
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 245

Free Software and High-Power Rocketry:
The Portland State Aerospace Society

James Perkins Andrew Greenberg
Jamey Sharp David Cassard Bart Massey

Portland State Aerospace Society
Computer Science Department

Portland State University
Portland, OR USA 97207–0751

james@psas.pdx.edu andrew@psas.pdx.edu
jamey@cs.pdx.edu dcassard@psas.pdx.edu bart@cs.pdx.edu

http://psas.pdx.edu

Abstract

The Portland State Aerospace Society (PSAS) is a small,
low-budget amateur aerospace group. PSAS is currently
developing medium-sized sub-orbital rockets with the
eventual goal of inserting nanosatellites (satellites that
weigh less than 10 kg) into orbit. Because achieving or-
bit requires a navigation system able to guide the rocket
along an orbital trajectory, PSAS is pioneering an open
source and open hardware avionics system that is capa-
ble of active guidance.

In this paper, we describe how free software and open
hardware have dramatically changed the capabilities of
amateur aerospace groups like PSAS. We show how we
have applied existing and custom free software to the
avionics and ground support systems of a sub-orbital
sounding rocket, and discuss what further work must be
done.

We conclude that the sophistication and complexity
achieved by current amateur avionics projects—which
are beginning to challenge the distinction between am-
ateur and professional—would not be possible without
the use of free software.

1 Overview

This paper details the role of free software and open
hardware in our group, the Portland State Aerospace So-
ciety (PSAS). First we introduce the field of rocketry,
and how PSAS is making contributions to the field. This
is followed by a history of the group’s rocket develop-
ment and an overview of our current project. We then
cover the details of our system, including requirements,
flight software, ground software, and the project man-
agement and collaboration tools. Finally, we discuss our
future work, and draw conclusions about the applicabil-
ity of free software to projects like ours.

2 Introduction to Rocketry

Rocketry has a rich history of significant contributions
made by amateur groups. Indeed, most national space
programs can trace their roots back to small, active
groups of amateurs working on rocketry during the early
part of the 20th century [Win83].

Amateur rocket motor classifications are categorized
by their total impulse, which is total force multiplied by
burn time. “A” motors have up to 2.5 Newton-seconds
(Ns) of total impulse, and each successive letter of the
alphabet doubles the impulse range of the previous let-
ter [Tri].

Today, rocketry includes a wide spectrum of partici-
pants and can generally be divided into four categories.

Model rocketry involves the smallest and most com-
mon types of rockets, with motors made of pressed black
powder that are smaller than 320 Ns (“H”), and bod-
ies built out of balsa wood and cardboard or pheno-
lic (resin) tubes. Most model rockets weigh less than
a kilogram and are recovered with a small parachute
or streamer. Since model rockets generally stay below
460 m (1,500 ft), they avoid most government regula-
tion in the US.

Hobby rocketry begins from the upper limits of model
rocketry. Motors delivering up to about 10,240 Ns (“M”)
of thrust are common. Motors are typically made of
composite fuel (ammonium perchlorate in a HTPB plas-
tic binder), and are sometimes clustered or staged to
achieve greater power. Some high-powered hobby rock-
ets can reach more than 6 km (20,000 ft), so launches
in the US are government regulated and require launch
waivers. Most hobby rockets use commercially avail-
able, single board avionics systems that sense the best
time to eject parachutes [alt], although some custom-
built avionics packages have been much more sophis-
ticated.

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association246

Amateur rocketry usually implies a certain level of
innovation and customization, such as custom motors,
custom avionics and metal airframes. This innovation
may be inspired by a lack of suitable commercial solu-
tions or a desire to “do it yourself”. The current altitude
record for an amateur group is 85 km (280,000 ft) with
a 327,680 Ns (“R”) motor [rrs].

Professional rocketry is the most familiar category. It
includes organizations such as NASA and the European
Space Agency (ESA), along with their private contrac-
tors such as Lockheed Martin, Boeing, and Orbital Sci-
ences. Over time, the line between amateur and pro-
fessional rocketry has blurred. Some industry observers
discriminate by financial gains, technical expertise, or
sheer altitude achieved, but there is no common stan-
dard. Indeed, as technologies such as computational
power and integrated sensors become cheaper and more
available, the capabilities of amateur groups have begun
to catch up to some professional projects.

3 The Portland State Aerospace Society
The Portland State Aerospace Society (PSAS) was
founded in 1997 by two students at Portland State
University (PSU) in Portland, Oregon to provide
an aerospace-based, systems-level educational design
project. PSAS has launched one hobby and two high-
powered amateur rockets. The group has grown to
include more than three dozen people, including high
school, undergraduate and graduate students, as well as
engineers from local industry. Current PSAS projects
are focused on taking small, manageable steps towards
the the distant vision of inserting nanosatellites (satel-
lites that weigh less than 10 kg) into orbit.

Is it possible for amateur rocketry groups to achieve
orbit? None have, to date. In most countries, the regu-
latory hurdles are at least as much of a challenge for an
amateur group as the substantial technological and finan-
cial issues. The US Commercial Space Launch Act of
1984 requires any rocket with over 890,000 Ns (“S”) of
impulse lasting for 15 seconds or more to meet stringent
safety requirements set by the FAA, NASA, and Com-
mercial Space Transportation Board (CSTB) [csl, sls].
These requirements include an extensive safety analysis,
which can take years and cost hundreds of thousands of
dollars. Furthermore, vehicles which actually achieve
orbit must comply with international “space law” as laid
out in various international agreements [un].

While fulfilling the goal of achieving orbit may be
beyond the ability of our small group, the enabling
technologies needed to get there by an amateur group
are now readily obtainable: inexpensive computational
power, sophisticated sensors, high-power actuators, and
the availability of robust, open source software for engi-
neering and logistical support.

3.1 Toward Amateur Active Guidance
To achieve orbit at minimum cost, a rocket must follow
an “orbital trajectory” that minimizes both the aerody-
namic drag in the lower atmosphere and the time to get
to orbit [Wer92]. To follow such a trajectory, the rocket
must be able to measure its current trajectory, compare
against the planned trajectory, and actively correct for er-
rors. This ability to follow a trajectory is called “active
guidance”, and the authors know of no amateur group
that has yet achieved this. To bridge this gap in ama-
teur rocketry technology, PSAS has chosen to work on
open source and open hardware high-powered amateur
rockets that are capable of active guidance.

There are many meanings of active guidance. Here
we use active guidance in the classic rocket sense: a
guidance computer on-board the rocket measures the
rocket’s current position, heading and course. The guid-
ance computer then activates a steering mechanism in
order to guide the rocket along a predetermined path.

To determine the rocket’s position, attitude (orienta-
tion) and trajectory (flight path), a rocket’s flight com-
puter uses data from one or more sensors:

• GPS receivers provide absolute position at a slow
(∼1 Hz) rate.

• Inertial Measurement Units (IMUs) provide rela-
tive linear and rotational acceleration, velocity and
position using accelerometers and gyroscopes at a
faster rate (∼1 kHz).

• Magnetometers provide attitude (orientation) by
comparing the local magnetic field to a 3D map of
the Earth’s magnetic field.

• Pressure sensors allow altitude to be computed
from atmospheric pressure models.

• Optical sensors, such as star and horizon trackers,
may be used to compute attitude.

Each of these sensors have different signal and noise
characteristics. Kalman filtering [CC99] is a signal pro-
cessing algorithm for combining noisy sensor data that
provides guarantees on the optimality of its estimate.
This estimate can then be used as an approximation of
the rocket’s true position, attitude and trajectory.

To steer the rocket, some mechanism must apply a
force to the rocket during flight. Steering mechanisms
vary widely:

• Small fins are common, but are ineffective above
about 25 km (82,000 ft).

• Reaction Control Systems use small rocket motors
to adjust the heading of the rocket, but are usu-
ally large, heavy systems that are ineffective in the
lower atmosphere.

• Thrust Vector Control changes the angle of the
main motor’s thrust, for example by gimballing
the main motor nozzle, by independently throttling

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 247

multiple clustered motors, by putting small mov-
able vanes in the path of the exhaust, or by injecting
extra oxidizer into the edge of a fuel-rich exhaust
stream [SB00].

To “close the loop”, estimates of position, attitude and
trajectory are used to calculate steering commands. The
most difficult part of active guidance may be getting the
signal processing in the control loop correct. Many fa-
mous rocket failures, such as the first launch of Ariane
5, were due to simple errors in design or implementation
of the navigation system algorithms [ins].

3.2 Related Work
Many amateur groups exist today, but none that the au-
thors know of are currently working on active guid-
ance. Guided amateur designs do exist, but all either
track the sun or are used to simply stabilize the rocket
in flight. None can actually be used to follow a planned
trajectory. An excellent example of a guided, but not
actively guided, rocket is the MARS Rocket Society’s
gyroscope-controlled gimballed-nozzle rocket [mar].

3.3 Launch Vehicles
Because we strongly emphasize safety, reliability and
new functionality for every launch, PSAS has launched
only four times over its six year history. In a field with
failure rates as high as 30% at some events, we have not
yet lost a vehicle. Further, each new launch has demon-
strated new airframe or avionics functionality which jus-
tified the time and expense of performing a launch.

3.3.1 Launch Vehicle No. 0
The first PSAS project began with four volunteers and
a simple hobby rocket dubbed “Launch Vehicle No. 0”
(LV0). The team modified a commercial kit of cardboard
tubes and balsa wood with fiberglass and epoxy resin and
added a simple avionics system.

While the airframe took only a weekend to complete,
the avionics system took two people a few months of
building and testing. The avionics system had just a
few components: a 1 MHz 8 bit RISC microcontroller;
a micro-electro-mechanical (MEMs) accelerometer; a
426 MHz 1 W amateur television (ATV) transmitter; a
monochrome video camera; and a commercial logging
altimeter. The interrupt-driven microcontroller firmware
was written in assembly language. Accelerometer sam-
ples were downlinked using the ATV audio channel at
300 bps. Telemetry data was then logged on a 386 DOS
laptop.

LV0 was launched on June 7, 1998 (Table 1). Not sur-
prisingly, things went wrong. The airframe was all but
unstable and a short circuit in the wiring harness erased
system memory. However, the received images and data
proved the soundness of the overall system concept.

3.3.2 Launch Vehicle No. 1
LV0’s success attracted more volunteers: about a dozen
people designed and built the next generation rocket,
Launch Vehicle No. 1 (LV1). The airframe was made
of carbon fiber over a PVC and aluminum core, and was
built by one person over 3 months, with little engineer-
ing analysis.

The LV1 avionics system was arguably the most ad-
vanced amateur rocket avionics package in the world in
1999. Its subsystems included:

• A custom flight computer board with an 8 bit
33 MHz RISC microcontroller, 1 MB of non-
volatile SRAM for data logging, pyrotechnic igni-
tion circuitry, and interface circuitry to other sub-
systems including temperature and pressure sen-
sors.

• An inertial measurement unit (IMU): X, Y, and Z
axis linear accelerometers and yaw, pitch, and roll
rate gyroscopes. These sensors produced a “six de-
gree of freedom” measurement which was numer-
ically integrated to calculate the rocket’s 3D posi-
tion and velocity.

• A commercial 12-channel GPS receiver.
• A color video camera and microphone that trans-

mitted over a 426 MHz ATV transmitter.
• A 913 MHz 1 W transmitter that sent 19.2 kbps

telemetry data encoded by the flight computer.
• A 146.43 MHz (2 m) amateur radio receiver with

a DTMF decoder. Decoded tones were sent to an
independent microcontroller that could fire the re-
covery system or send commands to the flight com-
puter in an emergency.

The flight computer’s assembly-language, interrupt-
driven executive sampled all sensors, logged data, and
transmitted low-pass filtered telemetry. The firmware
also used the GPS, IMU and pressure sensors to deter-
mine the rocket’s altitude and thus when to deploy the
recovery system.

LV1 required extensive ground support due to its size
and complexity. A surplus pneumatic lifter was modi-
fied into a launch tower with a 6 m (20 ft) launch rail.
Launch control software automatically performed the
countdown and launched the rocket via a 903 MHz wire-
less link to a small microcontroller-run relay board.

Another Linux-based ground computer captured,
logged and displayed live telemetry data with a custom
GTK-based application. This helped the range safety of-
ficer decide if the flight was proceeding as planned: if
not, the emergency radio could be used to deploy the re-
covery system (parachutes) even if the flight computer
failed.

LV1 was launched on April 11, 1999 and again (as
LV1b) on October 7, 2000 (Table 1). Half of the $2,000

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association248

Table 1: Comparison of PSAS Launch Vehicles
Name Size Dia. Weight Ns Altitude Cost Design CPU OS

LV0 1.8 m 10.0 cm 5.4 kg J 0.3 km $500 4 mo. PIC16C Interrupt-driven
LV1 3.4 m 11.0 cm 19.5 kg M 3.6 km $2000 18 mo. PIC17C Interrupt framework
LV2 4.0 m 13.6 cm 46.0 kg P 23.0 km $10000 >21 mo. 5x86 Linux / RTLinux

development cost came from an IEEE/AT&T “Student
Enterprise” grant.

LV1’s complexity led the dozen-plus volunteers to di-
vide into airframe, avionics and logistics teams. Each
team had their own mailing list, web page and FTP fold-
ers. However, formal design methods were mostly ig-
nored and the web site was updated infrequently. De-
signs were implemented without review, which caused
schedule slips and and two “scrubbed” launches.

3.3.3 Launch Vehicle No. 2
The next generation launch vehicle needed the flexibil-
ity, modularity and extensibility that LV1 lacked. A few
of the lessons learned include:

• Real-time Operating Systems (RTOS’s) hand-built
in assembly language are not a good idea for a com-
plex, multi-volunteer effort. An off-the-shelf RTOS
with better networking and free, easily learned de-
velopment tools is much more appropriate.

• The navigation software needs serious computa-
tional power: a CPU with hardware floating point
support is highly desirable.

• Subsystems in the avionics system must be easily
added, removed or swapped.

• The airframe itself must be flexible and expandable
to handle unforeseen requirements.

The design of LV2 took more than a year of careful
coordination between the avionics and airframe teams.
The design process was much more formal than had pre-
viously been tried. A white paper was written on the
various design options for the avionics system. The air-
frame team used finite-element analysis to predict the
performance of different airframe structures. To fund
the project, PSAS applied for and won the 2000 Oregon
Space Grant, a $10,000 NASA-sponsored small grant
program.

The LV2 airframe uses a flexible and modular de-
sign to facilitate swapping out entire subsystems such
as the avionics, recovery or propulsion (motor) unit. We
have also separated the avionics system from the pay-
load module, enabling LV2 to fly other academic or am-
ateur rocketry payloads. The resulting airframe is made
of cylindrical aluminum modules covered by a fiberglass
aeroshell. Simulations predict a maximum altitude of
23 km (75,000 ft) (Table 1).

Based on a computational complexity analysis of the
navigation software, we decided to use a flight computer

with a floating point unit (FPU), better support for mul-
titasking, and a modern development toolchain. How-
ever, a single-processor avionics system was unappeal-
ing because of the high-rate, I/O-intensive tasks many of
the sensors required: controlling a high speed analog-to-
digital converter and running a closed loop motor con-
troller, for example.

A multi-node common bus solves many of these prob-
lems by enabling a larger, more powerful central flight
computer to communicate with many smaller microcon-
trollers. This allows a “smart sensor” and “smart ac-
tuator” approach that frees up the central processor to
perform higher-level calculations and supervisory tasks.

We chose the Controller Area Network (CAN) bus as
our intra-rocket multi-node bus. The CAN bus is an au-
tomotive bus developed by Robert Bosch, GmbH which
is quickly gaining acceptance in both the industrial and
aerospace markets. CAN is a multi-master, losslessly-
arbitrated serial bus that can be run up to 1 Mbps. The
CAN bus includes packet-level checksums and tolerance
of node errors (including logic that forces a node off of
the bus if it is causing errors). Perhaps the most interest-
ing aspect of CAN is its message-based identification of
packets: instead of node addresses, the CAN bus identi-
fies and prioritizes the messages based on an 11 bit iden-
tifier. Each message, such as GPS location, or IMU iner-
tial data, is broadcast on the bus with a unique message
ID [can].

For the central flight computer we have selected the
PC104 form-factor. This allows us to use standard off-
the-shelf parts instead of taking the time and effort to
make our own. The flight computer consists of:

• A Jumptec MOPS520 PC104+ board, a 133 MHz
5x86 processor (the AMD SC520) with 64 MB of
SDRAM, typical PC ports, and a CAN interface.

• A carrier board for a 128 MB CompactFlash hard
disk.

• A PCMCIA carrier board for a Lucent Orinoco
802.11b card.

Considerable difficulty was encountered in develop-
ing the wireless telemetry system for LV1. We thus
wanted a commercially available long-range high-speed
bi-directional wireless telemetry system for LV2: such
a system could be used for telemetry as well as by the
rocket, launch tower and ground computers. After some
research, we gravitated toward the Amateur Radio Re-
lay League (ARRL) 802.11b standard. ARRL 802.11b

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 249

LV2 Rocket Avionics

802.11b

Tower Software
(Linux Application)

Hardware Ctl

802.11bCAN

Flight Software
(Linux Application)

FlashFS
CAN

CAN
Bus
...

ARRL
802.11b
wireless

2m RF

2m
Uplink

PC

Uplink Software
(Linux Application)

printer port
PC

Telemetry Viewer
(Java Application)

Ethernet PC

Telemetry Viewer
(Java Application)

Ethernet 802.11b

Telemetry Viewer
(Java Application)

Ethernet

Launch Control Software
(Linux Application)

Ethernet

...

802.11b Launch
Control

ATV

CAN

IMU

CAN

GPS

CAN

2m RF

Figure 1: LV2 System Software

is the IEEE 802.11b 2.4 GHz spread spectrum standard,
but operated under the FCC amateur radio regulations
(FCC Part 97) instead of the low-power, unlicensed reg-
ulations of the 2.4 GHz ISM band (FCC Part 15). Run-
ning under ARRL 802.11b allows us to use up to 100 W
of radiated power. Our current system uses a standard
PC-Card (Lucent Orinoco), a 1 W bidirectional power
amplifier, and high gain (+12 dB) helical ground anten-
nas [arr].

The smaller sensor/actuator CAN nodes use the Mi-
crochip PIC18F458, an 8 bit, 40 MHz RISC flash-
memory microcontroller with a built-in CAN protocol
unit. There are currently five CAN nodes:

• The LV1 IMU.
• A SigTech Navigation MG5001 OEM GPS re-

ceiver.
• A power interface node to control system power

and track battery charge.
• A recovery node—a battery-backed up CAN node

with high voltage pyrotechnic firing circuitry. Like
LV1, it has a 2 m amateur radio receiver which
decodes DTMF tone sequences sent as emergency
commands.

• An ATV node, consisting of a color video camera,
ATV transmitter, power amplifier and an overlay
board that displays textual vehicle status informa-
tion along with NTSC flight video.

The CAN nodes have proven to be useful general-
purpose building blocks: new nodes are frequently pro-
totyped atop a generic “misc CAN node” design.

4 Software Overview

The software system is divided into three major areas:

• Flight Software

– Flight Computer Software flies in the rocket,
and runs on a single-board computer running
Debian GNU/Linux (Section 5.1).

– Avionics Firmware flies in the rocket, and
runs on multiple independent microcontroller
nodes (Sections 5.2–5.3).

• Ground Software

– Launch Control Software is used by the
flight control officer to sequence the rocket
launch. Launch Tower Software manages
launch tower electronics (Section 6.1).

– Telemetry Display Software is used by the
flight control officer and spectators to view
the rocket’s status. (Section 6.2).

– Uplink Software is operated by the range
safety officer at launch control and sends
emergency commands through the 2 m uplink
(Section 6.3).

• Collaboration Software runs on the (Portland State
University) hosted PSAS server. The PSAS server
is the locus for a variety of services including mail-
ing lists, collaborative web pages and CVS reposi-
tories (Section 7).

4.1 Functional Requirements

There are a number of mandatory requirements for a suc-
cessful rocket launch. In order of priority:

1. Safety. The risk of death, injury, and property dam-
age must be minimized

2. Reliable Recovery. The airframe must be safely re-
covered. The principal software constraint is to de-
ploy the recovery parachute only at apogee, when
vertical airspeed is at a minimum.

3. Flight Data Recovery. The purpose of every flight
is to collect new data: data recovery is thus essen-
tial.

4. Telemetry Downlink. Real time sensor data must be
easily monitored by the launch controller to decide
whether or not to override the flight computer via
the emergency uplink.

5. Radio Dropout Tolerance. Radio links are notori-
ously unreliable. The software must be able to tol-
erate link failures.

6. Recovery Assistance. Position information must be
available to the recovery teams tracking the rocket
after the parachutes have opened. High winds or
malfunction can carry the rocket kilometers away
during ascent or descent.

7. Power Management. Intelligent power manage-
ment is crucial to reliable performance. Power
use also constrains peak altitude. Lithium batteries

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association250

store energy at a density of ∼300 WHr/kg. Thus,
during a standard flight profile each watt used on
the rocket adds 30 g (1.1 oz) of battery weight.
Simulations predict that the altitude- to-weight ra-
tio is -335 m/kg. Thus every watt used on the rocket
means a reduction of 10 m (33 ft) of altitude.

4.2 Logistical Requirements
The volunteer nature of our group imposes some special
project management requirements:

1. Minimize Coordination Overhead. In our project,
collaboration is entirely ad-hoc. Project synchro-
nization and access control mechanisms must re-
flect this.

2. Minimize Training. Well-known development
methods are necessary to enable immediate contri-
butions by our new volunteers.

3. Limit Costs. Funding is scarce: we must take ad-
vantage of any available cost reductions.

4.3 Choosing a Common Platform
Our requirements for a low-cost, reliable and flexible
platform discourage the use of non-free, proprietary and
unfixable software and suggest using well-documented,
open-standards-based free software. GNU/Linux not
only runs on the limited hardware we have available, but
also enables the use of thousands of free software appli-
cations available for UNIX environments.

We have standardized on the Debian GNU/Linux dis-
tribution for all of our development, collaboration and
rocket systems in order to reduce the amount of time
spent maintaining and installing software [deb]. Thanks
to Debian’s Advanced Package Tool (apt), our systems
generally require little maintenance effort while remain-
ing relatively secure. This enables us to focus on our
development efforts instead of struggling with platform
and tool configuration. It also reduces the time neces-
sary to configure development environments for our new
volunteers.

4.4 From Soft to Hard Real-time
The term “real-time” refers to applications that require
guaranteed bounds on the time between the occurrence
of an event and the software’s response. Soft real-time
requirements allow for occasional missed deadlines un-
der high load, but hard real-time applications must meet
all deadlines under all conditions [Lab99].

Linux is designed to optimize throughput, not to
guarantee hard real-time response. Processing may
be delayed by mutexes, interrupt locks, high inter-
rupt load, paging, and other causes. The schedul-
ing latency of a Linux task may be improved using
the sched setscheduler() system call to iden-
tify it as a “real-time” task. Other tricks include us-

ing mlock() or mlockall() to avoid paging delays,
and enabling full kernel preemption using various kernel
patches [Gal95].

While these approaches improve mean response time,
the system delays are still unbounded. One approach to
regions of code requiring hard real-time response is to
move them below the user API into or below the kernel,
where the code paths and potential interruptions to them
can be fully understood. For example, interrupt handlers
might be used to schedule Linux kernel threads, limiting
code analysis to the interrupt handler path.

For full control over response time, the entire
flight computer application could be run on a hard
real-time operating system. There are several light-
weight commercial offerings, such as Wind River’s Vx-
Works™ operating system, the QNX™ Microkernel
and Jean Labrosse’s MicroC/OS-II. However, commer-
cial RTOS’s generally require specialized programming
knowledge, often support a narrower array of devices
than free software, and can be expensive.

Fortunately, the best of both worlds may be found in
real-time operating systems that run the entire Linux ker-
nel and all user processes in the lowest-priority thread.
One such offering is FSMLabs Inc.’s RTLinux [fsm].
The hard real-time elements of our software can be im-
plemented using the real-time kernel primitives: every-
thing else runs as Linux user processes.

The PSAS flight computer application has a variety
of requirements. Some components have no real-time
requirement, while others have soft or hard real-time re-
quirements. For the next launch, our application’s real-
time requirements are soft: launch and apogee must be
detected and handled within a second, and data must be
logged and transmitted to the ground as soon as possi-
ble. However, the introduction of navigation algorithms
on future launches will require us to move to hard real-
time, and we plan to begin using RTLinux with our Fall
2003 launch.

5 Flight Software

The LV2 flight system uses three significantly different
kinds of processors (Table 2). This necessitates three
significantly different software architectures: processes
running in a 32 bit pre-emptive multitasking RTOS;
threads running in a light-weight POSIX-compatible
RTOS; and tasks running in a custom interrupt-driven
framework. In this section we review these software
architectures. Note that we distinguish firmware from
software: firmware consists of small, hardware-oriented
programs stored in nonvolatile memory and considered
read-only by the local processor.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 251

Table 2: Processors used in the LV2 Avionics System
System Name Arch. Bits Speed RAM Flash MMU? OS

Flight Computer AMD 5x86 32 133 MHz 64,000 KB 128,000 KB Y Linux
GPS Receiver ARM7TDMI 32 40 MHz 128 KB 1,000 KB N eCos

CAN Nodes PIC18 8 40 MHz 2 KB 32 KB N PicCore

CAN Muxer

GPS

IMU

State
Machine

Logger

Downlink

Other CAN
Nodes

Log
(RAM/
Flash)

CAN
Bus

Flight Computer

Wireless
Interface

Figure 2: Muxer Flight Computer Software Design

5.1 Flight Computer Software

A key element of the application software running on
the 5x86-based flight computer (see Section 3.3.3) is its
message-passing architecture. This software is currently
written in C, and runs in a Debian GNU/Linux envi-
ronment with a Linux 2.4 kernel. Messages are passed
across the wireless link, across the CAN bus and to the
nonvolatile data log (Figure 1).

Every component of the PSAS avionics system has
different response speed and latency characteristics. In
order to avoid holding up the whole application, each
device is monitored and controlled by one or more asyn-
chronous execution tasks. Coordination of these tasks is
accomplished by passing messages between them, ini-
tially by using a message server task. We have been
through three flight computer software designs with
different message-handling schemes: “Muxer”, “Rene-
gade” and “FCFIFO”. After introducing these designs,
we will discuss some other flight-computer software el-
ements of interest: the CAN Bus driver and our network
configuration.

5.1.1 Muxer

The first design was implemented in C using POSIX
threads, TCP/IP sockets, and device I/O processes. The
processes passed messages by connecting to a server
process called Muxer, which broadcasted each message

received to every other task.
Muxer’s server thread began by initializing a shared

buffer. It then listened for TCP/IP connections. The
central data structure was a variable-sized shared queue
of messages. When a client connection was accepted,
the server thread spawned client queue reader and writer
threads. The new client’s queue reader thread slept,
waiting for new messages to arrive in the queue. The
client’s queue writer waited for an incoming message
and enqueued it. Queue access was serialized by a mu-
tex, and semaphores were used to wake sleeping queue
readers when new messages were waiting for delivery.
The last client to read a message from the queue deallo-
cated that queue element.

The Muxer design included a client library to ease cre-
ating a TCP/IP connection to the Muxer service. Clients
were mostly other Linux processes on-board the flight
computer or (via the wireless link) on the ground (Fig-
ure 2). A shell script first started the Muxer server pro-
cess, then each of the client processes. The client pro-
cesses would open and initialize their I/O device. They
would then use the Muxer client library to open a con-
nection to the Muxer server thread.

There were some difficulties with this design:

• Excessive wake-ups. The star message topology
with N clients resulted in each new message wak-
ing up N threads, which wrote N messages to the
network stack, which woke up N processes to read
the data.

• Message synchronization. Messages were of vari-
able size, making mid-reception synchronization to
a message stream a challenge.

• Debugging. Debugging POSIX threads was diffi-
cult. Threads would sometimes damage the envi-
ronment of their neighbors.

• Opacity. The queue structure, its mutex and use
was not easily understood by the team.

• Wrong protocol. TCP/IP was a poor choice
for wireless communications, incurring multi-
megabyte queuing and retries in the network layer.
Ultimately a downlink process was added to bridge
the messages into a UDP protocol for the wireless
downlink.

A CAN bus reader was implemented and Muxer was
demonstrated to work. Nonetheless, when changes were
introduced that broke Muxer, no one was able to find the
time to sort out why. Team members eventually real-

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association252

pcmcia

Logger

Telemetry
Server

can2muxer

San
disk

can
drvr

Can
Muxer

ide lpt

Linux

rf amp
control

i82527

orinoco
pccard

orinoco
net

Flight
Computer

CAN
Bus

Figure 3: Renegade Flight Computer Software Design

ized that solving the flight computer design problem by
starting from the message handling structure and then
moving out from there was not working.

5.1.2 Renegade
One team member began working on an independent
effort, and titled it the “Renegade” design. Renegade
continued the theme of a central Muxer task dispatching
each message to all asynchronous I/O-handling clients.
However, the architecture was implemented as a UNIX
process with UNIX pipes to child I/O processes (Fig-
ure 3).

The top-down, application-oriented and simplified de-
sign was an improvement. Most importantly, needed
rocket functionality was quickly completed:

• CAN bus messages were read and distributed suc-
cessfully to all I/O devices.

• Intertask communication became independent of
networking.

• Wireless dropouts were handled efficiently rather
than causing backups.

• Fixed-sized messages eliminated synchronization
issues.

• Debugging with GDB and UNIX signals was triv-
ial.

• The Linux kernel design could be relied on for op-
timized intertask performance.

Renegade did have shortcomings.

• The lack of message filtering and the broadcast ar-
chitecture still led to excessive wake-ups.

• The inherited pipe structure made it difficult to
restart I/O processes from the shell.

• UNIX pipes were difficult to inject data into for
testing and debugging.

• No throughput tests were ever attempted.

After some consideration of Renegade’s shortcomings,

pcmciaSan
disk

ide

Linux

i82527

orinoco
pccard

orinoco
net

Flight
Computer

GPIO

CAN
Reader

Smart

Logger fc2net

CAN
Bus

CAN BUS
Driver

net2fc

Sequencer

CAN
writer

= Named
Pipe

manager

Figure 4: FCFIFO Flight Computer Software Design

we once again decided to redesign the flight computer
software to correct them.

5.1.3 FCFIFO

The third and completed design is called FCFIFO. It
combines the independent processes from the Muxer de-
sign with the conventional UNIX interprocess communi-
cations of Renegade. In addition, it eliminates the cen-
tral multiplexer (Figure 4). On startup, each process
opens a uniquely named pipe to read messages from,
then opens the named pipes of any processes it needs
to communicate with. By eliminating the central multi-
plexer, task switch and copying overhead are minimized.

A simple Linux user-mode process-oriented applica-
tion will satisfy the June 2003 soft real-time require-
ments. While named pipes do not guarantee a response
time, they do aid in maximizing throughput. They also
allow processes to run asynchronously, because they can
buffer a few messages if the reading process falls behind.
As components transition to RTLinux hard real-time
tasks, this architecture will be ideal: named pipes are
the preferred means of communication between Linux
and RTLinux tasks.

Where it is advantageous for activities to occur inde-
pendently, the application implements these via separate
processes.

• Logger takes messages on its named pipe and stores
them in the nonvolatile log file.

• CAN Reader opens the CAN bus device and blocks
until it reads a message either from the CAN bus or
from its named pipe. It passes messages to the Log-
ger and networking for storage, sensor information
to Smart, and a few other events to Sequencer.

• CAN Writer opens the CAN bus device for writ-

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 253

ing and waits for incoming CAN messages on its
named pipe. It then sends those messages out onto
the CAN bus.

• Fc2Net waits on its named pipe for a message, then
broadcasts the message to the wireless network us-
ing our UDP application protocol.

• Net2Fc initializes a UDP server port, then waits for
a message. If a command comes from the ground
via the wireless network, Net2FC passes the com-
mand on to other relevant processes.

• Smart evaluates raw sensor data and converts it into
a more useful form. (We discovered that this is a
difficult component to name. After much thought,
we decided it is the “Smart Module Assembling
Real-time Tasks”.) For example, GPS and IMU
data are processed to obtain position, velocity, and
acceleration information. Smart also detects events
such as rocket launch, apogee, and touchdown.

• Sequencer decides when the system should tran-
sition from one rocket flight state to another, and
generates the commands needed to set up the CAN
nodes for the new state.

• Manager is analogous to the UNIX init pro-
cess. It starts the whole set of named pipe chil-
dren, restarts children that die unexpectedly, and
manages a graceful application shutdown.

5.1.4 Linux CAN Bus Driver
CAN communication is performed through a GNU GPL
82527 CAN chip driver for Linux, written by Ar-
naud Westenberg and adapted to our the flight com-
puter’s 82527 interface [lcb]. The driver allows appli-
cations to communicate with the CAN bus through the
/dev/can0 device node.

5.1.5 Network Configuration
During development, the flight computer communicates
with development machines using its built-in Ethernet
or local IEEE 802.11b wireless. In flight configura-
tion it uses the ARRL 802.11b hardware described in
Section 3.3.3. Standard Linux PCMCIA and Orinoco
drivers configure and integrate the network hardware.
However, a simple custom driver is needed to switch the
system between IEEE and ARRL 802.11b modes: the
2.4 GHz bidirectional power amplifier can be turned on
and off via two general purpose I/O pins on the flight
computer.

The wireless network card is configured to use chan-
nel zero (2.400 - 2.450 GHz, which is within the amateur
13 cm band), IBSS ad-hoc networking mode, a fixed IP
address from a private network address range, and the
maximum power output available from the card. En-
abling IBSS ad-hoc networking prevents the card from
participating in auto-configuration via a management

device such as a wireless access point. The teleme-
try viewing computers at launch control are the only
other device similarly configured, to limit performance-
robbing traffic collisions.

All network transmissions between the rocket and
ground control use UDP broadcast packets. This pro-
vides a low-overhead transmission path with no packet
retries. TCP was briefly considered for rocket commu-
nications, but TCP requires a reasonably error-free com-
munications medium. Given the extreme 23 km distance
of the rocket , antenna geometry effects, attenuation due
to the motor’s exhaust plume, and tracking error of the
ground antennas, it cannot be assumed that the wireless
link can support TCP communications.

The telemetry and control protocol is symmetric,
time-stamped, and is logged on each end. This allows
us to measure communications loss through post-flight
data analysis. Periodic general status messages from the
rocket allow the ground software to resynchronize key
parameters rapidly even when communication is inter-
mittent. A data payload checksum helps validate the
quality of the received data, although invalid data frames
are also logged to aid in link quality analysis.

5.2 CAN Node Firmware: ARM7TDMI
The Global Position System (GPS) receivers on-board
LV2 are commercially available boards that use the
Zarlink GP4020 GPS correlator chip [gpsb], a custom
ASIC with a 12-channel correlator and an ARM7TDMI
microcontroller core. The receivers come with closed-
source proprietary firmware which runs the correlators,
processes the satellite data, and transmits position and
velocity information over a standard asynchronous se-
rial bus.

Unfortunately, the navigation algorithms in commer-
cially available GPS receivers fail to cope with the high
dynamics of LV2 and will lose satellite lock when the
vehicle exceeds 515 m/s, 18 km in altitude, or 8 g’s of
acceleration. Because LV2 will exceed these limits and
a locked GPS receiver is a critical part of our navigation
system, we have started a separate project: developing
free firmware for GPS receivers which use the GP4020
chip. Dubbed GPL-GPS [gpsa], the firmware is based on
Clifford Kelley’s “OpenSource GPS” project [kel] and
will allow the receivers to stay locked during highly dy-
namic flights. The open firmware will allow us to imple-
ment our own sophisticated processing techniques, in-
cluding integrating the GPS and IMU into a GPS-aided
inertial navigation system [FB99]. The firmware may
also allow us to:

• Implement local differential GPS corrections via a
similar GPS receiver on the ground in a known,
static position. Enabling a local differential base
station can yield positioning accuracies in the 1 m

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association254

Table 3: Embedded Operating Systems Comparison
Name RT POSIX Free Small Effort

RTLinux Y Y Y N 1x
µcLinux N Y Y N 2x

MicroC/OS-II Y N N Y 4x
µITRON Y N Y Y 4x

eCos Y Y Y Y 4x
Custom Y N Y Y 10x

range.
• Use multiple GPS receivers to determine attitude

(orientation) by comparing the position of their an-
tennas.

• Keep GPS lock on the satellites by integrating data
from the inertial measurement unit to aid the corre-
lator tracking loops.

We chose to use an existing RTOS in order to speed
up firmware development, and because a multi-threading
abstraction will simplify the GPS firmware design.
GPL-GPS requires an RTOS with extremely low latency,
POSIX compliance to facilitate porting, a reasonable
free or open-source license, ability to run in 1 MB of
flash memory and 128 KB of RAM, and a reasonable
effort level (estimated as a time multiplier) for us to im-
plement with our hardware. Based on our research (Ta-
ble 3), we selected Red Hat’s eCos (embedded Config-
urable Operating System) [Mas03] as the best fit to our
criteria. We are currently working on the alpha release
of the GPL-GPS project, which includes a port of eCos
and Kelley’s OpenSource GPS to the GP4020. We hope
to have initial results by September 2003.

5.3 CAN node Firmware: PIC18

The Microchip PIC18F458 8 bit RISC microcon-
trollers [pic] used on the CAN nodes (see Section 3.3.3)
have 1.5 KB of RAM, 32 KB of flash memory. and a
long list of peripherals. The latter include an 8-channel
10 bit analog to digital converter, various serial inter-
faces including CAN, timers and an in-circuit debugging
port. The PIC18 is used as a small and simple inter-
face between sensors and the CAN bus, implementing
a rudimentary “intelligent sensor and actuator” network.
Because of the extremely tight memory constraints and
the simple functionality of the firmware, we have written
a custom C-language interrupt-driven framework called
“PicCore”.

Unfortunately, there are few free software applica-
tions for PIC18 development. For example, there is
no GCC cross-compiler for the PIC18 family. The
GDB debugger does not support Microchip’s “ICD2”
in-circuit debugging tool. Our current development en-
vironment consists of Microchip’s no-cost Windows-
based integrated development environment (MPLAB

IDE) [pic], graciously donated copies of HI-TECH Soft-
ware’s PICC-18 C compiler [C18], and Microchip’s
ICD2 debugger/programmer. Our failure to get MPLAB
to run under emulators such as WINE unfortunately re-
quire us to have Windows-based development environ-
ments for the PIC18 developers. Developing our own
PIC18 development tools would exceed the resources of
our project, so for now we have resigned ourselves to op-
erate with two development environments. We are cur-
rently searching for equivalent hardware that has better
free software development support.

6 Ground Systems
The software and hardware components on the ground
(as shown in Figure 1) have several objectives:

• Maintain the safety of all participants and by-
standers.

• Initiate the launch sequence (with means of emer-
gency abort).

• Receive and record telemetry data from the vehicle
during flight,

• Receive and record video broadcast from the vehi-
cle during flight,

• Initiate manual recovery procedures if the flight
software appears to be failing.

Due to our small budget, our volunteer team has al-
ways relied on the kindness of strangers for available
computing hardware. As a result, we need to be able
to run our software on as many hardware and software
configurations as possible. We have chosen Java as our
ground systems language because Java byte-code en-
ables us to run our code on any sufficiently powerful
platform. Java’s automatic memory management and
simple GUI framework make ideal tools for user inter-
faces and data visualization. Java is well known: many
of the developers in our group are familiar with it.

6.1 Launch Control Software
The launch control software is a Java application which
steps through an automated launch sequence. The se-
quence of events is coordinated with the rocket and
launch tower via ARRL 802.11b wireless links: the
launch tower may be several kilometers away from
launch control for safety reasons. Safety systems include
manual interlocks and a rocket-controlled interlock trig-
gered on flight computer diagnostic information. These
interlocks prevent accidental launches in the event of
software or hardware failure.

The launch tower computer is the same as the rocket’s
flight computer: a PC104 stack with 5x86 processor,
802.11b card, power supply and nonvolatile flash mem-
ory. The controller even has a CAN bus: a CAN-
based relay board controls launch tower hardware such

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 255

as strobe warning lights, sirens, and the rocket motor ig-
nition relay.

6.2 Telemetry View Software
When the rocket is at its peak altitude of 23 km
(70,000 ft), it is almost impossible to visually ascertain
what is happening. The “Rocketview” telemetry display
software is used by flight personnel and interested by-
standers to observe the rocket’s status. The flight con-
troller uses telemetry information to decide whether the
flight sequence is proceeding according to plan: if not,
the range safety officer can manually deploy the recov-
ery system using the emergency 2 m radio uplink.

The Rocketview application displays data received
from the rocket via ARRL 802.11b wireless link. The
display includes 6 strip charts (X, Y, and Z position as
well as roll, pitch and yaw attitude), several text fields,
and a free-form console log for miscellaneous messages
from the flight computer. The Rocketview application
was modeled after a GTK-based C program used for
LV1. Because Rocketview is written in Java, it can
take advantage of Java’s graphics capabilities and of
such open source components as the JFreeChart chart-
ing tool [jfr].

6.3 Uplink Software
The uplink system is an emergency backup communi-
cation link. The link is manually activated by the flight
controller in case the flight computer fails to deploy the
recovery system. The uplink computer runs a Java appli-
cation which communicates via serial port with a Yaesu
50 W 2 m amateur transceiver. Upon user command, the
application keys the Yaesu transmitter and generates a
series of DTMF tones (the familiar touch-tone telephone
tones) which are received by the recovery CAN node on
the rocket. Besides emergency commands, the uplink
software can also generate a small number of CAN bus
commands for diagnosis purposes.

6.4 Video Capture System
Amateur TV signals received from the color camera on
the rocket are recorded on tape and displayed live on a
monitor. The flight personnel and bystanders can thus
observe the flight from the rocket’s point of view. The
rocket uses a video overlay board to to display posi-
tion and flight computer status information. Because the
ATV transmitter is higher power and lower bandwidth
than the ARRL 802.11b transmitter, this display func-
tions as a backup telemetry downlink.

7 Collaboration Software
Before the LV2 project, PSU’s Electrical and Computer
Engineering department hosted a web site and Major-
domo list server [maj] for PSAS activities. The site

was primarily used to promote recruitment and showcase
progress. No centralized version control was used and
only one or two people updated the web site. Nearly all
engineering documentation was passed back and forth
between individuals using private email and removable
computer media. This collaboration model was ill-suited
to the size and complexity of the LV2 project: it was too
difficult for team members to share their efforts quickly
and effectively.

To resolve these problems, PSU agreed to host a do-
nated Pentium-class computer. By co-locating a PSAS-
owned computer, we gained flexibility in service pro-
visioning and the flexibility to set up and experiment
with collaboration software. Four of the team mem-
bers with significant system administration experience
have administrative privileges. Anyone on the team
can get OpenSSH [ssh] shell accounts for purposes in-
cluding software development and document prepara-
tion. PSU creates a backup of this system nightly using
Amanda [ama].

Mailman [mai], with its web interface, makes main-
taining the public announcement, team coordination,
and site administration mailing lists easy. In particu-
lar, mail list subscribers handle their own subscription
and mailing list preferences. Although less than ideal,
CVS [cvs] has made it possible to share and back up
work on software and other development documents,
even across different operating systems.

The PSAS web site (http://psas.pdx.edu)
still serves a promotional purpose. However, it now
also serves as an ongoing project development notebook,
with meeting minutes, task lists, specifications, team
work areas, back-of-the-envelope calculations and dia-
grams online. This is accomplished using TWiki [twi].
TWiki is a Perl CGI-based Wiki Wiki Web implemen-
tation by Peter Thoeny and others, comprising a web-
based collaboration platform designed for corporate and
academic intranets. Using TWiki, any team member can
add or alter site content using a web browser. TWiki
automatically generates hypertext links, allows for at-
taching multimedia content, supports website search,
can be configured to automatically notify subscribers of
changes and can remind users of upcoming or overdue
action items.

Begging for installation of tools from University staff,
or working through one or two authorized web secre-
taries using static HTML, would severely constrain our
entire project. Free software collaboration tools make
it possible for team members to contribute and collabo-
rate at their own pace, which dramatically improves our
team’s productivity.

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association256

8 PSAS Contributions
To date, amateur groups building custom avionics have
developed private software of little use to other groups.
In contrast, the PSAS software design is modular, based
on inexpensive and open hardware, licensed under the
GNU General Public License, and available for down-
load from our web site. Any interested team is welcome
to use and build on our work.

We strongly encourage other amateur groups to use
our TWiki site, mailing lists and CVS tools to collabo-
rate with us on our projects: advancing the state of the
art through wider community collaboration.

A few of our free software and open hardware projects
available for use are:

• Gerbertiler. A Perl script which tiles together
printed circuit board layout files. Tiling together
many small boards into one large board signif-
icantly reduces the one-time fee associated with
having a single board produced.

• Misc. CAN node. A 4 x 7 cm board for prototyp-
ing PIC18F458/CAN node applications. Complete
schematics, board layout files and working code are
available.

• PicCore. An interrupt-driven framework, periph-
eral APIs and network drivers for the PIC18F4xx
family of microcontrollers, written using HI-TECH
Software’s PICC-18 C compiler.

• GPL-GPS. As discussed in Section 5.2, GPL-GPS
is a project to create free firmware for any Zarlink
GP4020-based GPS receiver board.

• LV1 IMU. A design for an inertial measurement
unit that costs less than $150 to build. Complete
schematics, board layout files and CAN node inter-
face software are available.

• CAN Bus Driver. Modest changes to Arnaud West-
enberg’s Linux CAN Bus Driver (Section 5.1.4)
customize it to our COTS flight computer board and
are being contributed back to that project. More
importantly, we plan to create and contribute an
RTLinux CAN Bus Driver derived from that work.

• Navigation Algorithms. The signal processing al-
gorithms for approximating system location (Sec-
tion 3.1) may be adaptable to other combined iner-
tial and GPS navigation applications.

9 Next Steps and Future Work
In late June or early July 2003, we are planning a low-
altitude launch to flight test the avionics system to 6 km
(20,000 ft) in central Oregon. This test will verify the ba-
sic operation of the critical hardware and software sys-
tems during flight. Systems to be tested include:

• Avionics. The flight computer software including
crude navigation algorithms, the ARRL 802.11b

telemetry link, the emergency uplink system, and
critical sensors and actuators such as the IMU and
recovery system.

• Launch Tower. Launch tower computer, launch
software, umbilical cord and launch safety systems.

• Ground Computers. telemetry display and uplink
software.

In September 2003, we are planning to build on the
June results and launch to 23 km (75,000 ft) in the Black
Rock Desert of Nevada. By the September launch, we
hope to:

• Migrate the flight computer software to RTLinux.
• Improve the sensor suite, including a next genera-

tion IMU, the first generation of the GPL-GPS, and
a magnetometer.

• Improve the navigation algorithms, including real-
time GPS-aided inertial navigation routines to cal-
culate position, attitude and trajectory.

• Upgrade the ARRL 802.11b telemetry link to use
forward error correction algorithms to improve the
quality of data received and provide an ability to
confidently reconstruct some amount of lost data.

• Integrate the GPL-GPS receivers into the rocket
and base station, creating a local differential GPS
system.

After these two launches we will begin a parallel de-
velopment effort to:

• Develop a steerable hybrid motor system, probably
using liquid injection thrust vector control.

• Further tune the navigation algorithms in the avion-
ics system through simulations and experiments
with ducted fans.

By late 2004 or early 2005 we hope to begin the inte-
gration of these two systems and begin the first of many
test flights with an active guidance system in place. In-
stead of trying to fly a fully actively guided rocket in
one step, we plan to continue our careful, incremental
approach to development. For example, by increasing
the gain of the control system while removing fin area,
we can build confidence in the navigation system as the
rocket becomes more and more unstable because of the
lack of fins.

By late 2005 or early 2006 we hope to have an actively
guided, possibly staged, rocket lifting research projects
to high altitudes, if not to the edge of space.

10 Conclusion

The PSAS software system employs integrated comput-
ing, from 8 bit and 32 bit microcontrollers through com-
mon PC laptop and server hardware. The system hosts
a wide variety of visualization, device control, soft-
ware development, promotional and coordination roles.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 257

Data flows through real-time serial and parallel buses
as well as wireless links, requiring only straightforward
programming based on network abstractions. Required
tasks range from hard real time signal processing in a
preemptive multitasking environment to coordinating a
caravan of two dozen people to the Nevada desert. Our
budget for development equipment is quite small, and
our team of contributors vary widely in skill level and
available time.

With minor exceptions, free software has helped us
tackle all of these technological and logistical problems.
Commercial systems could not have scaled so widely,
cost so little, offered so many choices, offered free sup-
port and training, and integrated these many domains
together so well. Our group could not have grown as
quickly, or achieved our current level of sophistication,
without free software and open hardware.

Availability
For complete technical details on our projects, includ-
ing launch videos, technology overviews, white papers,
source code, schematics, and board designs, please visit
http://psas.pdx.edu/.

Acknowledgements
Throughout this paper, we have acknowledged the
important debt we owe to developers of free soft-
ware and previous amateur aerospace groups who have
made our project possible. We are extremely grate-
ful for the invaluable encouragement and financial sup-
port from Portland State University’s Computer Sci-
ence and Electrical and Computer Engineering Depart-
ments. We would like to thank the IEEE, AT&T and the
NASA/Oregon Space Grant, all of which have provided
significant financial support; also the companies which
have donated materials and software such as HI-TECH
Software, ANSOFT, and Microchip. Finally, we would
like to thank Usenix for supporting our efforts to bring
free software to the amateur aerospace community, and
Keith Packard for providing excellent counsel on our pa-
per.

References
[alt] John Coker’s Rocket Pages: Altimeter Com-

parison. Web document. URL http://www.
jcrocket.com/altimeters.shtml
accessed April 2, 2003 07:00 UTC.

[ama] Amanda, The Advanced Maryland Auto-
matic Network Disk Archiver. Web doc-
ument. URL http://www.amanda.org/
accessed April 6, 2003 10:00 UTC.

[arr] Amateur Radio Relay League High-Speed
Digital Networks. Web document. URL

http://www.arrl.org/hsmm/ ac-
cessed April 6, 2003 10:00 UTC.

[C18] HI-TECH Software PICC-18 Compiler. Web
document. URL http://www.htsoft.
com accessed April 6, 2003 23:00 UTC.

[can] Robert Bosch GmbH CAN home page.
Web document. URL http://www.can.
bosch.com/ accessed April 6, 2003 10:00
UTC.

[CC99] Charles K. Chui and Guanrong Chen. Kalman
Filtering. Springer-Verlag, 1999.

[csl] United States Code, Title 49 Transportation,
Chapters 701 and 703. Web document. URL
http://uscode.house.gov/title_
49.htm accessed April 7, 2003 06:19 UTC.

[cvs] CVS. Web document. URL http://
www.cvshome.org/ accessed April 6,
2003 09:30 UTC.

[deb] Debian. Web document. URL http://www.
debian.org/ accessed April 6, 2003 09:30
UTC.

[FB99] Jay A. Farrell and Matthew Barth. The Global
Positioning System and Inertial Navigation.
McGraw-Hill, 1999.

[fsm] FSMLabs - The RTLinux Company. Web
document. URL http://www.fsmlabs.
com/ accessed April 6, 2003 10:00 UTC.

[Gal95] Bill O. Gallmeister. POSIX.4: Programming
for the real world. O’Reilly and Associates,
Inc., 1995.

[gpsa] GPL-GPS home page. Web document. URL
http://gps.psas.pdx.edu/ accessed
April 6, 2003 23:00 UTC.

[gpsb] Zarlink Semiconductor GP4020 GPS Receiver
Baseband Processor. Web document. URL
http://products.zarlink.com/
product_profiles/GP4020.htm
accessed April 6, 2003 10:00 UTC.

[ins] Ariane 5 - Flight 501 Failure; Report
by the Inquiry Board, European Space
Agency. Web document. URL http:
//www.ima.umn.edu/˜arnold/
disasters/ariane5rep.html ac-
cessed April 7, 2003 03:00 UTC.

[jfr] JFreeChart. Freely available source code.
URL www.jfree.org/jfreechart/
index.html accessed April 7, 2003 00:48
UTC.

[kel] OpenSource GPS Project. Web document.
URL http://home.earthlink.net/

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association258

˜cwkelley/ accessed April 6, 2003 23:00
UTC.

[Lab99] Jean J. Labrosse. MicroC/OS-II: The Real
Time Kernel. Miller Freeman, 1999.

[lcb] Linux CAN-bus Driver for the Intel(c) 82527
and Philips sja1000 controllers. Web docu-
ment. URL http://home.wanadoo.nl/
arnaud/, accessed April 7, 2003 07:21
UTC.

[mai] Mailman, the GNU Mailing List Manager.
Web document. URL http://www.list.
org/ accessed April 6, 2003 09:30 UTC.

[maj] Majordomo. Web document. URL http://
www.greatcircle.com/majordomo/
accessed April 6, 2003 09:30 UTC.

[mar] MARS Amateur Rocketry Group. Web docu-
ment. URL http://www.mars.org.uk/
accessed April 6, 2003 23:00 UTC.

[Mas03] Anthony J. Massa. Embedded Software Devel-
opment with eCos. Prentice Hall Professional
Technical Reference, 2003.

[pic] Microchip, inc. Web document. URL http:
//www.microchip.com/ accessed April
6, 2003 23:00 UTC.

[rrs] Reaction Research Society Space Shot. Web
document. URL http://www.rrs.org/
Projects/Launches/Space_Shot/
space_shot.html accessed April 2,
2003 07:00 UTC.

[SB00] George P. Sutton and Oscar Biblar. Elements
of Rocket Propulsion. Wiley-Interscience, De-
cember 2000.

[sls] Spacelawstation.com: U.S. Space Law.
Web document. URL http://www.
spacelawstation.com/uslaw.html
accessed April 7, 2003 06:20 UTC.

[ssh] OpenSSH. Web document. URL http:
//www.openssh.org/ accessed April 6,
2003 09:30 UTC.

[Tri] Tripoli Rocketry Association. Motor
size classifications. Web document. URL
http://www.tripoli.org/motors/
motor_classes.html accessed April 3,
2003 19:00 UTC.

[twi] TWiki - A Web Based Collaboration Plat-
form. Web document. URL http://www.
twiki.org/ accessed April 6, 2003 09:30
UTC.

[un] United Nations Office for Outer Space Affairs;
International Space Law. Web document. URL

http://www.oosa.unvienna.org/
SpaceLaw/spacelaw.htm accessed
April 7, 2003 02:00 UTC.

[Wer92] James R. Wertz, editor. Space Mission Anal-
ysis and Design. Microcosm, Inc., October
1992.

[Win83] Frank H. Winter. Prelude to the Space Age:
The Rocket Societies 1924-1940. Smithsonian
Institution Press, 1983.

