
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 39

GNU Mailman, Internationalized

Barry A. Warsaw
Zope Corporation
barry@zope.com
barry@python.org

http://www.zope.com
http://barry.warsaw.us

Abstract

GNU Mailman is a mailing list manage-
ment system that has been in production use
since 1998. In December 2002, a version 2.1
was released containing many new features.
This paper will describe one of the most im-
portant – Mailman 2.1’s internationalization
support. Presented here are the tools that
were built and the approaches Mailman took
to marking and translating text, as well a re-
view of some of the benefits and pitfalls of
Mailman’s solution. Also presented will be
some future directions for internationalized
Mailman, as well as other complex Python
applications such as Zope.

1 Introduction

GNU Mailman was invented by John Viega
sometime before 1997, or so is indicated by
the earliest known archived message on the
subject. The earliest hit for “viega mail-
man” in Google groups is about the Dave
Matthews band mailing list that John was
running [Viega97].

At the time, python.org [Python.Org] was
running a hacked version of Majordomo for
all its special interest group (SIG) mailing
lists, but this had two problems: first, the site
was becoming unmaintainable as the admin-
istrators tried to customize new features into
Majordomo, and second, it just wouldn’t do
to run Python’s mailing lists on a Perl-based
list server.

When Mailman was first released,
python.org quickly adopted it and has
been using it ever since. Mailman 2.0
marked a milestone in its development, as
version 2.0.13 is quite stable, and deployed
at thousands of sites. It runs everything
from small special interest group lists to
huge announcement lists, at sites ranging
from the commercial (RedHat, SourceForge,
Apple, Dell, SAP, and Zope Corporation),
to the hacker community (XEmacs, Samba,
Gnome, KDE, Exim, and of course Python),
to numerous educational organizations
and non-profits. There are lots of host-
ing facilities providing Mailman services,
and increasingly, quite a few international
organizations.

One of the reasons for the increased interest
from the non-English speaking world is that
Mailman 2.1, which had been in development
for about two years, is fully internationalized.
Internationalization is the process of prepar-
ing an application for use in multiple locales.
Localization is the process of specializing the
application for a specific locale. For example,
during internationalization, all end-user dis-
playable text in the Mailman 2.1 source code
was specially marked as requiring translation.
Mailman 2.1.1 (the latest available patch re-
lease at the time of writing), has been local-
ized to almost 20 natural languages.

While Mailman 2.1 may appear to be only a
minor revision over 2.0.13, it really represents
quite an extensive rewrite. It could easily
have been argued that this version should be
called Mailman 3.0. Before describing the de-
tails of the internationalization work, a brief
overview of Mailman is provided, including

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association40

a quick tour of some of the other important
features in the 2.1 release.

2 What is GNU Mailman?

“GNU Mailman” (informally referred to as
just “Mailman”), is a system for managing
electronic mailing lists. It is implemented pri-
marily in Python, an object-oriented, very
high-level, open source programming lan-
guage. Mailing lists are administered by a
list owner, and users can interact with the list
– including subscribing and unsubscribing –
through the web and through email. Site ad-
ministrators can also interact with Mailman
via a suite of command line scripts, or even
via the interactive Python prompt. Mailman
is the official mailing list manager of the GNU
project and is available under terms of the
GNU General Public License [GPL].

Mailman strives for standards compliance,
and as such is interoperable with a wide range
of web servers and browsers, and mail servers
and clients. Of the web servers, it requires the
ability to execute CGI scripts, and of mail
servers it requires the ability to filter mes-
sages through programs. Apache is probably
the most widely used web server for Mail-
man, and any of the Big 4 mail servers (Send-
mail, Postfix, Qmail, and Exim) will work
just fine. The HTML that Mailman out-
puts is extremely pedestrian so just about
any web browser should work with it, as long
as it supports cookies. Mailman should work
with any MIME-compliant mail reader. Mail-
man works on any Unix-like operating sys-
tem, such as GNU/Linux.

Mailman supports a wide range of features,
such as:

• User selectable delivery modes. Mem-
bers can elect to receive messages im-
mediately, or in batches called digests.
Two forms of digests are supported, RFC
1153 style plain text digests [RFC1153],
and MIME multipart/digest style di-
gests. Non-digest deliveries can be per-
sonalized specifically for the recipient of

the message. This means that various as-
pects of the message, i.e. the header or
footer, or the To field, can contain infor-
mation specific to the member receiving
the message.

• Extensive privacy options which allow
a list administrator to select policies
for subscribing and unsubscribing (open,
confirmation required, or approval re-
quired), policies for posting to the list
(open, moderated, members only, ap-
proved posters only), and some limited
spam defenses.

• Automatic bounce processing. Bouncing
addresses are the bane of any mailing
list, and Mailman provides two mech-
anisms for automatic bounce detection,
regular expression based bounce match-
ing and Variable Envelope Return Paths
[VERP].

RFC 3464 [RFC3464] and the older RFC
it replaces [RFC1894] describe a stan-
dard format for bounce notifications.
However, many mail systems ignore or
incorrectly implement this standard. For
recognizing bounce messages, Mailman
has an extensive set of regular expression
based matches used to dig the bouncing
address out of the notice. For fool-proof
bounce detection, Mailman also supports
VERP, a technique where the intended
recipient’s address as it appears on the
mailing list is encoded into the envelope
sender of the message. Because remote
mail servers are required to send bounces
to the envelope sender, Mailman can un-
ambiguously decode the intended recip-
ient’s address and register an accurate
bounce. Note that technically, VERP
must be implemented in the mail server,
but Mailman’s use of the technique is
close enough to warrant the label.

• Archiving. Mailman comes bundled with
an archiver called Pipermail. Pipermail’s
chief advantages are that it comes bun-
dled, that it is implemented in Python,
and that in Mailman 2.1 it is interna-
tionalized, allowing the display of mes-
sages in alternative languages and char-
acter encodings. Its primary disadvan-
tages are that it doesn’t support search-
ing and isn’t very customizable. Mail-

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 41

man is easily integrated with external
archivers.

• A mail to news gateway. Mailman can
be configured to gateway lists to and
from Usenet newsgroups. For example,
the comp.lang.python newsgroup is gate-
wayed to the python-list@python.org
mailing list. Even moderated lists, such
as comp.lang.python.announce can be
gatewayed, with Mailman serving as the
moderation tool.

• Auto-responder, content filtering, and
topics. The auto-responder can be set
up to send a canned message when-
ever someone posts to the list, or emails
the list owner or -request robot. Con-
tent filtering allows the list owner to
explicitly filter or pass specific MIME
(Multipurpose Internet Mail Extensions
[RFC2045]) content types. Topics allow
the list owner to assign incoming mes-
sages to any of a configurable number of
groups, and members can “subscribe” to
a specific topic, receiving only the sub-
set of list traffic that matches the desired
topics.

• Virtual domains. Mailman can be used
on a mail server that supports multi-
ple virtual domains. For example, the
python.org and zope.org mail domains
are run on the same machine, from the
same Mailman installation. The one lim-
itation in Mailman 2.1 is that a mailing
list with the same name may not appear
in more than one domain. This restric-
tion will be lifted in future versions.

Mailman also provides each list with its
own home page (called a “listinfo” page)
which can be customized through the web.
Mailing lists can be automatically created
and deleted through the web (with proper
support from the mail server). Mailman also
provides web-based approval of moderated
messages and subscriptions. There are a host
of other smaller new features in Mailman 2.1
which won’t be described in this paper.

3 Internationalization Issues

The new features in Mailman 2.1 are ex-
tensive, but the most visible addition is the
support for multiple natural languages. This
means that all the administrative and pub-
licly visible web pages, all the email notifica-
tions, and even the built-in archiver can be
configured to produce text in any of nearly
20 natural languages out of the box. A large
part of the re-architecting of Mailman for 2.1
has been to provide a framework for easily
adding new natural languages as they become
available from volunteer translation teams.

3.1 Message IDs

Not every string in an application needs to
be translated. For example, some strings are
used as keys in dictionaries, or represent mail
headers, or contain HTML tags. To make
the proper distinction we refer to strings that
are intended for human readability as “text”
or “messages”. One of the most labor in-
tensive parts of internationalizing an exist-
ing code base such as Mailman’s is to go
through every string in the software and dis-
tinguish messages from ordinary strings. In
addition to the non-translatable strings de-
scribed above, the decision was made to not
translate log messages since these are not in-
tended for the end-user, and would make de-
bugging in global community more difficult.

Each message that is to be translated needs
to have four pieces of information at runtime
in order to calculate the translated text: the
application domain, the message id, the de-
fault text, and the target locale. Because
Mailman is a fairly self-contained application,
there is only one static domain, the “mail-
man” domain, which never changes during
the life of the program’s execution.

The message id and default text are two re-
lated, but distinct concepts. The message id
uniquely identifies the textual message to be
displayed to the user. The message id names
the message but it may not necessarily be the
message. It is the message id which is the
primary key into a translation catalog dictio-

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association42

nary.

The default text is the text to use as the
translation of the message id, when the id is
not found in the translation catalog. Because
coordinating 20 different language teams is a
project management challenge, it is common
for some language catalogs to lag behind the
source code development. Mailman releases
are rarely delayed so that language teams can
catch up (although advance notice of impend-
ing releases is usually given). It is often the
case, therefore, that a particular message id
won’t be found in a specific language catalog.
The default text is the fall back to use in this
case.

As an example, suppose a web form had a
Delete button. The message id for the but-
ton might be something like “form27-delete-
button”, while the default text might be
“Delete”.

Message ids may be explicit or implicit. In
the above example “form27-delete-button” is
an explicit message id. While it uniquely
identifies the message to be used, it does not
contain any text that will be displayed to the
user. The advantage of explicit message ids
is that they are immune to minor typos or
formatting changes (e.g. whitespace or punc-
tuation additions or deletions). The disad-
vantages of explicit message ids are two-fold:
they require an extra catalog mapping mes-
sage ids to the default language (e.g. English
in Mailman’s case), and they make the source
code less readable. The latter is the more
serious consequence; since nearly all human
readable text in Mailman exists in Python
source code, using explicit message ids would
make the code nearly unreadable. A devel-
oper would have to consult the English cata-
log several times for some lines of code.

The alternative approach is to use implicit
message ids, where the message id serves
a dual purpose as the default text. Thus
the human readable text that appears in the
Python source code is first used as the mes-
sage id, and if that fails to find a transla-
tion, it is used as the default text. While
this has the advantage of making the source
code more readable and easier to develop, it
has several disadvantage. First, a message

such as “Delete” which has one spelling in En-
glish, may be translated to one of several dif-
ferent words in another language, depending
on the context. This poses a problem for the
translator because the message id “Delete”
may appear a dozen times in the application,
but may require several different words in the
target language. Also, minor changes in for-
mating or punctuation change the message id,
which requires a re-translation (this may be
considered an advantage because changes in
punctuation can cause semantic differences,
requiring a re-translation anyway).

There is no perfect solution, but Mailman
has decided to use implicit message ids be-
cause of the source code readability advan-
tages. This occasionally requires negotiation
between the application developers and the
translation teams to choose appropriate and
distinguishable message ids, and imposes a
sort of inertia against changing existing text
in the source code. One way to alleviate these
problems in future releases would be to use
a mix of implicit and explicit message ids,
where implicit ids are used predominantly,
but in rare cases explicit ids (along with a
partial English catalog) are used to resolve
ambiguities.

3.2 The Locale

Internationalizing a web-based application
is much more complicated than internation-
alizing a command line program such as ‘ls’
because the natural language context (i.e. the
“locale”) is determined by the web request, or
the email message being processed, instead
of by the user’s shell. In Mailman, the lo-
cale is dynamic and fluid; there may in fact
be several locales needed to process any par-
ticular email message. Most of the existing
techniques for internationalizing programs as-
sume a static locale and a single domain.
Mailman inherits the single domain tradition
of these tools, but it uses dynamic techniques
to calculate the translation locale.

We use the term “locale” and “language”
interchangeably below, although this is not
completely accurate. A locale describes much
more than the language used; it also defines

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 43

the character encoding, as well as the format-
ing of dates, numbers, currency, etc. How-
ever, since Mailman does not currently sup-
port the localization of data such as dates, the
language selection is the most important as-
pect of the active locale. Typically (although
not exclusively) a single character encoding is
used for a single language.

At any given point in the processing, the
following locales may exist.

• The source code language. Mailman is
developed in English, so by default, the
English text is always available. Trans-
lations can be, and often are, incomplete
and the English message is the global fall
back.

• The site default language. Of the nearly
20 languages that Mailman supports out
of the box, the site administrator can
choose one of those languages as the “site
default language”. When no other locale
is known, the site default will be used.

• The list default language. Every mailing
list has a default language as well as as
set of alternatively supported languages.
The list default language is used for all
the administrative pages. It is also the
language used when the list context is
known and there is no overriding con-
text.

• The page default language. The list ad-
ministrator can also choose to let the list
support any other language allowed by
the site administrator. A user browsing
the list overview page can choose to view
that page in any of those languages, by
selecting that language in a pop up menu
on the list’s public web pages.

• The user’s preferred language. The user
can also choose one of the list supported
languages to be their preferred language,
by making this choice in their preferences
page. All email notices that Mailman
sends out to the user, or any web page
that the user views when logged in, is dis-
played in the user’s preferred language.

To support these multiple language con-
texts, Mailman uses an object-oriented ap-

proach where the locale is represented by an
instance of a class. While this may seem nat-
ural, it is actually an elaboration of the global
translation contexts in classic international-
ized programs. This will be described in more
detail later.

3.3 Character Encodings

Above and beyond the natural language is-
sues, character encoding issues are probably
the most vexing for the Mailman developers.
“Character encoding” is usually referred to as
the character set or charset, after the email
header parameter described in RFC 2045.

A naive view would create a one-to-one cor-
respondence between language and charset.
For example, you might say that all Span-
ish text should be rendered in the iso-8859-1
(Latin-1) character set [ISOSoup]. However,
even this simple example isn’t accurate be-
cause the Euro sign is available only in iso-
8859-15.

The problem is exacerbated by some Asian
languages. Japanese for example may ap-
pear in any of euc-jp, iso-2022-jp, shift-jis,
and may be different depending on whether
the text appears in a web browser or in an
email message. In fact, Mailman 2.1’s naive
approach causes some problems for Japanese
users, especially when an email message is
displayed as a web page in the archiver. This
will be fixed in a future release.

Usually, English text uses the us-ascii char-
acter set, but for maximum interoperability,
a list conducted in English may still want to
be aware of Latin-1 characters. Mailman has
to be careful when combining characters in
different charsets, especially those for which
us-ascii is not a subset.

For example, say a Spanish list received a
message in Turkish, which uses Latin-5 (a.k.a.
iso-8859-9). When that message is archived,
different parts of the HTML page for the mes-
sage will be in iso-8859-1 and other parts will
be in iso-8859-9. But since HTML is inade-
quate at allowing multiple charsets in a single
web page, the characters in one or the other

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association44

of those charsets must be converted to HTML
entities, using their Unicode equivalent.

Multiple character set issues can also arise
in the processing of email messages. Say for
example that a message to a German list ar-
rives in Japanese. Mailman has a feature
called “headers and footers” which allow the
list administrator to add some canned text
to the start and end of a message (e.g. “To
unsubscribe, click here”). Previous versions
of Mailman would simply paste the header
and/or footer around the original message
body. This was broken for several reasons.
The most obvious one is that if the message is
really a Base64 encoded image, adding some
spurious ASCII text around the original body
would break the decoding. But if the mes-
sage contained text in a different character
set than the header or footer text, concatena-
tion may render the original body unreadable.
The solution requires careful examination of
the original message, and in the extreme, rip-
ping apart and reconstituting the structure of
the original message, so that the headers and
footers will always be added in a MIME-safe
way.

Internationalization standards for email
and HTML are defined in a series of RFCs,
and these must be adhered to. For exam-
ple, the most fundamental email RFC is 2822
[RFC2822] (which recently superseded RFC
822). This RFC describes the structure of an
email message, but it is naive in its ASCII
bias. RFCs 2045 through 2047 were added to
address the use of multilingual character sets
in email messages. RFC 2047 [RFC2047] was
added to describe how non-ASCII characters
are to be encoded in Subject fields and in
other email headers. Mailman must be able
to both interpret email messages with RFC
2047 encoded headers, and produce properly
formatted ones when necessary. The chal-
lenge is to parse well intentioned, but erro-
neously encoded headers (to give the bene-
fit of the doubt). These types of errors are
all too common in email messages found in
the wild and Mailman must be made robust
against these types of poorly formed mes-
sages.

Prodded by these various issues, a compre-
hensive email package [Email] was developed

and added to Python 2.2. The email pack-
age is compliant with all the relevant MIME
RFCs, as well as other mail related standards.

3.4 Message Catalogs

GNU gettext [Gettext] is a widespread for-
mal model for supporting multilingual appli-
cations in traditional C applications. Get-
text encourages the use of implicit message
ids. This leads to a rhythm whereby the C
programmer marks translatable text in the
source code by wrapping them in a function
call. The function is usually () – called “the
underscore function” – and it has both a run-
time behavior and an off-line purpose. At
run-time, the underscore function performs
the lookup of the message id in a global lan-
guage catalog. There is also an off-line tool
which searches all the source code for marked
strings, extracting them and placing them in
a message catalog template, called a .pot file.

GNU gettext contains both a C library and
a suite of tools provided by The Translation
Project [TranslationProject] to manage inter-
nationalized programs. The message extrac-
tion tool is called xgettext. While newer ver-
sions of xgettext understand Python source
code to some degree, a pure-Python version of
the program called pygettext was developed
and is distributed with Python. pygettext
has some additional benefit, including the
ability to extract Python docstrings which
may not be marked with the underscore func-
tion.

Mailman has adopted the gettext model
of marking and translating source strings,
and to that end, a GNU gettext-like stan-
dard module was implemented for Python
[GettextModule]. While the gettext mod-
ule implements the same global translation
model of the C library, two elaborations were
necessary for a more Pythonic interface.

First, for long running daemon processes
such as Mailman 2.1’s mail processor, mul-
tiple language contexts are required, so the
global state implied by gettext isn’t always
appropriate. Here’s an example to illustrate
understand why.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 45

When a new member subscribes to a mail-
ing list, two notification messages can be sent.
One is a welcome message sent to the mem-
ber, and the other a new member notification
sent to the list administrator. If the list’s
preferred language is Spanish, but the user
prefers German, these two notifications will
be sent out in two different languages. Since a
single process crafts and sends both notifica-
tions, simply using () wrapping doesn’t give
enough information. Which language should
the underscore function translate its message
id to?

Python solves this problem by providing
an object-oriented API in additional to get-
text’s traditional functional API. Using the
object interface, a program can create in-
stances which represent the translation con-
text; in other words, a single target language
catalog is fully encapsulated in an object. For
convenience, this object can be stored in some
global context, and in the Mailman source,
this global object can be saved and restored
as necessary. Here is a simplified Python ex-
ample:

The list’s preferred language is in

effect right now

saved = i18n.get_translation()

try:

i18n.set_language(

users_preferred_language)

send_user_notification()

finally:

i18n.set_translation(saved)

send_admin_notification()

The second problem might be termed syn-
tactic sugar or simple convenience, but it
turns out to be extremely important in a
Python program filled with translatable text.
Python strings support variable substitution
(also called “interpolation”), whereby a dic-
tionary can be used to supply the substitu-
tions. For example:

listname = get_listname()

member = get_username()

d = {’listname’: listname,

’member’: member,

}

print _(’%(member)s has been ’

’subscribed to %(listname)s’) % d

This is a critically important feature for in-
ternationalized programs because some lan-
guages may require a different order of the
substitutions to be grammatically correct.
While stock Python supports this require-
ment, its implementation leads to overly ver-
bose code. In the above example, we’ve writ-
ten the words “listname” and “member” four
times each. Now imagine that level of ver-
bosity duplicated a hundred times per source
file. “Tedious” comes to mind!

Mailman solves this by providing its own
underscore function, which wraps the gettext
standard function, but provides a little bit of
useful magic by looking up substitution vari-
ables in the local and global namespace of
the caller. Using Mailman’s special under-
score function, the above code can then be
rewritten as:

listname = get_listname()

member = get_username()

print _(’%(member)s has been ’

’subscribed to %(listname)s’)

While the average Perl programmer might
ask what all the fuss is about, the Python
programmer will notice something interest-
ing: there’s no interpolation dictionary and
no modulus operator. The dictionary is
created from the namespaces of the caller
of the underscore function, which contains
the “listname” and “member” local variables.
The trick is that the underscore function
uses a little known Python function called
sys. getframe() to capture the global and
local namespaces of the caller of underscore.
It then puts these in an interpolation dictio-
nary, with local variables overriding global
variables, and then applies the modulo op-
erator to the translated string, using this dic-
tionary.

Marked translatable texts are used all over
Mailman, and we run pygettext over all the
source code to produce a gettext compatible
mailman.pot catalog file. To translate this
to a new language, the translation team
would start by copying mailman.pot to
messages/xx/LC MESSAGES/mailman.po
where “xx” is the language code for the new
language. From here, standard tools such

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association46

as po-mode for Emacs or KDE’s kbabel can
be used to provide translations for all the
source message ids. Then, standard gettext
tools can be used to generate a mailman.mo
binary file, which Python’s gettext module
can read. In this way, internationalized
Python programs can leverage most of the
tools translation teams normally use for
C programs. Translators don’t have to
learn new tools just to translation Python
programs.

3.5 Templates

While gettext style message text in Python
source code are essential for an international-
ized Mailman, they aren’t always appropri-
ate. For example, Mailman has always used
templates as a way of conveniently represent-
ing full web pages or parts of email messages.
These templates provide an easy way for site
administrators to customize the look of the
Mailman web pages, or the text sent out un-
der various circumstances.

In an internationalized Mailman, the tem-
plates serve another purpose: they serve as
a mechanism for providing language specific
versions of the templates. Mailman uses al-
most 50 templates for various purposes, and
of course provides the English versions of the
templates as a default. Each supported lan-
guage provides its own version of the tem-
plates, and Mailman has a defined search
order for template lookup. For example,
if Mailman were to display the public list
overview page for a mailing list, it would
search for the listinfo.html page, in the fol-
lowing locations (relative to the installation
directory):

• The list-specific language directory
lists/listname/language/template

• The virtual domain-specific
language directory tem-
plates/list.host name/language/template

• The site-wide language directory tem-
plates/site/language/template

• The global default language directory
templates/language/template

The first location to yield the desired tem-
plate wins. Thus, as with the gettext cata-
logs, English is always an available fall back.

Templates, like marked translatable source
code text, support variable substitutions, us-
ing the same syntax. With templates, an ex-
plicit substitution dictionary is always pro-
vided, and the interpolation is performed af-
ter the template is located.

While the template system works well
enough, its coarseness is a serious drawback.
For example, say a new feature required the
addition of an HTML button on one of the
templates. While this is trivial to do for the
English template, changing the English tem-
plate means all the other templates are out-
of-date. The translation teams must follow
up with new versions of the modified tem-
plates, or other languages will lag behind the
English version.

One solution for templates might be some-
thing like Zope Page Templates (ZPT)
[Pelletier], and specifically, internationalized
ZPT [I18NZPT]. Internationalized ZPT com-
bines the best of gettext and templates by
allowing the template author to design the
template, marking sections of the template
as translatable text. Another extraction tool
can then run over the ZPT file and add the
translatable messages to the overall catalog.
This has the huge advantage that structural
changes to a template don’t require the trans-
lation teams to do any work. Changes to con-
tent messages in the template simply mean
that one phrase may be out of date, but the
whole template won’t be invalidated.

4 Unicode

Python has two types of string objects,
traditional 8-bit byte data strings and Uni-
code character strings. Python also has lit-
eral forms for each string type; quoted text
are defined to be 8-bit strings unless the lead-
ing quote is prefixed with a “u”, in which
case it is a Unicode string. Because strings
can come into Mailman in a variety of ways
(e.g. through the web, an email message, or a

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 47

message catalog), the code must be prepared
to handle encoded 8-bit strings and Unicode
strings. Encoded 8-bit strings must be con-
verted to Unicode via the unicode() built-in
function in order to properly combine strings
using concatenation or interpolation. In ad-
dition, Unicode strings must be re-encoded
when printing them to certain streams, such
as the log files, or standard output, but these
encoding operations must watch out for un-
supported characters. For example, if a Uni-
code string containing Latin-1 characters is
printed to an ASCII-only terminal, a excep-
tion can be raised due to the non-ASCII char-
acters in the string.

There is no doubt that character conver-
sion issues have been the thorniest and most
common bugs reported on Mailman 2.1 to
date. While many issues have been fixed, the
most important lesson learned is that Mail-
man should convert all text (not necessarily
all strings!) to Unicode at the earliest pos-
sible time, ideally when the text enters the
system. Mailman should use Unicode strings
everywhere internally, converting to encoded
8-bit strings only where needed, and only at
the last possible moment. Analysis will still
be needed to decide how to handle conver-
sion errors, such as those described above. In
Python, the conversion function can be given
an additional argument which specifies how
strict the conversion should be, e.g. raise an
exception if there are illegal characters found,
throw the illegal characters away, or substi-
tute a question mark for any illegal charac-
ters. The exact choice of the strictness flag
will be dependent on the context in which
the conversion is occurring.

5 Other Issues

There are some operational issues that
need to be addressed for an international-
ized application such as Mailman. Care must
be taken when marking the source code for
translation so that the text is split in a gram-
matically clear way. For example, when-
ever possible full sentences should be used,
since translating sentence fragments may not
be possible in all languages. Also, plural

forms and genders pose particularly thorny
problems. Python 2.3’s gettext module sup-
ports plural forms, but only alpha releases of
Python 2.3 have been made available as of
this writing. English doesn’t have gendered
nouns, and sometimes, English text source
strings need to be rewritten to accommodate
translators.

Python supports a number of specific char-
acter encoding “codecs” in the standard dis-
tribution. While Python has built-in sup-
port for most Western codecs, Asian codecs
in particular are not supported. Fortunately
Japanese, Korean, and Chinese codecs are
available as third party distributions.

Internationalization is a lot more than sim-
ply translating strings; many other values
from currencies to dates must also be local-
ized if they are to be displayed correctly for a
particular language or country. Long term
goals include wrapping IBM’s ICU library
[ICU] in Python.

While internationalization imposes some
performance overhead, the effect is negligi-
ble. In an application such as Mailman, the
performance of the mail server that Mailman
feeds messages to, the network bandwidth,
and the performance of the operating system
and file system have a far greater influence on
the performance of the system than does the
Mailman software. Internationalization has
imposed no perceived performance penalty.

Internationalization has increased the size
of the software distribution, since by default
the download contains the message catalogs
for all supported languages. The current cat-
alog contains over 1200 message ids and is
approximately 228 KB in size. The trans-
lated and compiled catalog files are from 80 to
300 KB in size depending on the completeness
of the translation. In all, the message cata-
logs themselves add approximately 16 MB to
the uncompressed program source code. The
templates add about another approximately 3
MB. For this reason, future releases of Mail-
man may provide an English-only distribu-
tion, with separately downloadable language
packs.

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association48

6 Examples

Here is some sample Python code (refor-
matted for this paper) taken from Mailman
2.1 which shows marked messages:

label = _(categories[category])

realname = mlist.real_name

doc.SetTitle(

_(’%(realname)s Administration ’

’(%(label)s)’))

doc.AddItem(Center(Header(2, _(

’%(realname)s mailing list ’

’administration
%(label)s ’

’Section’))))

Notice first that the local variables “label”
and “realname” are referenced in the default
text, and that their values come from the
magic interpolation described above. In a
translated message the order of the substi-
tutions may change, so this ensures that the
substitutions will occur in the grammatically
correct location in the translated message.
Also notice that there are actually three uses
of the underscore function. In the second and
third, the only function arguments are strings
(in Python, adjacent strings are concatenated
by the lexer). The pygettext rule for mes-
sage extraction is a single string inside the
underscore function, so both these texts will
be extracted into the message catalog.

The first use of the underscore function is
interesting in that it is getting a value out of a
dictionary lookup. This is an example of a de-
ferred translation, where the underscore func-
tion is only used for its run-time behavior.
The text returned by the dictionary lookup is
translated in a normal fashion, but the pro-
gram source code categories[category] isn’t
extracted into the catalog because it isn’t a
string.

At the place where the categories dictio-
nary is defined, the strings are also wrapped
in an underscore function for pygettext ex-
traction, but they aren’t translated at that
place in the program. We do this in a num-
ber of situations, such as when dictionaries
are defined in module global scope. In that
case, you would see something like:

def _(s): return s

categories = {

’cat1’: _(’Privacy’),

’cat2’: _(’Autoreplies’),

’cat3’: _(’Topics’),

}

_ = i18n._

Here, we’re marking three strings for ex-
traction, but we aren’t translating them at
the point of definition, because the target lo-
cale isn’t known at this time.

Due to space limitations, sample web
pages can’t be included, however a pub-
lic internationalized list can be viewed at
http://mail.python.org/mailman/listinfo/playground.
You can view this listinfo page in any of the
languages supported by Mailman.

7 Future and Related Work

Internationalized Mailman servers are in
deployed use around the world, and many of
the earliest related bugs have been satisfac-
torily fixed. However the basic architecture
used by Mailman may undergo additional re-
finement in future releases. In particular,
Mailman will be rewritten to use Unicode in-
ternally for all human readable text. The
templates used in Mailman will likely be re-
designed to use something like Zope’s ZPT,
which allow finer grain control over the evo-
lution of the templates.

The experiences learned during the Mail-
man internationalization effort have been car-
ried forward to the Zope 3 internationaliza-
tion effort [Zope3]. Zope is a web applica-
tion server and framework, also written in
Python. Zope’s internationalization efforts
are made more complicated by the fact that
it is a framework supporting multiple appli-
cations rather than a single application. This
means that while Mailman needs only a single
application domain, Zope may have multiple
simultaneous domains, even in a single trans-
lation context. Zope therefore needs a way to
record the domain that a particular message

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 49

has come from so that it can be looked up in
the proper catalog at output time. The solu-
tion has been to create a MessageID object,
which is a subclass of string that contains the
domain as an instance variable.

Also, in Zope few translatable messages are
found in Python source code. The predom-
inant carrier of human readable text is the
ZPT. Thus the mechanisms described above
for simple interpolation and global transla-
tion contexts aren’t appropriate for Zope.
While Zope’s internationalization efforts are
built on the Python tools developed during
Mailman’s internationalization, they will ul-
timately improve or expand on these tools.

As part of the Zope 3 internationalization
effort, a Translation Web Service (TWS) has
been proposed [ZopeTWS]. While largely
only science fiction at the time of this writ-
ing, the TWS is a vision of how to coordi-
nate the project management issues related
to internationalization. One of the most dif-
ficult ongoing problems for an international-
ized project is coordinating the output of the
software developers with the translation ef-
forts of the language teams. While the Trans-
lation Project attempts to automate and co-
ordinate much of this process, the TWS plans
to take this aspect a step further by provid-
ing a global web service for truly collaborative
translations. With the TWS, a project man-
ager could upload message templates for par-
ticular domains, and language teams would
translate messages at their own pace. When a
new version of the software is prepared for re-
lease, the project manager could then down-
load a snapshot of the current state of the
various translations for the project. The key
advance with the TWS is that once the in-
frastructure is in place, the software develop-
ers are no longer bottlenecks in the transla-
tion effort, and coordination among transla-
tion team members is automatic.

8 Acknowledgments

The author would like to thank Zope Cor-
poration (http://www.zope.com) for their sup-
port of this work.

Mailman was originally invented by John
Viega, and at various times has been
shepherded, maintained, and developed by
Thomas Wouters, Ken Manheimer, Harald
Meland, and Scott Cotton. The author is the
current project leader.

Juan Carlos Rey Anaya and Victoriano Gi-
ralt produced the first working prototypes
of an internationalized Mailman, and worked
with the author to designed the architecture
for supporting internationalization. Others
who provided invaluable contributions for
the internationalization effort include Ben
Gertzfield, Martin von Loewis, Simone Pi-
unno, Daniel Buchmann, Tokio Kikuchi, and
Ousmane Wilane. The ACKNOWLEDGE-
MENTS file that comes with the Mailman
source distribution contains a detailed list of
contributors.

9 Availability

GNU Mailman is free software, cov-
ered by the GNU General Public Li-
cense. It is available for download from
http://sf.net/projects/mailman

More information on Mailman can be found
at its home page http://www.list.org

Mirrors of the Mailman site are at
http://www.gnu.org/software/mailman and
http://mailman.sf.net

References

[Viega97] http://groups.google.com/groups?

q=viega+mailman&hl=en&lr=&ie=UTF-8

&scoring=d&start=60&sa=N&filter=0

[Python.Org] Python Home Page,
http://www.python.org

[GPL] Free Software Foundation,
GNU General Public License,
http://www.gnu.org/licenses/gpl.txt

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association50

[RFC1153] F. Wancho, Di-
gest Message Format,
http://www.faqs.org/rfcs/rfc1153.html

[VERP] D. J. Bernstein, Vari-
able Envelope Return Paths,
http://cr.yp.to/proto/verp.txt

[RFC3464] K. Moore and G. Vaudreuil,
An Extensible Message Format
for Delivery Status Notifications,
http://www.faqs.org/rfcs/rfc3464.html

[RFC1894] K. Moore and G. Vaudreuil,
An Extensible Message Format
for Delivery Status Notifications,
http://www.faqs.org/rfcs/rfc1894.html

[RFC2045] N. Freed and N. Borenstein,
Multipurpose Internet Mail Ex-
tensions (MIME) Part One: For-
mat of Internet Message Bodies,
http://www.faqs.org/rfcs/rfc2045.html

[ISOSoup] The ISO 8859 Alphabet Soup,
http://czyborra.com/charsets/iso8859.html

[Gettext] GNU gettext,
http://www.gnu.org/software/gettext/

gettext.html

[TranslationProject] The Trans-
lation Project Site,
http://www.iro.umontreal.ca/contrib/po/

HTML/index.html

[GettextModule] Multilingual in-
ternationalization services,
http://www.python.org/doc/current/lib/

module-gettext.html

[RFC2822] P. Resnick, In-
ternet Message Format,
http://www.faqs.org/rfcs/rfc2822.html

[RFC2047] K. Moore, MIME (Multi-
purpose Internet Mail Extensions)
Part Three: Message Header Ex-
tensions for Non-ASCII Text,
http://www.faqs.org/rfcs/rfc2047.html

[Email] email – an email and
MIME handling package,
http://www.python.org/doc/current/lib/

module-email.html

[Pelletier] M. Pelletier and A. Latteier, The
Zope book, Chapter 5, Using Zope Page
Templates, ISBN 0735711372.

[I18NZPT] http://dev.zope.org/Wikis/DevSite/Projects/

ComponentArchitecture/ZPTInternationalizationSupport

[ICU] International Components for Uni-
code, http://www-124.ibm.com/icu/

[Zope3] Welcome to the Zope 3 project,
http://dev.zope.org/Wikis/DevSite/Projects/

ComponentArchitecture/

[ZopeTWS] Translation Web Service,
http://dev.zope.org/Wikis/DevSite/Projects/

ComponentArchitecture/TranslationWebService

