous mirroring for disaster recovery. In
Proceedings of the UESNIX Conference on File
and Storage Systems, pages 117–129, Jan. 2002.

[18] L. Rizzo. dummynet. Dipartimento di Ingegne-
ria dell’Informazione – Univ. di Pisa. www.iet.
unipi.it/˜luigi/ip_dummynet/.

[19] J. Satran et al. iSCSI. Inter-
net Draft, Sept. 2002. Available at
www.ietf.org/internet-drafts/
draft-ietf-ips-iscsi-16.txt.

[20] S. Savage and J. Wilkes. AFRAID – a frequently
redundant array of independent disks. In Proceed-
ings of the Winter 1996 USENIX Conference, pages
27–39, Jan. 1996.

[21] D. P. Siewiorek. Reliable Computer Systems: De-
sign and Evaluation. A K Peters, 1998.

[22] W. R. Stevens. TCP/IP Illustrated, Volume 1, The
Protocols. Addison-Wesley, 1994.

[23] R. Stewart et al. Stream Control Transmission Pro-
tocol. The Internet Engineering Task Force (IETF),
RFC2960, Oct. 2000. Available at www.ietf.
org/rfc/rfc2960.txt.

[24] L. Svobodova. File services for network-based
distributed systems. ACM Computing Surveys,
16(4):353–368, Dec. 1984.

[25] H. Yu and A. Vahdat. Design and evaluation of
a continuous consistency model for replicated ser-
vices. In Proceedings of the 4th Symposium on Op-
erating System Design and Implementation, pages
305–318, Oct. 2000.

