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Abstract

Trust management credentials directly authorize actions,
rather than divide the authorization task into authentica-
tion and access control. Unlike traditional credentials,
which bind keys to principals, trust management creden-
tials bind keys to the authorization to perform certain
tasks.

The Distributed Credential FileSystem (DisCFS) uses
trust management credentials to identify: (1) files be-
ing stored; (2) users; and (3) conditions under which
their file access is allowed. Users share files by dele-
gating access rights, issuing credentials in the style of
traditional capabilities. Credentials permit, for exam-
ple, access by remote users not known in advance to the
file server, which simply enforces sharing policies rather
than entangling itself in their management. Throughput
and latency benchmarks of our prototype DisCFS im-
plementation indicate performance roughly comparable
to NFS version 2, while preserving the advantages of
credentials for distributed control.

Keywords: Filesystems, access control, trust manage-
ment, credentials.

1 Introduction

The Internet offers the possibility of global informa-
tion sharing and collaboration. Existing file-sharing sys-
tems and their access control models have been chal-
lenged, however, by the scale and administrative com-
plexity of the Internet. Such systems are either primarily
distribution-oriented, such as the Web, or small in scale,
such as NFS.

Both types of systems share the property that a (rela-
tively) small set of users have read/write access to files,
as current access control systems rely on authentication

requiring that the user is known to the system. This
works in closed administrative domains (e.g., NIS do-
mains or Kerberos realms [21]), where an administrator
creates a user account and assigns access rights to it.

Consider a local user, Alice, who wishes to share files
with Bob, who does not have an account on Alice’s file
server. The local system administrator must open an ac-
count for Bob, but this may create administrative and le-
gal problems, and may conflict with local policies (e.g.,
only employees may have accounts).

We propose a mechanism that allows Alice, without the
intervention of any centralized administrative authority,
to authorize Bob to access her files. This is done by hav-
ing Alice create a credential that contains Bob’s key, the
DisCFS file handle and the permissions. Alice signs the
credential, and confers to Bob the authority to access the
file. Alice may simply e-mail the authorization creden-
tial to Bob as cleartext because the credential itself does
not contain any secrets (apart from the information that
Alice wishes to share a file with Bob). By combining
Alice’s credential with one signed by himself, Bob may
further delegate access to the file.

We show that this simple mechanism is secure and scal-
able. Further, by requiring the cooperation of only the
users involved in the file exchange, this mechanism of-
fers great flexibility and low administrative overheads.
The system monitors all access to files, and can identify,
using the offered public key, any entity issuing file re-
quests. Mechanisms for restricting access or imposing
access controls are also provided.

The access control mechanism that is presented in this
paper is independent of the actual mechanism used for
the exchange of data (e.g., ftp, NFS, http, and so on).
We implement two prototypes, one for ftp-like access
(not covered in this discussion) and another using the
NFS protocol.

In the following sections we demonstrate how our mech-
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anism may be deployed in practice using the NFS pro-
totype as an example. We integrate our access mecha-
nism with a user-level NFSv2 server using IPsec [16];
our intention is to offer this access mechanism eventu-
ally as part of the standard NFS authentication frame-
work. The performance measurements collected by run-
ning common file-related benchmarks indicate perfor-
mance roughly comparable to existing systems.

Organization The next section expands on the chal-
lenges addressed by DisCFS. Section 3 discusses prior
and related work. Sections 4 and 5 describe our de-
sign and prototype implementation for OpenBSD 3.1,
and Section 6 presents measurements of the prototype.
Section 7 presents user and administrator experiences
with our first prototype. Sections 8 and 9 discuss future
work and conclude the paper.

2 Motivation

Let us consider two typical examples of information
sharing. In the first case, Alice, a salesperson, would
like her ten best clients to have access to advance infor-
mation about a product. She does not want other clients
or the general public to have access to this information,
however.

The second example involves servers used to share infor-
mation such as digital photographs (e.g., www.ofoto.
com). Alex is given the authority to store his personal
photographs on a server. Apart from Alex, access to this
information may be restricted to small groups of users.
These groups may be different, depending on the mate-
rial (e.g., pictures of family events to relatives, pictures
of social events only to those who participated, etc.).

In both cases, local users (Alice and Alex), known to
their systems, wish to provide access to other external
users. For this type of activity to be feasible, the follow-
ing conditions must be met:

� The system should be able to cope with large num-
bers of files and an even larger number of users ac-
cessing these files.

� Administrator involvement to allow external users
access to files should be eliminated. Local users
should be able to authorize access to files by exter-
nal users.

� The file access conditions must be flexible and ex-
pandable: there should be no constraints by the ac-
cess mechanism as to what conditions may be im-
posed for access.

� Delegation is extremely important for the operation
of the system. There is already an implicit delega-
tion of access authority from the administrators to
the local users and from the local users to external
users, but we want to generalize the ability to dele-
gate to arbitrarily long delegation chains.

� Most sites have access policies and these must
be enforced regardless of the actions of individual
users. The administrator should be able to specify
default access policies for the entire site.

� Apart from the actual files, the system should main-
tain as little additional state as possible.

� The access mechanism should work for both cen-
tralized servers and in a distributed environment
where the files are stored on multiple servers.

Existing systems have several major shortcomings when
used for sharing information. First, traditional user au-
thentication implies that a user is known to the system
before file requests can be processed. Second, file and
directory permissions are concepts inherited from multi-
user operating systems. Sharing is achieved by either ac-
count sharing (which defeats accountability) or through
the use of group access permissions on files and direc-
tories. Such permissions lack flexibility and fine granu-
larity, and perhaps most importantly, extensibility: there
is no way of adding new permission mechanisms if the
existing ones prove inadequate.

In the salesperson example, because the information is
not intended to be widely available, Alice must place
the literature in a restricted part of the corporate Web
site and make arrangements so that only the designated
clients have access to the material. The traditional way
of doing things implies that accounts and passwords
should be created and given to the customers. A more
sophisticated way of achieving the same goal is to use
X.509 credentials for user authentication [7]. Although
this approach addresses the well-known security prob-
lems of password authentication, it does not address the
problem of access control, necessitating the maintenance
of additional state (e.g., access lists) on the server.

Faced with complex and inflexible mechanisms, some
sites abandon access restrictions, and instead rely on ob-
scurity (e.g., non-obvious URLs, files in unreadable di-
rectories, etc.). Others use cookies, despite the fact that
they are known to have numerous weaknesses [11].

Before we continue with the description of the Dis-
tributed Credential File System (DisCFS), which was
designed and implemented to meet the listed require-
ments, we shall discuss previous work done in the area
of wide-area file sharing.
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3 Related Work

Network file sharing has attracted the attention due it;
the need for distributed information sharing has ex-
panded with the reach and services of the Internet, and
will continue to do so. There are some undesirable trade-
offs in existing systems that inhibit large-scale network
file sharing.

3.1 File Systems

Network file systems such as NFS and AFS [27, 14]
are the most popular and widespread mechanisms for
sharing files in tightly administered domains. However,
crossing administrative boundaries creates numerous ad-
ministrative problems (e.g., merging distinct Kerberos
realms or NIS domains). The developers of the Athena,
Hesiod and Bones systems recognize and address some
of these problems [26, 8, 15].

Encrypting file systems such as CFS [4] place great em-
phasis on maintaining the privacy of the user informa-
tion by encrypting the file names and their contents. The
limitation of such systems is that sharing is particularly
difficult to implement; the file owner must communicate
the secret encryption key for the file to all the users who
wish to access it. Even then, traditional access controls
must still be used to enforce access restrictions (e.g.,
read-only, append-only, immutable file, etc.). Further-
more, because CFS encrypts data stored in files, modify-
ing files or altering their permissions is inefficient. Our
system assumes that the server is trustworthy, so that the
files can be stored in the clear. An administrator may
still choose to deploy CFS-like encryption mechanisms
on top of DisCFS.

WebFS is part of the larger WebOS [29] project at UC
Berkeley. It implements a network file system on top of
the HTTP protocol. WebFS relies on user-level HTTP
servers, used to transfer data, along with a kernel mod-
ule that implements the file system. The security archi-
tecture for WebOS, called CRISIS [3], uses X.509 cer-
tificates to identify users and to transfer privileges. As-
sociated with each file are access control lists (ACLs)
that enumerate which users have read, write, or execute
permission on individual files. We have taken a more
general and scalable approach in that there is no need for
traditional ACLs because each credential is sufficient to
identify both users and their corresponding privileges.

Bayou [28, 23] is a replicated, weakly consistent stor-
age system, designed for the mobile computing environ-
ment. Like CRISIS, it uses certificates to identify users,
and permits read or write access to data collections. It
also supports delegation and revocation certificates. Dis-

CFS supports finer-grained access than Bayou; DisCFS
credentials can contain much richer security policies.

The design rationale of the capafs system [24] is similar
to that of DisCFS. Security for file access is is done by
encoding the access capabilities in the file name. This
both results in incomprehensible file names (requiring
symbolic links for user interactions) and knowledge of
the file name providing access to the file (requiring pro-
tection of the file name and raising the question of how
file names are communicated amongst remote users). In
addition, limitations in the way directories are handled
restrict file creation operations to local users.

The system that is most closely related to our work is
the secure file system, or SFS [20]. SFS introduces the
notion of self-certifying pathnames — file names that
effectively contain the appropriate remote server’s pub-
lic key. In this way SFS needs no separate key man-
agement machinery to communicate securely with file
servers. However, because SFS relies on a trusted third
party to mutually authenticate server and client (or oth-
erwise requires the use of a secure password protocol be-
tween them), collaboration is possible only if the client
and the server have a common root for their Certification
Authorities. DisCFS goes a step further. It uses creden-
tials to identify both the files stored in the file system and
the users that are permitted to access them, as well as the
circumstances under which such access is allowed. Fur-
thermore, users can delegate access rights simply by is-
suing new credentials, providing a natural and very scal-
able way of sharing information. This is not the case
for SFS, where access control relies on user and group
ID, which are translated from one machine to another.
This forces users to have accounts on file servers to ac-
cess protected files, and defeats the purpose of a truly
distributed file system.

Putting DisCFS in the secure storage framework devised
by Riedel, et al. [25], DisCFS has the following charac-
teristics:

Players. As with iSCSI [10], there is no notion of in-
dividual users; readers, writers and owners are un-
differentiated with respect to the credentials they
possess.

Likewise, because access is not based on mem-
bership groups, there is no group server. There is
no namespace server either, only a DisCFS storage
server.

Trust assumptions. Data is not protected from the
server, making it vulnerable to a collusive storage
server, as with iSCSI.

Security primitives. Servers and hosts authenticate
with mechanisms external to DisCFS. As with
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iSCSI, any authentication keys are distributed by
an external mechanism.

The server does differentiate between reads and
writes. However, whether the server grants a read
or write request depends solely on information con-
tained in the credential presented by the requesting
party.

Credentials provide appropriate access control and
can be sent in the clear. For further security, data
and commands can be encrypted while on the wire
using IPsec.

Revocation is achieved by revoking credentials.
Keromytis discusses a variety of mechanisms for
credential revocation in trust management systems
in [17].

Granularity. DisCFS is agnostic to the duration of the
keys and credentials, but our expectation is that
they are reasonably persistent.

Convenience. DisCFS is convenient to use. Once cre-
dentials for a file are available, delegation is easier
than in identity-based systems, as we describe in
some detail later in the paper.

3.2 Operating Systems

The Taos operating system [30] uses a narrow API to
control access to security-aware services, e.g., the file
system. It uses credentials for delegation of access rights
between principals. DisCFS utilizes these well-known
techniques to extend a real world protocol such as NFS.
This makes our approach easily portable and more flex-
ible than specialized operating system mechanisms.

The concept of credential-based access control also ap-
pears in the Exokernel [19]. In this system, users can
create new capabilities at will, but the new capability
must be dominated by an existing one. This is similar
to our chains of certificates, but is limited by the fact
that permissions are hardwired into the system, and the
hierarchical capability tree may be only up to 8 levels
deep. In our system, certificate chains can be of arbi-
trary length, and the access policy can consider factors
such as time-of-day, so that, for example, leisure-related
files may not be available during office hours.

3.3 Other Protocols

To share files across wide-area networks, a number of
protocols have been deployed, the most commonly used
ones being FTP and HTTP. Anonymous FTP, where
there is no need for authentication, offers high flexibility

2nd Certificate

Admin > Alice

Grant: RWX

Admin > Alice

Grant: RWX

Alice > Bob

Grant: R

ADMIN

ALICE

BOB

1st Certificate

Figure 1: Delegation of privileges, from the administrator to
Alice, and from Alice to Bob. The administrator grants Alice
full access by issuing her the first certificate. Alice can then
delegate read access to Bob by issuing him the second certifi-
cate. To be granted access Bob must present a certificate chain
consisting of both certificates.

because any user can download or upload files to FTP
servers. Similarly, in the Web architecture, access is ei-
ther anonymous or subject to some sort of ad hoc authen-
tication mechanism. This configuration is useful only in
the case where file content is not sensitive. In the case
where authentication is required, flexibility is greatly re-
duced. The only users allowed to access the server, in
that case, are users who are already known to the sys-
tem. As with existing network file systems, this restricts
the possibility for users outside the same administrative
domain to collaborate.

4 DisCFS Design

4.1 System Architecture

DisCFS dispenses with user names as an indirect means
for performing access control; in other words, it does not
require users to first authenticate to the system and then
have their identities checked against access control lists
in order to determine whether the server should honor
a client’s request. Instead, DisCFS uses a direct binding
between a public key and a set of authorizations. This re-
sults in a decentralized authorization system that is flexi-
ble enough to cope with a large variety of authentication
scenarios. Requests are signed with the requester’s key
and must be accompanied by other credentials that form
a chain of trust linking the requester’s key to a key that is
trusted by the system. In our first example in Section 2,
we looked at Alice’s predicament in trying to allow her
sales clients access to internal files. In the DisCFS sys-
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tem, the server trusts only the administrator’s key. An
administrator signs Alice’s credential, binding her key
to the files in question. The credential allows Alice read,
write and execute access to the files.

If Alice then wishes to allow Bob to read these files, she
simply creates a new credential which grants Bob’s key
read access to the files. Bob issues a request signed with
his key. If the system is to honor Bob’s request, Alice’s
credential must accompany it. This credential forms a
link between the external user (Bob) and the internal
user (Alice). Alice’s own credential (issued by the ad-
ministrator) must also be available, to link the internal
user to the administrator. Thus, Bob’s request must be
accompanied by both credentials in order to be granted
(see Figure 1). Credential caching can reduce the num-
ber of credentials that have to be exchanged.

In DisCFS the traditional problem of credential (or cer-
tificate) revocation is fairly straightforward to address:
because the DisCFS server controls access to files by ex-
amining a user’s credentials, revocation is accomplished
by notifying the server about bad keys or credentials. If
the credentials are relatively short-lived, the server need
only remember such information for a short period of
time.

To express access rights and the diverse conditions un-
der which these are granted, we need some form of pol-
icy definition language. There are a number of possible
choices such as, PolicyMaker [6], KeyNote [5], QCM
[12] and SPKI [9]. In our system we use the KeyNote
trust management system for this purpose. Our choice
was based on the fact that KeyNote is also integrated into
IPsec which protects communication between the client
and the file server. By using IPsec and Keynote, we can
also use the file access credentials to establish the IPsec
link (see Section 4.3).

4.2 Access Control in DisCFS

Generally speaking, access control systems check
whether a proposed action conforms to policy. An ad-
ministrator specifies actions as a set of name-value pairs,
called an action attribute set. Policies written in the
KeyNote assertion language either accept or reject ac-
tion attribute sets that the system presents to the pol-
icy engine (non-binary results are also possible). An
administrator can break up policies and distribute them
as credentials, which are signed assertions that he can
send over a network. A local policy can then refer to
the credentials when making its decisions. The creden-
tial mechanism allows for arbitrarily complex graphs
of trust, in which credentials signed by several entities
are considered when authorizing actions, as seen in Fig-
ure 2. An administrator can handle group-based access

ALICE

Delegation to a (user’s) public key

Delegation of authority

Trusted assertions

ADMIN3

ADMIN2

ADMIN1

BOB

SOTIRIS

CHARLIE

JOHN

ANGELOS

Figure 2: Delegation in KeyNote, starting from a set of
trusted keys. The dotted lines indicate a delegation path from
a trusted public key (the administrator’s) to the user making
a request. If all the credentials along that path authorize the
request, it will be granted. Intermediate credentials can only
refine the authority granted to them (i.e., they can never allow
a request that was denied by policy).

simply by issuing the appropriate credentials to all the
group members. Furthermore, an administrator can cre-
ate sub-groups at any level in the hierarchy.

Figures 3 and 4 show two credentials that form part of a
delegation chain in our system. The administrator issues
a credential to user miltchev granting access to a par-
ticular directory. User miltchev then grants user sotiris
access to the same directory during November 6, 2002.
KeyNote allows this delegation because the authority
granted to user sotiris is a subset of the authority of user
miltchev. Notice that users are identified only by their
public keys.

The advantage of using DisCFS is that an administra-
tor no longer needs to have a priori knowledge of the
user base. Thus, the system does not need to store in-
formation about every person or entity that may need
to retrieve a file. DisCFS also provides its users with
the ability to propagate access to the files by passing on
(delegating) their rights to other users. In this way, users
pass credentials rather than passwords, allowing the sys-
tem to associate access requests with keys and to recon-
struct the authorization path from the administrator to
the user making the request (and thus grant access). The
system may not know that Bob is trying to get at a file,
but can log that key B (Bob’s key) was used and that key
A (Alice’s key) authorized the operation. The adminis-
trator can then use this audit trail to validate that the ac-
cess request follows the appropriate usage policy. Note
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Authorizer: "<Administrator’s Public Key>"
Licensees: "<Miltchev’s Public Key>"
Conditions: (app_domain == "DisCFS") && (HANDLE == "666240") -> "RWX";
Comment: "testdir"
signature: "<Signature by Administrator>"

Figure 3: Credential granting user miltchev (as identified by his public key, in the Licensees field) access to directory testdir. The
1024-bit keys and signatures in hex encoding have been omitted in the interest of readability.

Authorizer: "<Miltchev’s Public Key>"
Licensees: "<Sotiris’ Public Key>"
Conditions: (app_domain == "DisCFS") && (HANDLE == "666240") &&

(localtime >= "20021106000001") &&
(localtime <= "20021106235959") -> "RWX";

Comment: "testdir"
signature: "<Signature by Miltchev>"

Figure 4: Credential by user miltchev granting (delegating) user sotiris access to directory testdir for one day. Again, the keys
and signatures have been omitted in the interest of readability.

that a user can at most pass on the privileges she holds
(there is no rights amplification); furthermore, the user
can choose to delegate only a subset of her privileges,
e.g., access only to a specific file in the user’s directory.

4.3 DisCFS over NFS

We implemented DisCFS over NFS. This allows easy
integration into existing systems without extensive mod-
ification. Moreover, the entire scheme works with both
monolithic and distributed servers. Each DisCFS repos-
itory is responsible only for the part of the distributed
filesystem that is stored locally, thus there is no need
to distribute and synchronize authentication and access
control databases (such as NIS).

The NFS protocol is particularly suitable for our needs
for the following reasons:

� NFS is widely used and supported by numerous
platforms.

� The NFS protocol is portable, stable and reliable.

� The NFS server is available as a user-level program,
so development is possible without modifying the
operating system. This is particularly useful be-
cause it is not always possible to have access to the
operating system source code.

Like NFS, the DisCFS system consists of a client and
a server. The client runs on the user workstation and
establishes a connection to the DisCFS server. We use
IPsec [16] to protect traffic between client and server.

The mutual authentication required for building an IPsec
connection is based on the submitted file access creden-
tial (and additional delegation credentials). The client
can authenticate the server, because the file access cre-
dential contains the server key, while the server only pro-
ceeds with the connection if the submitted credentials al-
low access to the requested file (thus establishing a chain
of trust to the user’s key).

When a file is stored in DisCFS, the server generates a
credential containing information that allows the future
retrieval of the file contents, as well as information about
the file creator. Because DisCFS closely follows NFS
semantics, it appears to the user as another mounted file
system. Files for which credentials have been supplied
appear under the mount point of the DisCFS file system.
Without an appropriate credential, retrieval of a file is
not possible.

Once a user submits the necessary file credentials, the
file appears under the DisCFS mount point using the
same name it had when its credential was created. The
client may then use file I/O requests similar to NFS. The
system also permits a user to override the default file
name, allowing files to be placed in user-specified loca-
tions. This is because DisCFS access credentials allow
direct access to files, making file naming optional. The
name is stored as a comment in the credential and is used
as the default file name. The operation of establishing a
connection to the server is similar to the Unix mount(8)
command whereby an entire filesystem is grafted to the
file tree. See Section 5 for a detailed explamation of how
users access files on a DisCFS server.
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If additional files must be accessed from the same server,
the existing IPsec connection is used. This optimization
allows the cost of the IPsec connection establishment to
be spread over requests for multiple files.

4.4 Security Analysis

Our system allows users of a server to access their
files securely over an insecure medium (Internet). Un-
like ACL-based systems that authenticate users and then
check their access rights, our system is concerned only
with capabilities associated with a key. The system
must, therefore, decide whether a request signed with
a given key should be granted or denied. The decision
depends on whether the system can form a chain of trust
between the issuing key and another key that the server
can trust (e.g., the key of a system administrator).

The chain of trust is formed by merging information that
is pre-stored in the server (default policy) and policy
statements that the user supplies. These policy state-
ments are encapsulated in credentials. Each credential
makes some assertions about one key and are signed
with another key. All these assertions together with the
authorizing keys are fed to the policy engine in the ac-
cess control system.

Credentials are signed but not encrypted. They contain
policy assertions and the public component of the key
that they apply to. Both key and policy are signed with
the authorizing key. The implication of this feature is
that credentials may be retrieved on demand. For ex-
ample, if Alice wants to send Bob a pointer to some
information, instead of sending a URL to the relevant
page, she may send Bob a URL pointing to the creden-
tials needed to access the information. Because these
credentials contain a reference to the file, Bob needs no
further information to access the file. Obviously, using
the http protocol to download credentials is one of many
ways of acquiring them.

If such a credential is intercepted, the only information
that may be obtained is that key A makes some asser-
tions regarding key B. Credentials are signed and there-
fore cannot be forged. Because they relate to specific
files (defined by the assertions that they contain), they
cannot be used to obtain access to other information.

The default policies may define the rules that apply to
a particular server. For example, they may allow access
only between certain hours of the day, or they may ex-
clude or limit access granted to a particular user.

Data is encrypted only while in transit. It is stored as
cleartext on the server, which implies that users trust the
server and its administrators. Existing data-protection
schemes (such as a CFS-like filesystem) can be used on

top of DisCFS to protect the secrecy of the user’s data
from the server.

Credential-based access control systems usually have
problems handling revocation, as it is difficult, if not im-
possible, to know who may have access to a file. How-
ever, by controlling the file server, administrators have a
number of ways for disallowing access to files:

� Because the initial access credential uses the Dis-
CFS file handle to address the corresponding file,
an administrator can invalidate the access creden-
tial by changing the handle (see Figure 3).

� Administrators can disallow particular keys from
being used (thus revoking the keys, rather than the
credentials that grant them privileges) by modify-
ing the site’s security policy. This approach, how-
ever, is not scalable and should be used in conjunc-
tion with relatively short lived credentials (i.e., with
expiration periods measured in weeks, rather than
years).

� Administrators can tie the access credentials to
short-lived “refresher” credentials. Thus the ac-
cess credential is not useful without a valid (non-
expired) refresher.

Note that delegation, although extremely useful, can be
turned off. Administrators can also limit the maximum
length of the delegation chain (by inserting policy code
in the access credentials), thus restricting the spread of
delegated credentials.

The main advantage of having policy embedded within
the credentials is that administrators can have multiple
schemes operating at the same time. Different schemes
may be used on different categories of files depend-
ing on, e.g., the security classification of each category.
Thus, for restricted files (lowest classification) adminis-
trators may rely on the expiration of the credentials; on
more sensitive files they can use the default site policy,
and if a file has to be unconditionally removed, admin-
istrators can change its handle and issue new credentials
to the users that should access it.

4.5 Threat Analysis

At the object level, the threat model of DisCFS does not
seem any different from any simple file access control
protocol. DisCFS does not encrypt files on disk, thus
users have the option of trusting the system administra-
tor or using encryption mechanisms on top of DisCFS.

At first glance the threat model of DisCFS at the net-
work level does not differ from that of NFS used over a
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secure channel, e.g. a trusted LAN or VPN. However,
what sets DisCFS apart is its ability to address the threat
of implicit rights amplification inherent in identity-based
access control. All co-authors writing an arbitrary paper
using CVS need to have login access to the serving ma-
chine. In contrast, the credential-based access control of
DisCFS allows us to trust the co-authors no more than
we have to - for authorship and nothing else.

4.6 Scalability

An important advantage of the access mechanism we
present is scalability. This is due to the fact that we do
not maintain user access rights on the DisCFS server.
In fact, the server does not even have the concept of
a “user” in the traditional operating system sense; it
merely processes requests from keys that can supply a
valid trust chain to one of the keys contained in the de-
fault policy of the server.

This design decision has two implications: (a) users
must supply (sometimes long) chains of credentials, and
(b) the server’s trust state remains constant irrespective
of the number of potential users. Caching alleviates
some of the processing overhead associated with the
long trust chains.

Keeping servers uncontaminated by user information al-
lows data set partitioning and replication across systems
even in separate administrative domains. The disk ca-
pacity of the server must be proportional to the amount
of information it contains, and its connection to the In-
ternet should be appropriate for the actual traffic it ex-
periences, not the user set or the number of policies that
must be enforced.

Although the number of potential users is irrelevant, the
number of actual users that connect to the server to ac-
cess information is important because the access control
operations they initiate load the server. It is clear that a
KeyNote-based access control mechanism places greater
load on the processing resources of the server, however
this can be addressed in two ways: (a) by using hard-
ware acceleration for the cryptographic operations, and
(b) by replicating or partitioning datasets across servers,
thus spreading the load over many access points.

5 Implementation Details

The DisCFS prototype was implemented on OpenBSD
3.1 by creating a user-level NFS server with the access
control mechanism described in Section 4. The imple-
mentation is portable and does not depend on features
unique to OpenBSD.

Administrators must set up initial NFS mountpoints on
each client for each server that offers DisCFS services.
To construct a secure path to the DisCFS server, the
client constructs an IPsec tunnel between the client sys-
tem and the DisCFS server. We extended the NFS pro-
tocol with an RPC procedure that enables the client to
attach the remote directory to the mountpoint over the
IPsec connection. This allows the DisCFS server to
retrieve the public key used for authentication in the
IKE [13] protocol (as part of the IPsec key establish-
ment phase) and associate it with a Unix-style userid.
IPsec protects future NFS requests, allowing the DisCFS
server to associate them with the user’s public key. Each
user on a multi-user client has his own IPsec connection
to the server.

After a user executes our RPC attach procedure, the de-
sired directory appears under the client’s default DisCFS
mount point (e.g., /discfs). However, because the user
has not yet provided any credentials, the file permis-
sions of the attached directory are set to deny all access.
File/directory ownership is set to the userid provided by
the attach procedure. The userid is irrelevant to the Dis-
CFS server, and thus no prior arrangement with the sys-
tem administrator is needed. Similarly, no file ownership
conflicts are possible; the userid is only manipulated in
this way to make possible the use of unmodified NFS
clients.

To get access to the attached directory or any other
files/directories in it, the user must have a credential like
the one shown in Figure 3. This credential is issued by
the administrator (as identified by the public key appear-
ing in the Authorizer field) to a specific user (as identi-
fied by the public key appearing in the Licensees field),
and contains enough information for the DisCFS server
to determine what permissions should be granted to the
client system.

A file/directory is identified by a handle, which in our
prototype implementation is simply the i-node number
of the file/directory on the server. A DisCFS server uses
this handle to locate the physical file in its local file stor-
age. The handle specifics should change in the future be-
cause inode numbers are not suitable as globally unique
identifiers across a network. A possible solution would
be to build a handle from the inode number and a gener-
ation number, similar to the 4.4 BSD NFS implementa-
tion. In the following discussion we refer to file handles
used by DisCFS as DisCFS file handles to distinguish
them from NFS file handles.

The “Conditions” field can contain additional restric-
tions e.g., allowing access during working hours, spec-
ifying that multiple authorizers are required, etc. By
combining credentials with different policy assertions
we construct a rich access framework that allows fine
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grained access control.

The credential assertions in our implementation grant
standard Unix permissions. The return values for the as-
sertions form a partial order of 8 combinations ( “false”,
“X”, “W”, “WX”, “R”, “RX”, “RW” and “RWX”) and
translate directly into the standard octal representation.
Thus, in the credential of Figure 3 the user is granted
read, write, and execute access on the testdir directory.
We wrote a utility which allows a user to submit cre-
dential assertions to the DisCFS daemon over RPC. The
DisCFS server adds credential assertions to a persistent
session. Following this operation, the permissions of
the attached directory change accordingly. To improve
performance, we use a simple round-robin cache of re-
quested operations and policy results.

The semantics of some of the procedures defined by the
NFS protocol change in our implementation. For ex-
ample, because access control is managed through cre-
dential assertions, it makes no sense to use the setattr
procedure for setting mode bits on a file. There is also
a problem with the create and mkdir procedures. A user
can create a file in the attached directory because he has
read, write, and execute access. However, he cannot ac-
cess the newly created file because he does not have a
credential assertion for it. Thus, we added our own RPC
procedures to the NFSv2 protocol that, upon success-
ful creation of a file/directory, return a credential with
full access to the creator of the file. Furthermore, this
credential is also added to the user’s active session, so
he can immediately use the newly-created filesystem ob-
ject. The owner can then issue other credentials further
delegating access to this file/directory to other users.

6 Experimental Evaluation

The architectural discussion is largely qualitative, and
consequences for system performance are useful to un-
derstand. The best evaluation would be application-
oriented benchmarks for applications in distributed envi-
ronments, however this is always difficult for a new pro-
totype system. Instead, we use micro-benchmarks and
macro-benchmarks to obtain first-order quantification of
performance, as well as identification of overhead intro-
duced by the access control mechanism.

Our test hosts are 1 GHz Intel PIII machines with 256
MB of memory and 10 GB Western Digital Protege IDE
hard drives. In the two-host, client-server tests that ex-
plore the network performance of our system, we con-
nect our machines with 100 Mbps Ethernet. We did not
use IPsec for the measurements, because results would
vary considerably depending on the specific IPsec con-
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throughput is comparable to NFSv2 throughput.
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Figure 6: Bonnie Sequential Input (Block). DisCFS
throughput is less than 50% of NFSv2 throughput, mostly due
to its lack of prefetching.

figuration parameters. For an evaluation of the perfor-
mance impact of using IPsec in various configurations
we refer the reader to [22]. In the following tables,
FFS means measurements taken on the local file system.
NFSv2 and NFSv3 denote measurements over NFS pro-
tocol versions 2 and 3 respectively using the UDP proto-
col. We did not measure our performance when running
over TCP.

6.1 Micro-benchmarks

We use the Bonnie benchmark [1] to evaluate perfor-
mance when writing and reading a large file. To elim-
inate caching effects we use a 512MB file, twice the size
of main memory. In our results we also include the per-
formance of FFS and NFSv3 for completeness.

Figure 5 presents results for block writes. The perfo-
mance of DisCFS is equivalent to that of NFSv2 because
the credential related overheads of DisCFS are amor-
tized over the time of the experiment. Remember that
this experiment is on a single file.

Figure 6 presents results for block reads. We observe
that for read operations DisCFS trails NFSv2 by more
than 100%. The reason for this behavior is that NFSv2
prefetches blocks, an optimization which we have yet to
incorporate in the current implementation of DisCFS.

Finally, in Figure 7 we experiment with the cost of
rewriting blocks. More specifically, in this test Bonnie
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Figure 7: Bonnie Sequential Output (Rewrite). DisCFS
throughput is closer to NFSv2 throughput than for reads, but
still suffers from its lack of prefetching.

reads a block, dirties it, and then writes it back. As ex-
pected, the performance of DisCFS is closer to NFSv2
than in the read benchmarks, however DisCFS still suf-
fers from its lack of prefetching.

6.2 Macro-benchmarks

The Bonnie micro-benchmark gives us an idea about the
raw performance of DisCFS. However, it does not reflect
the access pattern typical of most modern applications.
Internet software like electronic mail, netnews and web-
based commerce depends on a large number of relatively
short-lived files.

To simulate heavy small-file system loads we use the
PostMark benchmark [2]. PostMark was designed to
create a large pool of continually changing files and to
measure the transaction rates for a workload approxi-
mating a large Internet e-mail server.

We use the default PostMark configuration parameters.
The initial number of files created is 500. Files range
between 500 bytes and 9.77 kilobytes in size. PostMark
then performs 500 transactions on each file. Block sizes
for reads and writes are 512 bytes and UNIX buffered
I/O is used. We run each PostMark test 10 times and
take the average.

We compare three versions of DisCFS to FFS, NFSv2
and NFSv3. DisCFS NK is a crippled version of our
system offering no security; no KeyNote queries are
made. Instead, full access is returned for every file. Dis-
CFS COLD is a fully functional system, but the server
was restarted between each successive run of the bench-
mark. Results for DisCFS WARM reflect the effects of
using a cache of 1024 policy results and not restarting
the server between successive runs of the benchmark.

Figure 8 shows results for the average creation rate
(files/second) for files created before other transac-
tions were performed and the average deletion rate
(files/second) for files deleted after all other transactions
were performed. When PostMark creates a file, it selects
a random initial size, and writes text from a random pool
up to the chosen length. File deletion selects a random
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Figure 9: PostMark File Creation/Deletion Mixed w/ Trans-
actions. Performance drops when file create/delete operations
are mixed with other transactions. However, DisCFS perfor-
mance remains the same in relation to NFSv2.

file from the list of active files and deletes it. The per-
formance of DisCFS NK is approximately equivalent to
NFSv2 when the credential processing overhead is elim-
inated. DisCFS COLD results show that the credential
processing overhead is significant. Performance drops
by more than 50%. This is not surprising because upon
each file creation the DisCFS server must create a new
credential, sign it and evaluate it in the KeyNote session.
Upon each deletion a query must determine whether the
operation should be permitted. As the DisCFS server
begins to service most requests from the cache after the
first run of PostMark, numbers for DisCFS WARM re-
turn to just below the performance of DisCFS NK.

Figure 9 also presents average file creation and deletion
rates, but in this case the files are created and deleted
during a sequence of other transactions. As expected,
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Throughput for writes is better than for reads due to the buffer
cache. DisCFS performance in relation to NFSv2 performance
remains the same as in Figures 8 and 9.

overall performance drops compared to the previous iso-
lated case, but DisCFS performance remains the same in
relation to NFSv2 performance.

Finally, results presented in Figure 10 reflect system data
throughput. For the read test, PostMark opens a ran-
domly selected file and reads the entire file into memory
using the configured block size (512 bytes). For the ap-
pend test, PostMark opens a random file, seeks to the end
of it, and writes a random amount of data. As expected,
the throughput for writes is better than for reads because
writes go through the buffer cache. Performance of Dis-
CFS is again comparable to NFSv2 when the creden-
tial overhead is eliminated artificially (DisCFS NK), or
by caching (DisCFS WARM). With a cold cache (Dis-
CFS COLD) the performance drops by more than half
due to the frequent KeyNote queries.

We use the top utility to monitor CPU utilization dur-
ing the PostMark benchmarks. The NFSv2, NFSv3 and
DisCFS NK servers utilize less than 1% of the CPU. Uti-
lization for DisCFS COLD reaches up to 60% during the
file creation test due to the number of cryptographic op-
erations the server must perform. Caching brings the
number down to 4% for DisCFS WARM.

To explore the overhead of credential handling imposed
by real world applications, we time a recursive grep
for ifdefs in every file of the OpenBSD kernel source
tree. We conduct the test with a cache size of 128 policy
results and a pool of 5000 sessions. The cache contains
the permission bits returned by previous policy lookups.
The DisCFS server adds credential assertions to a ses-
sion. Having more sessions helps to distribute them and
speeds up the query evaluation. We use three versions
of our system: DisCFS with full credential functionality
(DisCFS1), DisCFS with no signature verification of the
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Figure 11: Recursive Grep. The results give us a good break
up of the various overheads of DisCFS. Without the creden-
tial processing overhead (DisCFS3), performance is close to
NFSv2. Credential processing overhead without signature ver-
ification is presented by the DisCFS2 numbers. Finally, Dis-
CFS1 numbers show the full KeyNote overhead with signature
verification.

credentials (i.e., all credentials are trusted) (DisCFS2),
and finally a version of DisCFS that does not use cre-
dentials at all and just returns full access for every file
(DisCFS3). We summarize our results in Figure 11.

The total number of files accessed is 5236. By compar-
ing the access times of DisCFS1 and DisCFS3 we see
that the overhead per file is less than 3.5 ms. This over-
head is caused by the credential processing and signa-
ture verification. Note that this is a worst-case scenario,
since our test accessed every file exactly once. During a
normal session, we expect that users will make multiple
accesses to the files they have attached, thus amortizing
the verification overheads over the lifetime of their ses-
sion. Additionally, while the DisCFS overhead may be
significant in the local area network access scenario, in
accesses over a wide area network the verification over-
heads become less significant.

As a more representative test, we compare the time to
compile the OpenBSD kernel over the local filesystem
(FFS), NFSv2, NFSv3, and the three versions of Dis-
CFS. This experiment involves access control decisions
for approximately 4500 source and 2600 generated files
(object and header files, as well as the produced kernel
image). We show our results in Figure 12. As expected,
the local filesystem is the fastest; however, the cost of the
full DisCFS implementation (including signature verifi-
cation and complete policy evaluation per file access) is
negligible, compared to the plain NFSv2 case. (Notice
that DisCFS seems to be slighly faster than NFSv2. The
primary reason for this is the greatly simplified code run-
ning on the DisCFS server, which is effectively a very
minimal NFS server.) The overhead due to credential
signature verification, i.e., the difference between Dis-
CFS1 and DisCFS2, is just 4 seconds. The overhead of
using credentials, i.e., the difference between DisCFS1
and DisCFS3 is about 30 seconds. The access control
costs that are more evident in Figure 11 are amortized
over the actual operation of the system. This conclu-
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Figure 13: DisCFS credential cache performance. Increasing
the cache size results in gradual improvement.

sion matches our previous experience in evaluating the
relative costs of security mechanisms: although crypto-
graphic (or other) costs may seem high when viewed in
the context of a micro-benchmark, their impact during
regular user activities is minimal [22].

In our last experiment, we evaluate how different cache
sizes affect DisCFS performance in our compilation ex-
periment. In Figure 13, we see that increasing the cache
size results in a gradual improvement, leveling off at
about 256 entries. Even limited caching of policy de-
cisions improves performance by more than 5%. In-
evitably this will vary depending on the file access pat-
terns and an extensive evaluation of optimum cache size
is beyond the scope of this paper. However, we believe
that it is beneficial to include even a small cache for
keeping recent policy results.

7 User and Administrator Experiences

So far, our first DisCFS prototype has been tested in a
small laboratory environment. Although this is not a
wide-scale deployment by any means, we learned some
important lessons.

7.1 Administrator Experiences

Administrators were happy to be relieved of dealing
with users after the initial setup. After an administra-
tor granted a user access to a desired directory with a
signed credential, there was little reason for any user to
contact an administrator. Further files could be created,
and access could be delegated to other users without ex-
ternal administrative intervention. However, initial setup
of the system was at times cumbersome. As our first Dis-
CFS prototype was based on NFS, administrators had
to deal with setting up initial NFS mountpoints on each
client for each server that offered DisCFS services. In
hindsight, it would have been better to circumvent the
mountd protocol. Setting up DisCFS initially also re-
quired a good understanding of IPsec configuration.

Administrators also pointed out some security concerns
they had with the first prototype. Currently, a KeyNote
query is not performed for every nfs call, only on getattr
calls. While this improves performance, it also means
that we trust the client software to enforce the returned
UNIX permission bits, something that will change in fu-
ture releases of DisCFS.

7.2 User Experiences

Users initially thought that creating and signing creden-
tials using a text editor and the KeyNote command-line
utilities was somewhat cumbersome (e.g., great care had
to be taken with whitespace, so that signatures would be
correct). This was quickly addressed with a Perl script
that streamlined the process.

Sending credentials for each file over to the server
proved to be inconvenient when large numbers of files
were involved. A solution offering more end-user trans-
parency is desirable.

8 Future Work

User and administrator experiences with the first proto-
type of DisCFS suggest that improvements can be made
both in ease of use and security. We have started work
on a second prototype which should address most issues.
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We will eliminate the requirement to administer NFS
mount points by including the name of the server hosting
a file in the credential. It will then not be necessary to
use the mountd protocol in order to determine a file’s lo-
cation. KeyNote queries will be made on all NFS calls,
so that we do not have to trust the client software.

As mentioned previously, the choice of inode numbers
as file handles was not optimal. Consider the case where
Bob creates and shares file song.mp3 with Alice. Bob
soon gets tired of the song, deletes it, and proceeds
to create another file, tax return.dat. If the inode of
song.mp3 happened to be used for tax return.dat, Alice
might be granted access beyond the initial intent. To im-
prove security, the new file handles will not use inodes.

To simplify semantics, our second prototype will not be
used for sharing directories. The next version of Dis-
CFS will support sharing of files only. Users will be able
to choose what directory structure they want the files to
appear in. Manual sending of credentials will be elim-
inated by using a loopback NFS server or a stackable
filesystem layer on the client. When a file containing a
credential is encountered (e.g., Makefile.cred), the loop-
back server will translate the name (Makefile), read the
credential, connect to the remote server specified in the
credential, and finally serve the file if the remote server
grants access. While this additional layer will hurt per-
formance somewhat, it will greatly enhance the trans-
parency of DisCFS to the end user.

For our first prototype we chose a user-level NFS server
because it made development a lot faster. Our bench-
marks suggest that the additional context switching over-
head compared to a kernel-level server is not substantial.
In the future we might try to move the DisCFS server
into the kernel which would likely bring about a small
improvement in performance at the expense of portabil-
ity. However, we suspect that larger benefits can be ob-
tained by incorporating some of the NFS optimizations
not incorporated in DisCFS (e.g., block prefetching).

DisCFS is based on NFSv2 because we had convenient
examples of userland servers implementing it. It would
be worthwhile to integrate our authentication and autho-
rization model with NFSv4, e.g. as a plugin into to the
GSS-API [18].

We used a simple round-robin cache of policy results
in our first prototype. We would like to implement a
practical cache replacement algorithm and experiment
more to find an optimal cache size.

Unix permission bits can be inflexible and limiting. Fu-
ture versions of DisCFS could take advantage of the flex-
ibility of credentials to provide more fine-grained access
control, e.g., allow appending to a file but no truncation.

Looking further forward, new file-sharing policies are

achievable with DisCFS beyond the Unix NFS support
demonstrated. An example of such use would be en-
abling controlled access to file storage for the untrusted
users that are characteristic of the Web. DisCFS should
also offer advantages for emerging P2P systems, as its
avoidance of centralized control is well-suited to coop-
erative resource-sharing at a large scale and with dis-
parate administrative models. Finally, while DisCFS’s
decentralized control should result in “scalability”, this
assertion requires robust quantitative modeling and sup-
porting measurement.

9 Conclusions

This paper introduced a completely credential-based
mechanism for authentication and access control of files.
This is a new approach to distributed file systems, as it
separates the policy for controlling the file from the ac-
cess control mechanism used by the underlying file stor-
age. This gives DisCFS advantages in flexibility and
scalability over traditional file systems, and even over
some recent secure file system efforts.

The DisCFS prototype implementation combines a
credential-based access control system with common
Unix file operations. It is straightforward to implement
and deploy DisCFS because it uses components that
exist in common operating systems, such as NFS and
IPsec, and supports the traditional Unix filesystem se-
mantics.

The system’s performance was evaluated with both
micro- and macro-benchmarks. The performance of in-
dividual DisCFS operations is bounded by that of the
same primitives, such as remote RPC times, which limit
the performance of other distributed systems. Used
in larger contexts such as software builds or file-tree
searches (where many files are “touched” sequentially, a
worst case for DisCFS) the performance impact of Dis-
CFS’s enhancements is relatively low. In normal usage,
the DisCFS-imposed overhead is negligible.

DisCFS source code is available for download at
http://www.seas.upenn.edu/˜miltchev/discfs/.

This work was supported by DARPA and NSF under
Contracts F39502-99-1-0512-MOD P0001, CCR-TC-
0208972, and CISE-EIA-02-02063.
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