
USENIX Association

Proceedings of the
General Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

2003 USENIX Annual Technical ConferenceUSENIX Association 325

Operating System I/O Speculation:
How two invocations are faster than one

Keir Fraser, University of Cambridge Computer Laboratory�

Fay Chang, Google Inc.*
Keir.Fraser@cl.cam.ac.uk Fay@google.com

Abstract

We present an in-kernel disk prefetcher which uses spec-
ulative execution to determine what data an application
is likely to require in the near future. By placing our
design within the operating system, we provide several
benefits compared to the previous application-level de-
sign. Not only is our system easier to implement and de-
ploy, but by handling page faults as well as traditional
file-access methods we are able to apply speculative ex-
ecution to swapping applications, which often spend the
majority of their execution time fetching non-resident
pages. We also present two new OS features that fur-
ther improve the performance of speculative execution
for applications that have large page tables and working
sets. These are a fast method for synchronizing an errant
speculative process with normal execution, and a mod-
ified form of copy-on-write which preserves application
semantics without delaying normal execution. Finally,
by leveraging OS knowledge about memory usage and
contention, we design a mechanism for estimating and
limiting the memory overhead of speculative executions.

Our implementation for Linux 2.4.8 provides bene-
fits of up to 60% for a wide range of explicit-I/O and
swapping applications. Our results show that our sup-
port mechanisms for swapping applications provide sig-
nificant performance benefits, and in some cases pre-
vent speculative execution from hurting performance.
We further demonstrate that our memory control mech-
anism effectively limits speculative overheads while al-
lowing beneficial speculative executions to proceed un-
hindered.

1 Introduction

In the past decade, the gap between processing speeds
and disk access times has increased by an order of mag-
nitude [1]. At the same time, although memory sizes

�This work was performed while the authors were at Compaq Sys-
tems Research Center.

have increased substantially, so have application data re-
quirements. Systems therefore continue to swap their
data sets to and from disk as they are often too large to
all fit in memory.

In recognition of this problem, there has been a great
deal of research into automating disk prefetching al-
gorithms that are dramatically more accurate than the
standard heuristics in current operating systems. Re-
cent work by Demke and Mowry [2] demonstrated im-
pressive performance results using compiler-based tech-
niques. However, system-wide use of their approach
would require recompiling every application. More-
over, their compiler analyses are limited to looping array
codes.

To address this problem, Chang and Gibson [3] pro-
posed to discover the future data accesses of an appli-
cation stalled on I/O by executing ahead in its code, ig-
noring non-memory-resident data. They also proposed a
design for automatically modifying application binaries
to apply this speculative execution approach. With this
design, they demonstrated that speculative execution can
deliver substantial performance benefits for a diverse set
of applications that issue explicit file read calls.

Unfortunately, their user-level design has several ma-
jor disadvantages. First, their design relies on the cor-
rect implementation of a complex binary modification
tool. Second, while their design does not require ap-
plication source code, applications must still be trans-
formed to receive benefit. Third, their design can only
issue prefetches for disk reads caused by explicit file I/O
because page faults cannot be trapped by the applica-
tion. The system therefore cannot be applied to swap-
ping (or out-of-core) applications which leverage file-
and swap-backed virtual memory to avoid the complex-
ity of explicit I/O. Finally, their design does not measure
or limit the memory used by speculative execution, and
its resulting effect on system performance. It is therefore
poorly suited for use on realistic systems, which do not
always have abundant memory.

In this paper, we demonstrate how these problems
can be overcome with an in-kernel design for automat-
ing speculative execution. We present a design that,

Award Paper!

2003 USENIX Annual Technical Conference USENIX Association326

by leveraging existing operating system features, is not
only substantially easier to implement but also may pro-
vide benefit to arbitrary unmodified application binaries.
Moreover, by exploiting knowledge that is typically un-
available outside the operating system, our design auto-
mates disk prefetching for virtual memory accesses as
well as explicit I/O calls, enabling it to provide benefit
regardless of the I/O-access methods used by applica-
tions. In addition, we propose two new operating system
features which substantially improve the performance
of speculative execution for swapping applications. Fi-
nally, we describe a mechanism for estimating the im-
pact of memory use by speculative executions on system
performance, and thereby controlling speculative execu-
tion when memory resources are not abundant.

We have implemented our design within the Linux
2.4.8 kernel and evaluated it using eight applications,
which include four explicit-I/O applications, three swap-
ping applications, and one application that performs a
substantial amount of both forms of I/O. We demon-
strate that our basic design provides similar benefit to the
prior design on explicit-I/O applications, while requiring
much less implementation effort. We then demonstrate
that our design also provides benefit for swapping appli-
cations, particularly with the assistance of the new fea-
tures we identified. Finally, by varying the amount of
usable memory on our system, we demonstrate the ben-
efit of our mechanism for controlling the memory usage
of speculative execution.

The remainder of this paper is organized as follows.
Section 2 describes the speculative execution approach
to automating I/O prefetching. Section 3 describes the
testbed and benchmarks that we use to evaluate our pro-
posals throughout this paper. Section 4 presents and
evaluates the baseline version of our new in-kernel de-
sign and implementation. Then, in Sections 5 and 6, we
proceed to describe our improvements for swapping ap-
plications, and our mechanism for controlling memory
overhead. Section 7 contrasts our in-kernel design with
the prior user-level design. Finally, Sections 8 and 9 dis-
cuss related work, future work, and conclusions.

2 Speculative execution

Thespeculative execution approach exploits the increas-
ing abundance of spare processing cycles to automate
prefetching for applications that stall on disk I/O. Usu-
ally, when an application needs some data that is not in
memory, it will issue a disk request and then stall wait-
ing for that request to complete. Rather than simply
wasting unused processing cycles while applications are
stalled on I/O, the speculative execution approach uses
these cycles to try to discover and initiate prefetching

���
���
���
���

������

��������������

����
����
����
����

��������������

���
���
���
���

������

���
���
���
���

������

������

���
���
���
���

D

D = demand request P = prefetch request

Disk 1
Disk 2
Disk 3

D D D D

D D D

Normal

Disk 1
Disk 2
Disk 3

Normal

(a)

(b)

0 1 2 3 5 6 7 10 11 12 13 14 15 164 8 9
Time (million cycles)

17

Speculative
P P P

Fig. 1: Example illustrating how the speculative execution ap-
proach could reduce I/O stall time. (A) shows how execution
would ordinarily proceed for a hypothetical application. (B)
shows how execution might proceed for the application with
the speculative execution approach. While normal execution
is stalled on its first I/O request, speculative execution may be
able to initiate prefetching for all the non-resident data that the
application will access in the future. This could halve the ap-
plication’s execution time.

for the future data needs of stalled applications by run-
ning ahead of their stalled executions. In particular, the
approach assumes that this speculative pre-execution of
the application’s code will be sufficiently similar to the
application’s future normal (non-speculative) execution
that it will encounter the same accesses to non-resident
data. Based on this assumption, speculative execution
attempts to improve the application’s subsequent perfor-
mance by converting any such accesses to prefetches.

Figure 1 illustrates how this approach could deliver
substantial performance improvements for a hypothet-
ical application that accesses four non-resident data
pages spread across three disks. For simplicity, assume
that the application executes for one million cycles be-
tween each such access, and that a disk can service a
request in three million cycles. When this application is
executed, its execution will ordinarily alternate between
processing and stalling on I/O. If the speculative execu-
tion approach were applied then, when normal execution
stalls on its first I/O request, execution would continue
speculatively. Whenever speculative execution encoun-
ters an access to non-resident data, it will instead issue a
non-blocking prefetch call. In this manner, it may be
able to initiate prefetching for all of the application’s
subsequent data accesses. When the original disk re-
quest completes, normal execution will resume. Now,
however, its subsequent data accesses will be serviced
out of main memory, halving the application’s execution
time.

It is worth noting that speculative execution will not
be effective in all cases. For example, it will offer no
benefit on systems where CPU, memory or disk are al-

2003 USENIX Annual Technical ConferenceUSENIX Association 327

ready fully utilized. Also, a speculative process will in-
correctly predict future accesses if they depend on non-
resident data. However, our success in applying specula-
tive execution to a wide range of benchmark applications
indicates that independent I/O accesses are common.

3 Experimental setup

Throughout this paper, we evaluate each successive de-
sign proposal after describing that proposal in order to
isolate its performance impact and motivate further re-
finements. We present our experimental setup in this
section to assist this progressive unfolding of our design.

We evaluate our design proposals on an 866MHz Pen-
tium III configured to use 64MB of memory, running our
modified Linux kernel. Most modern desktop comput-
ers have much more memory. We restricted the mem-
ory size deliberately to facilitate comparison with prior
work [4, 3] and compensate for established I/O bench-
marks [5] which use data sets that have not been up-
dated to reflect growth in data set sizes. Our storage sys-
tem consists of seven Compaq RZ1CB Ultra SCSI disks
(12ms average access time). The file system is striped
across four of the disks with a 64KB stripe unit. The
central cylinders of the other three disks are designated
as swap space. The maximum transfer rate supported by
the disks and the SCSI interface is 40MB/s.

All our results are averages over three runs; how-
ever, the variance in execution time across these runs
was always small (within a few percent of the calculated
mean). All file- and swap-backed pages were flushed
from memory before each run.

3.1 Benchmark applications

We use eight benchmark applications in our evaluation.
Four of the benchmark applications are explicit-I/O ap-
plications, three are swapping applications, and one per-
forms a substantial amount of both types of I/O. To as-
sist comparison with prior work, these benchmarks are
similar, and in many cases identical, to those used in
prior evaluations of the TIP prefetching and caching
manager [5], user-level speculative execution [3] and
compiler-based prefetching [4, 2]. The benchmarks are
summarized in Table 1 and described in greater detail
below.

Agrep (version 2.0.4) is a fast pattern matching utility.
Agrep opens each file on its command line in turn, and
reads each one sequentially from start to finish. In the
benchmark, Agrep searches 8971 files in the Linux 2.4.5
source tree for exact matches of a simple string that does
not occur in any of the files.

Gnuld (version 2.11.2) is the Free Software Founda-
tion’s object code linker. Gnuld first reads each object
file’s file header and uses it to find the symbol header,
which in turn provides offsets to the symbol and string
tables. Gnuld then makes a small number of small,
non-sequential reads to gather debugging information;
the required file offsets are determined from the sym-
bol tables. Finally, Gnuld sequentially reads the non-
debugging sections in each object file. In the benchmark,
an Alpha cross-linker is used to link 562 object files to
produce a Digital UNIX kernel.

PostgreSQL (version 7.0.3) is an enhanced version
of the original POSTGRES database management sys-
tem. Our tests use a subset of the open-source database
benchmark (OSDB), which implements the industry-
standard AS3AP benchmark suite [6]. Our data set con-
sists of four relations conforming to the AS3AP spec-
ification, which reside in 500MB of disk space. Our
benchmark generates a set of indexes for each relation.

XDataSlice (version 2.2) is a data visualization pack-
age that allows users to view a false-color representation
of arbitrary slices through a three-dimensional data set.
The original application limited itself to data sets that fit
into memory, but our version was modified for the TIP
benchmark suite [5] to load data dynamically from large
data sets. In the benchmark, XDataSlice retrieves 25
random slices through a set of���� 32-bit values which
resides in 512MB of disk space.

FFTPDE andMGRID are two applications from the
NAS Parallel benchmark suite [7], which have been
modified by Demke and Mowry [2] so that their data
sets do not fit in main memory. These applications make
looping array accesses whose stride length and bounds
vary dynamically during execution. This lack of pre-
dictability makes it hard for a conventional prefetcher to
prevent I/O stalls.

MATVEC is a matrix-vector multiplication kernel that
we obtained directly from Demke and Mowry’s recent
paper on compiler-based prefetching and memory man-
agement [2].

Finally,Sphinx is a speech recognition application. As
with XDataSlice, the original application was modified
to load its data dynamically from disk for the TIP bench-
mark suite [5]. The benchmark is to recognize an 18-
second recording that was commonly used in Sphinx re-
gression testing. The benchmark contains two phases: a
first phase in which it reads about 15MB in a mostly se-
quential fashion from four data files, and a second phase
of seemingly random accesses to a 176MB file.

2003 USENIX Annual Technical Conference USENIX Association328

Benchmark Description Run time Read calls Data set size

Agrep text search 42 s 9385 105 MB
Gnuld object code linker 30 s 16261 70 MB

PostgreSQL AS3AP benchmark (database queries) 9915 s 4845047 535 MB
XDataSlice visualization of 3-D data sets 171 s 46421 512 MB
FFTPDE FFT solver for 3-D PDEs 5537 s – 224 MB
MGRID multigrid solver for 3-D potential 913 s – 431 MB

MATVEC Matrix-vector multiplication 1006 s – 385 MB
Sphinx Off-line speech recognition 72 s 66358 181 MB

Table 1: Benchmark characteristics. Run time is on an unmodified kernel, with no speculative execution.

4 In-kernel speculative execution

In this section we present and evaluate our basic design
for leveraging speculative execution within the operat-
ing system. Our design is similar in spirit to the previ-
ous user-level design, but has the advantages of being
much easier to implement and more accessible to users.
Moreover, we demonstrate that not only does this design
provide large benefits similar to those of the prior sys-
tem for explicit-I/O applications, but also it can provide
substantial benefits for swapping applications.

4.1 Basic design

We add a new type of process to the system – aspecu-
lative process. A speculative process is created by fork-
ing a normal process the first time it blocks on a disk
request. A speculative process is completely destroyed
only when its parent process exits. The operating sys-
tem treats speculative processes differently from normal
processes only in order to: 1) ensure that speculative ex-
ecution issafe (that is, speculative processes do not pro-
duce output or otherwise change the results of executing
applications); 2) enable speculative processes to issue
prefetches on behalf of their parent processes; and 3)
restrict the resource utilization of speculative processes
so that they cannot hurt the performance of normal pro-
cesses.

Notice that speculative processes are never created for
normal processes that perform no disk I/O. We also al-
low users to opt out of speculative execution by setting
a specific environment variable.

4.1.1 Safety

It is easy to ensure that speculative execution is safe
because operating systems already severely restrict the
ways in which different processes can affect one another.
As a result, a system needs to restrict speculative pro-
cesses in only three simple ways to ensure safety.

First, on most systems, a forked process shares file
pointers with its parent process, and inherits write access

to mapped files and shared memory segments. To ensure
safety, when forking speculative processes, file pointers
are instead copied, and write access to mapped files and
shared memory segments is changed to copy-on-write
access.

Second, systems typically establish a relationship be-
tween a parent and child process such that information
about the child process is propagated to its parent. For
example, when a child process is destroyed, the operat-
ing system typically delivers a signal to its parent. To
ensure safety, we sever these ordinary relationships be-
tween speculative processes and their parents.

Finally, the system must restrict which system calls
speculative processes can perform. For example, a spec-
ulative process must not be allowed to modify the file
system or send signals to normal processes. There-
fore, speculative processes are required to perform ac-
cess checks before proceeding with system calls. If the
requested system call is not safe (ormay not be safe,
since implementations should be conservative), the ac-
cess checks either cause the speculative thread to return
immediately, or alter the requested system call so that
it is safe. For example, requests to map file regions
with write access are converted to requests to map those
file regions privately with copy-on-write semantics. It is
easy to force speculative processes to return immediately
from any unsafe system call as most operating systems
contain a single access point for all system calls, such as
a software trap handler. We modified this trap handler
such that speculative processes perform a table lookup
indexed by the system call number and then, depending
on the value encoded in the table, either return immedi-
ately or continue with the system call. Altering system
calls issued by speculative processes requires slightly
more effort in the form of individually modifying the
call-specific handler for each such call. However, this ef-
fort was required for only a small number of calls, such
asmmap and “multiplexed” command interfaces such as
ioctl.

2003 USENIX Annual Technical ConferenceUSENIX Association 329

4.1.2 Prefetching

A speculative process generates prefetch requests on be-
half of its parent process by initiating anon-blocking
prefetch whenever a normal process would have blocked
on a disk read. Speculative execution then proceeds
without the non-resident data. If the disk read resulted
from an explicit file read call, any memory-resident data
specified by the call is copied into the specified user
buffer while regions of the buffer that would ordinar-
ily be filled by non-resident data are unchanged. This
allows the speculative process to make use of all avail-
able data during its subsequent execution. If the disk
read resulted from a page fault then the system, as usual,
allocates a page frame, updates the appropriate page ta-
ble entry to map the new page frame, and initiates a disk
read of the appropriate data. However, rather than block-
ing until the disk read completes, the speculative pro-
cess returns from the fault immediately so that it can run
ahead of its parent process. Since its page table has been
updated, any subsequent accesses it makes to the same
page will not generate another page fault.

It is possible that a speculative process will exe-
cute, but not succeed at generating accurate prefetches
for its parent. This may occur because future execu-
tion depends on non-resident data, a system call that
speculative processes are not allowed to perform, or
inter-process communication through shared memory
(since, as discussed in the prior section, shared pages are
mapped copy-on-write in speculative processes). To in-
crease the chances that the speculative process will gen-
erate useful prefetches, whenever the parent process is
about to block waiting for some data for which its spec-
ulative child failed to generate a prefetch, it attempts
to synchronize its speculative child, where synchroniz-
ing is just like forking except that we reuse the specula-
tive child’s process structure. A parent process can eas-
ily detect when its speculative child failed to generate
a prefetch because a process must first allocate a page
frame to hold data before issuing a disk read for that
data. Therefore, if no page frame has been allocated for
some data, then no prefetch has been issued for that data.
We attempt to hide the observed cost of synchronization
within the time to fetch the data from disk, during which
the parent process would ordinarily block, by issuing the
disk request before we begin synchronizing.

On a typical system, a process initiates file readahead
while servicing a file read system call, and initiates page
cluster reads when it faults on a page that is neither in
memory nor already being fetched from disk. However,
if a speculative process is issuing the correct prefetches,
then the default prefetch heuristics are at best redun-
dant and might waste memory and disk bandwidth by
prefetching unneeded data. We therefore disable these

heuristics if a speculative process has prefetched the data
that its parent process is requesting.

4.1.3 Basic resource control

Supporting speculative execution consumes processing
cycles, disk bandwidth, and memory. Ideally, specula-
tive execution only uses resources that would otherwise
be wasted, so it cannot hurt system performance. This
section describes how we restrict the processing time of
speculative processes, and the disk bandwidth and mem-
ory of speculative prefetches.

Processor cycles. We ensure that speculative execu-
tion does not steal processing cycles from normal pro-
cesses by only scheduling speculative processes when
nothing else is runnable. Furthermore, speculative pro-
cesses are preempted as soon as a normal process be-
comes runnable. Rather than relying on the operating
system’s existing priority mechanism, which does not
guarantee the desired behavior, we implement this with
a simple modification (six additional lines) in the kernel
scheduler code.

Prefetching resources. A speculative prefetch can
steal disk bandwidth from normal processes by delay-
ing a disk request from a normal process. Morever, pre-
mature prefetching can hurt performance, even if all the
prefetches are accurate, by causing useful data to be un-
necessarily ejected from memory. As suggested by Pat-
terson, et. al. [5], we limit the maximum delay of a nor-
mal request by only issuing a prefetch to a disk which
has no more than one request outstanding. We also use
their idea of aprefetch horizon – a system-dependent,
calculable maximum number of prefetches in advance
beyond which there is unlikely to be a benefit to initiat-
ing a prefetch – to throttle speculative processes that are
generating prefetches too quickly. If a speculative pro-
cess attempts to prefetch further ahead than the prefetch
horizon, it is marked non-runnable until its parent pro-
cess either accesses some of the data it prefetched, or
synchronizes it.

Finally, to avoid wasting resources, if a speculative
process begins executing process termination code (e.g.
as a result of issuing anexit system call or generat-
ing a terminating exception), then the operating system
checks whether its parent process is terminating. If not,
then the speculative process is not allowed to terminate;
instead, its memory is reclaimed and it is marked non-
runnable until its parent process synchronizes it.

4.2 Performance of the basic design

Figure 2 shows the overall performance of the basic de-
sign. For all four explicit-I/O applications, shown in
the leftmost section, our in-kernel design delivers large

2003 USENIX Annual Technical Conference USENIX Association330

Agrep Gnuld Postgres XDS FFT MGRID MATVEC Sphinx
0

20

40

60

80

100

120

140

160
N

or
m

al
iz

ed
 e

la
ps

ed
 ti

m
e

No speculative execution
Base design

Fig. 2: Performance of our basic in-kernel design.

improvements, reducing elapsed times by 35% to 56%.
These benefits are comparable to those delivered by the
user-level design [3], and are achieved for the same rea-
sons. In particular, unlike file readahead, the specula-
tive execution approach enables prefetching across files
and can leverage the decision paths encoded in applica-
tions to generate accurate prefetches for accesses that are
seemingly random.

The results for swapping applications, shown in
the central section, and our combination application,
Sphinx, are more varied. We deliver substantial benefits
for FFTPDE and MATVEC, but we degrade the perfor-
mance of MGRID and Sphinx. Thus, our base design
performs poorly compared with the compiler-based ap-
proach [4], which delivered a substantial performance
benefit for MGRID.

Table 2 provides more detailed information about the
executions. Unsurprisingly given the overall results, for
all the applications except MGRID and Sphinx, specula-
tive execution significantly reduces both the number of
I/O stalls and the I/O stall time experienced by normal
execution.

One potential concern with speculative execution is
that it will not generate prefetches early enough to hide
a substantial amount of I/O stall time. The figures for
full speculative prefetches show that the vast major-
ity of speculative prefetches actually complete before
the data is accessed during normal execution; in other
words, there are very few partial stalls on in-progress
prefetches. Another potential concern is that, as with
any heuristic approach, speculative execution may gen-
erate prefetches for data that will not be used, wasting
both memory and disk bandwidth. The figures for un-
used speculative prefetches show that speculative execu-
tion is perfectly accurate for Agrep and MATVEC. For
the other benchmarks, speculative execution generates
some needless prefetches, but is always much more ac-
curate than the operating system’s default file readahead
and page cluster heuristics. Furthermore, because good
speculative prefetches disable the operating system’s de-
fault prefetching heuristics, we are able to avoid a large

proportion of needless prefetches for all benchmarks ex-
cept Sphinx. This further helps performance by reducing
contention for memory and disk bandwidth.

On the other hand, comparing the figures for explicit-
I/O and swapping applications reveals that synchroniza-
tion is substantially more expensive for swapping ap-
plications. In particular, comparing the synchronization
times to original execution times (shown in the first col-
umn) reveals that MGRID is synchronizing for almost
half of its original execution time. This suggests one
way in which the base design is inefficient for swap-
ping applications, and ineffective for MGRID in partic-
ular. For many applications, we also notice a substan-
tial increase in the number of copy-on-write faults. Fi-
nally, Sphinx demonstrates a different potential problem
with speculative execution. The memory use of specu-
lative execution can cause useful data to be prematurely
ejected from memory. This is revealed by how specu-
lative executionincreases the total number of I/O stalls
for Sphinx. We address these weaknesses of the basic
design in the next two sections.

5 Improved prefetching for swapping ap-
plications

Although the basic design discussed in the previous
section works well for explicit-I/O applications, it can
hurt the performance of applications that exploit virtual
memory. In this section, we discuss two simple additions
to standard operating system mechanisms which can
greatly improve prefetching performance for memory-
intensive applications.

5.1 Fast, preemptible refork

Since they rely on file- and swap-backed virtual memory
to hide I/O, swapping applications typically have very
large page tables. This presents two problems. First,
when synchronizing its speculative child, a parent pro-
cess can be substantially delayed by the time required to
release its speculative child’s old state and then make a
fresh copy of the parent process’s state. Second, the cy-
cles consumed in synchonization reduce the number of
spare processing cycles in which speculative execution
can make progress. We reduce the cost of synchroniza-
tion by adding a fast, preemptible refork operation.

Recall (from Section 4.1.2) that the parent process be-
gins synchronizing its speculative child only after issu-
ing a disk request that would ordinarily cause it to block.
If the synchronization operation does not complete be-
fore the disk request completes, then the parent process
will no longer need to block after synchronizing its child.

2003 USENIX Annual Technical ConferenceUSENIX Association 331

Benchmark Specx I/O Stalls Spec prefetches Unused prefetches Sync CoW
enabled? Total Time Total Full Spec Readahead delay faults

Agrep No 14080 30s – – – 50 – 286
(42s) Yes 4239 17s 7350 92% 0 50 0s 326
Gnuld No 5434 26s – – – 5245 – 8
(30s) Yes 3228 15s 4684 74% 641 472 2s 8

PostgreSQL No 1056013 8471s – – – 823234 – 259
(9915s) Yes 267498 3230s 1201033 87% 25101 43011 45s 2714

XDS No 22887 159s – – – 178430 – 13
(171s) Yes 5905 63s 44512 87% 634 1632 7s 11376

FFTPDE No 439221 5345s – – – 3188757 – 8
(5537s) Yes 201384 3024s 1384548 86% 583 116134 929s 391281
MGRID No 87594 757s – – – 130413 – 8
(913s) Yes 59732 1020s 1095623 90% 14 21390 428s 179714

MATVEC No 105518 925s – – – 332361 – 7
(1006s) Yes 36114 375s 893238 80% 0 12788 75s 91
Sphinx No 6238 43s – – – 19711 – 1386
(72s) Yes 6957 58s 8417 68% 909 20831 6s 1388

Table 2: Effectiveness of prefetching by the basic design, compared with a system which performs no speculative execution.I/O
stalls is the number of, and elapsed time during, I/O stalls experienced by normal execution.Speculative prefetches
is the number of speculative prefetches, and the percentage of those prefetches that completed before the data was requested by
normal execution.Unused speculative prefetches is the number of speculative prefetches that prefetched data that was
not used before being ejected from memory.Unused readahead prefetches is the same statistic for prefetches generated
by the operating system’s file readahead and page clustering heuristics.Sync delay is the total time used to synchronize the
speculative child process, some of which is hidden by disk access latency.CoW faults is the total number of copy-on-write
faults experienced during normal execution.

Since the speculative process is not allowed to steal cy-
cles from non-speculative processes, this means that the
speculative process will not be able to run ahead of the
parent process. (At best, on a multiprocessor, it may run
in tandem with its parent). Therefore, there is no benefit
to requiring that the parent complete a synchronization,
and we are better off ensuring that synchronization does
not needlessly delay a parent process. We accomplish
this by periodically checking whether the disk request
has completed. If the read has completed, the parent
simply stops its synchronization attempt, and the spec-
ulative child continues to be non-runnable. The parent
will attempt to complete a synchronization the next time
it is delayed by disk I/O.

While this usually hides the cost of synchronization
from the parent, it mayincrease the synchronization de-
lay perceived by the child. However, we observe that
the parent process will attempt to synchronize its child
every time it needs to access any data that is not in mem-
ory. Swapping applications, which typically have a large
working set, will therefore synchronize quite often, and
so the page tables are unlikely to have changed signif-
icantly. This allows us to reduce synchronization time
by releasing and updating only those page table entries
that have changed in the parent or the speculative child
since the last synchronization. Moreover, this optimiza-
tion complements preemptible reforking; if the parent

cannot complete a synchronization while one of its disk
requests is being serviced, the partial synchronization is
likely to reduce the amount of work it must perform to
complete the synchronization the next time it is delayed
by disk I/O.

5.2 One-way copy-on-write

If synchronization follows the usual forking semantics,
the parent process will experience a copy-on-write page
fault for each page that it attempts to modify before its
speculative child. Copy-on-write faults can introduce
substantial delay because of the page allocation and data
copy that are required. In particular, although the cost
of page allocation is generally quite low, it can increase
dramatically when memory contention is high [2]. Ob-
serving that safety only requires that a page be copied if
the child attempts to modify it, we avoid adding page al-
locations to parent processes by adding support for one-
way copy-on-write; that is, we allow normal processes
to make modifications which may be observed by spec-
ulative process.

Supporting one-way copy-on-write requires only a
few modifications. First, while synchronizing, only the
speculative child’s page table entries and memory re-
gion mappings are marked as copy-on-write. We also
add a speculative reference count on page frames and

2003 USENIX Annual Technical Conference USENIX Association332

Benchmark Refork Refork time Refork attempts
type Total Mean Total Completed (%)

FFTPDE Normal 929 s 7 ms 136645 136645 (100%)
Fast 274 s 2 ms 118581 105879 (89%)

MGRID Normal 428 s 12 ms 37065 37065 (100%)
Fast 144 s 3 ms 48668 39583 (81%)

MATVEC Normal 178 s 10 ms 17669 17669 (100%)
Fast 75 s 3 ms 24951 17083 (68%)

Sphinx Normal 13 s 3 ms 3769 3769 (100%)
Fast 6 s 2 ms 2465 2254 (91%)

Table 3: Synchronization cost: the effect of a fast, preemptible re-fork.

FFT MGRID MATVEC Sphinx
0

20

40

60

80

100

120

140

160

N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

No speculative execution
Base design
+ Fast re−fork
+ One−way COW

Fig. 3: Performance of speculative prefetching with fast re-
forking and one-way copy-on-write.

swap slots, which track the number of references from
speculative processes. When servicing a page fault dur-
ing normal execution for a resident swap-backed page,
we subtract the speculative reference count from the to-
tal count to determine whether the page must be copied.
Finally, whenever a speculative process services a copy-
on-write fault, we decrement the reference count on the
original page.

5.3 Swapping application performance

Fast, preemptible reforking and one-way copy-on-write
have negligible effect (less than one percent) on the exe-
cution times of our explicit-I/O applications, which use
a modest amount of virtual memory. Figure 3 shows
the degree by which our swapping applications bene-
fit from these mechanisms. All four swapping appli-
cations run significantly faster compared with our base-
line approach, with the speedup across applications ap-
proximately equally attributed to the two mechanisms.
Moreover, while MGRID runs 60% slower with base-
line speculative prefetching, fast, preemptible reforking
and one-way copy-on-write eliminate this overhead.

Benchmark CoW faults
No Specx Basic One-way

FFTPDE 8 391281 8
MGRID 8 179714 8

MATVEC 7 91 7
Sphinx 1386 1388 1387

Table 4: The effect of one-way copy-on-write on the number
of copy-on-write faults experienced during normal execution.
Basic is our base speculative execution design.One-way
includes the one-way copy-on-write optimization.No Specx
has all speculative execution disabled.

Detailed information about the benefits of fast, pre-
emptible reforking are presented in Table 3. For the
three scientific applications, the improvement over our
baseline approach is dramatic: total refork time is re-
duced by a factor of three or more. Importantly, un-
like normal reforks, the average fast refork time is much
shorter than an average disk access for all of the bench-
marks. Faster reforking enables a high proportion of
these preemptible refork attempts to complete, and pro-
vides speculative execution with more time to run before
it is preempted by normal execution.

Fast, preemptible reforking can increase the number
of synchronization attempts (as with both MGRID and
MATVEC) because preempted attempts will quickly be
retried, the next time normal execution stalls. This
mechanism increases the number ofcompleted synchro-
nizations, however, only for MGRID. In terms of execu-
tion time, this increase is far outweighed by the reduced
refork time.

Examination of detailed application traces reveal that
the improved performance of Sphinx is due to reforks
being preemptible. Not only does this prevent normal
execution from being needlessly delayed, but also it re-
duces the time during which the speculative process is
runnable. Because Sphinx has a large memory footprint,
leaving speculative execution non-runnable can substan-
tially reduce memory contention, which is the main rea-
son for degraded performance during this benchmark.

2003 USENIX Annual Technical ConferenceUSENIX Association 333

Table 4 shows that the one-way copy-on-write mech-
anism delivers dramatic reductions in the number of
copy-on-write faults during normal execution for FFT-
PDE and MGRID. The performance benefit of these re-
ductions can be seen from the results in Figure 3. These
performance improvements are due not only to the di-
rect benefit of fewer copy-on-write faults, but also to the
indirect benefit of decreasing memory contention by re-
quiring fewer page allocations. MATVEC and Sphinx
gain no noticeable benefit from one-way copy-on-write
because, even with this mechanism disabled, normal ex-
ecution experiences very few copy-on-write faults due
to speculative execution. (Each benchmark experiences
some unavoidable number of copy-on-write faults as a
result of write accesses within shared libraries, which
can be seen from the count of copy-on-write faults when
speculative execution is disabled.)

6 Controlling memory overhead

The simple resource control mechanisms in the basic
design (Section 4.1.3) are sufficient for a system that
always has abundant memory. Most systems, how-
ever, are not so over-supplied. Further, it seems likely
that the performance of memory-intensive applications
would be harmed by ineffective speculative execution.
In this section, we describe our mechanism for control-
ling the memory overhead incurred by speculative pro-
cesses. This mechanism enables practical speculative
execution on systems which may experience memory
contention.

It is difficult to control memory overhead while still
enabling effective speculative execution because, unlike
processor or disk bandwidth, it is usually not possible to
determine whether the resource is actually being wasted,
and can therefore be used without hurting system perfor-
mance. For example, even if the memory mapped by all
extant processes is much less than the total amount of
memory in the system, there is always a chance that a
page that contains file data will be re-accessed.

The previous user-level design relied on the TIP
prefetching and caching manager [5]. TIP performs
cost-benefit analysis to determine when allocating some
memory for prefetching would be more beneficial than
allowing the LRU file cache to retain that memory.
TIP is not a complete memory management solution
for speculative execution, however, because speculative
processes need to allocate memory not only to hold
prefetched data, but also to dynamically allocate mem-
ory and make modifiable copies of pages to which they
have copy-on-write access. Furthermore, the benefit of
allowing a speculative process to allocate memory for
its own use depends entirely on whether it will subse-

quently be able to issue useful prefetches, which de-
pends on factors not within its control, such as how often
it will be preempted.

We preserve the principle idea of a cost-benefit frame-
work but, rather than building a complicated system
model to predict the benefit of each speculative alloca-
tion request, we propose a simplerreactive approach to
controlling memory overhead. Specifically, we estimate
the benefit that a speculative process has already pro-
vided by prefetching data, and the cost it has already
incurred by its memory consumption. This allows us to
estimate the current benefit or cost of each speculative
process and, by disabling processes accordingly, restrict
the overhead incurred by ineffective speculative execu-
tion.

6.1 Reactive cost-benefit analysis

We estimate the cost and benefit of each speculative
process with the assistance of aneviction list (or ghost
buffer [8]). The eviction list tracks the non-resident
pages that would most likely be in memory if no specula-
tive execution had taken place. Each list entry uniquely
identifies the disk block of one such page. To determine
how many entries the list should contain, we track the
number ofspeculative pages that are in memory only
because of speculative execution. The eviction list is a
FIFO to which we add an entry for each non-speculative
page that is evicted from memory, and remove an entry
if the FIFO is already full when a new page is added.

The eviction list allows the system to estimate the
number of I/O stalls that speculative executions added
to, or removed from, normal executions. In particular,
when a normal process requests a disk read, if there is a
matching entry in the eviction list, then we have identi-
fied anadded stall that would not have occurred in the
absence of speculative execution. Conversely, when a
normal process avoids a disk read by using a speculative
page, we have identified aremoved stall that was pre-
vented by speculative execution. The eviction list fur-
ther aids accurate identification of removed stalls by al-
lowing the system to detect when a speculative prefetch
is merely refetching previously-resident data that was
only evicted because of speculative memory use. Fig-
ure 4 describes the updates and accesses that can occur
to the eviction list and associated performance counts in
greater detail.

With the resulting per-process counts of removed
stalls (���������	

��), and the system-wide count of
added stalls (���
������	

�), we could estimate the
net overhead of each speculative process as the over-
all cost/benefit for its execution so far. We could then
use this measure to disable a speculative process when-
ever its net estimated overhead is above some selected

2003 USENIX Annual Technical Conference USENIX Association334

Disk read which matches in the eviction list.
Read initiated by a speculative process:
- Decrement entry from the list count,

but do not remove from the list
Read initiated by a normal process:
- Remove entry from the list

TotAddedStalls++-

Evicted non-speculative page
- Add to the eviction list

Speculated by Q

Speculated by P

Speculated by P

Allocation by a

(size =)TotSpecPages
Allocation by a
speculative process P
-
-

Normal page

Normal page

Normal page

normal process

Normal page pool

. . .

Eviction list
Pages which, in the absence
of speculation, would be
prefetched
- Add to the eviction listSpeculative page used

by a normal process
-
-
-

TotSpecPages(target size =)

Speculative page pool

SpecPages(P)++
TotSpecPages++

SpecPages(P)–
TotSpecPages–
RemovedStalls(P)++

An entry over the
limit is removed from the end
of the list during each page
allocation or addition to the
eviction list

TotSpecPages

Fig. 4: Using the eviction list to calculate added and removed stalls. Many page allocations and evictions update or query the
eviction list. This diagram enumerates the possible transitions that can occur. Dotted lines represent page identifiers being added
to or removed from the eviction list.

threshhold. Unfortunately, this approach would be un-
responsive to changes in the effectiveness of a specula-
tive process. Such changes might be caused by different
phases within the application which affect prefetching
accuracy, or simply by varying memory contention from
concurrent processes. We therefore use an approach that
not only bounds the estimated overhead of enabled spec-
ulative processes, but also is responsive to changes in the
estimated overhead of speculative processes.

The remainder of this section describes thereactive
approach that we implemented and evaluated. Many
other possibilities exist, but a survey is beyond the scope
of this paper.

We divide system time into periodicintervals, where
� denotes the current interval. At the end of each inter-
val, a pair of cost-benefit estimates are updated for each
speculative process based on the estimates and accumu-
lated stall counts from the previous interval, and whether
the speculative process was enabled or disabled during
that interval. We use these estimates (and any accumu-
lated stall counts since the last interval) to estimate the
overhead at any time, in order to decide when to enable
or disable each speculative process, as follows.

If a speculative process wasenabled (i.e. marked
runnable), we exponentially decay the previous stall es-
timates at the end of each interval:

�������� � ��� �� � �������� �� �
� � �����	�
������� ��

��
�������� � ��� �� � ��
�������� �� �
� � �������	�
������� ��

Per-process counts of removed stalls are maintained di-
rectly by observing when speculative pages are first ref-
erenced by a normal process. However, to calculate per-
processadded stalls, the system-wide total for each in-

terval is divided among the speculative processes in pro-
portion to their memory use:

�����	�
������� � ��������	�
�������
	����
����

���	����
���

We then combine the cost-benefit estimates in the sim-
plest manner to obtain theoverhead of each enabled
speculative process:

������
����� � �����������
��������

If a speculative process’s estimated overhead is non-
negligible, we mark it non-runnable and reclaim its
memory. Therefore, if memory is tight, speculative pro-
cesses that consume more memory will need to prefetch
more effectively to remain runnable.

If a speculative process wasdisabled (i.e. marked
non-runnable), we simply add to the previous cost and
benefit estimates at the end of each interval:

�������� � �������� �� �
�����	�
������� ��

��
�������� � ��
�������� �� �
�������	�
������� ��

Our overhead calculation then includes the period over
which the process has been stopped. Let� be the interval
during which non-runnable process� was last executed:

������
����� �
�����������
��������

�� �

Thus we decay the overhead estimate over time, which
allows the system to set an upper bound on the net esti-
mated overhead before a speculative process should be

2003 USENIX Annual Technical ConferenceUSENIX Association 335

FFT MGRID MATVEC Sphinx
0

20

40

60

80

100

120

140

160
N

or
m

al
iz

ed
 e

la
ps

ed
 ti

m
e

No speculative execution
Base design
+ Fast re−fork
+ One−way COW
+ Mem Control

Fig. 5: Overall benefit of memory control for swapping appli-
cations (with the default machine configuration).

48 56 64 72 80
Memory size (MB)

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

Sphinx

Speculation disabled
No memory control
Memory control

396 140 72 63 56

Fig. 6: The effect of memory control on the Sphinx bench-
mark, for a range of memory configurations. Run times for
each memory size are normalized to the execution time with
no speculation. These times are shown above the correspond-
ing bar, in seconds.

allowed to run again. Notice that this property is inde-
pendent of the manner in which the stall counts are de-
cayed for enabled speculative processes.

There is some scope for investigating more informed
techniques for reenabling speculative processes; for ex-
ample, we could allow a speculative process to con-
tinue running and issuing prefetch requests, but prevent
these requests from reaching the disk or allocating mem-
ory. This would reduce resource pressure compared with
a fully-enabled speculative process, while providing us
with more information to help determine when it would
be worthwhile to reenable speculative execution. How-
ever, a major benefit of our current approach is itscon-
servativism — a more informed approach would risk a
harmful increase in resource pressure for just those ap-
plications that require most care.

Mem Spec M Threshold Syncs Stall
size crossings time

Off - - - 315s
48 MB On N - 18303 224s

On Y 15 14790 218s
Off - - - 106s

56 MB On N - 8356 102s
On Y 12 1963 101s
Off - - - 43s

64 MB On N - 3337 47s
On Y 10 1979 41s
Off - - - 34s

72 MB On N - 2282 25s
On Y 4 957 23s
Off - - - 28s

80 MB On N - 1955 21s
On Y 5 729 20s

Table 5: The effect of memory control on synchronization at-
tempts (Syncs) and I/O stall time. Three sets of results are
shown for each memory configurations: speculation disabled,
speculation enabled, and speculation with memory control (M)
enabled. Threshold crossings is the number of times specula-
tive execution is disabled due to intolerable memory overhead.
Execution times without speculative execution are shown in
Figure 6.

6.2 Evaluation of memory control

Figure 5 shows the performance benefit of memory con-
trol for our swapping applications. For our benchmarks,
memory control only has a significant effect for Sphinx.
This indicates that, as desired, memory control does not
diminish the performance benefit of speculative execu-
tion when speculative execution is effective.

Figure 6 shows Sphinx results when the system is
configured to have differing amounts of usable memory.
In all memory configurations, our mechanism provides
some benefit to Sphinx as compared to having no mem-
ory control mechanism. Moreover, in 56MB and 64MB
configurations, memory control is able to eliminate, or
significantly reduce, the performance penalty that oc-
curs without memory control. These results suggest that
this mechanism can effectively prevent speculative exe-
cution from harming performance in cases where specu-
lative prefetching has too few resources to provide ben-
efit. This is an important requirement if a prefetching
system is to be deployed ubiquitously in a system.

From the detailed information listed in Table 5, it
is evident that much of the performance benefit comes
from reduced stall time. However, further gains are pos-
sible due to reduced memory contention in the absence
of speculative execution. This will, for example, reduce
the number of soft page faults experienced by normal
execution for pages which are in the process of being

2003 USENIX Annual Technical Conference USENIX Association336

laundered, and can also reduce the cost of page alloca-
tions.

However, the adverse effects of speculative execution
can linger for some time after it has been disabled, as the
resulting ‘gap’ in memory cannot be immediately filled
with useful data. Furthermore, in estimating overhead,
our mechanism currently assumes average stall times.
Actual stall times can vary greatly, which is why mem-
ory control does not entirely eliminate the penalty of
speculative execution in our 64MB results.

Our mechanism disables speculative execution quite
infrequently. However, the number of synchronization
attempts is considerably reduced, indicating that, when
speculation is disabled, it remains disabled for a consid-
erable period of time. This is due to our conservative
algorithm, which ensures that speculation is only reen-
abled when its net estimated overhead is negligible.

Surprisingly, speculative execution improves applica-
tion performance on a 48MB system without the benefit
of the memory control mechanism. This is due to more
accurate prefetching compared with the default reada-
head heuristic; the memory cost of speculative execu-
tion is more than offset by the reduction in needlessly
prefetched data. However, even in this case, memory
control still provides a further gain of nearly 10% by dis-
abling speculative execution while it is less effective. In
the 72MB and 80MB results, basic speculative execution
has enough memory available to provide overall benefit;
however, the control mechanism is still able to identify
a handful of places where it is beneficial to temporarily
disable speculative execution.

7 Comparison to previous design

This paper describes an in-kernel design for applying
the speculative execution approach to arbitrary, unmod-
ified executables. In contrast, the previous design [3, 9],
calledSpecHint, specifies an automatable procedure for
modifying application binaries to apply the speculative
execution approach.

The SpecHint design has two advantages compared
with an in-kernel design. First, SpecHint requires no
operating system support specific to speculative execu-
tion, allowing deployment on systems where OS mod-
ifications are not feasible. Second, SpecHint can ex-
ploit static analyses and transformations to specialize
the application code for speculative execution. For
example, calls to expensive library functions, such as
printf, can be removed to speed up speculative exe-
cution. More complex analysis might remove loops with
data-dependent bounds which could trap speculative ex-
ecution and prevent it from generating further I/O hints.

However, in addition to increasing the accessibility

of speculative execution by providing it as an operat-
ing system service, an in-kernel design has four major
advantages relative to the SpecHint design.

1. Unlike SpecHint, our design can be applied to
applications that implicitly generate I/O via page
faults to swap space or mapped files.

2. While SpecHint assumed that systems always have
abundant spare memory, our design can estimate
its effect on the memory performance of non-
speculative executions.

3. As discussed in a previous report [9], SpecHint
makes some assumptions in its attempts to ensure
that the modified binary will not produce differ-
ent results than the original binary. While these
assumptions will hold in most cases, an in-kernel
design can guarantee that adding speculative execu-
tions will not introduce errors in normal execution.

4. Binary modification tools are difficult to imple-
ment correctly and in a compiler-independent man-
ner. Chang [9] reports that an implementation of
SpecHint required 19,000 lines of C code and 6,000
lines of assembly code. That implementation trans-
formed only statically-linked, single-process Alpha
binaries produced using the nativecc compiler for
Digital Unix 3.2. In contrast, our implementation
required only 5,000 lines of C code and 50 lines of
assembly code, of which 90% is confined to two
new files and memory management modifications,
and it can be applied to arbitrary Linux x86 exe-
cutables. Moreover, since our implementation con-
tains fewer than 100 lines of x86-specific code, it
should easily extend to handle arbitrary Linux exe-
cutables on other platforms as well.

8 Related and future work

Common access pattern heuristics [10, 11, 12, 13]
prefetch according to a small set of access patterns that
occur frequently, such as sequential access. The sys-
tem checks whether recent accesses fit a known pattern
and, if so, issues prefetches by extrapolating the pat-
tern. The simplicity of these approaches is an advan-
tage. However, if accesses do not fit a known pattern
then the heuristic cannot help, and may even hurt, appli-
cation performance.

Dynamic history-based approaches [14, 15, 16, 17,
18, 19] initiate prefetching based on patterns inferred
from previous access sequences. Although these sys-
tems can discover new patterns and exploit this knowl-
edge across multiple applications, they cannot help with

2003 USENIX Annual Technical ConferenceUSENIX Association 337

non-repetitive accesses and may need to observe a large
number of data accesses before an accurate pattern can
be inferred. Furthermore, the history data can itself oc-
cupy a large amount of memory.

In static analysis-based approaches [20, 4], a com-
piler analyzes the application to deduce the accesses it
will make during execution. It then inserts hints into the
application to inform a run-time prefetcher. Although
these approaches have low run-time overhead, the re-
quired interprocedural analysis is difficult. As a result,
existing systems benefit only looping array codes. Fur-
thermore, system-wide deployment will require all ap-
plications to be recompiled.

Caoet al. [21] note that aggressive prefetching strate-
gies can do more harm than good by evicting data from
memory which is later accessed. They propose a set
of rules that an integrated prefetching and caching pol-
icy should follow to avoid hurting performance, and
suggest two conforming policies. However, these poli-
cies assume perfect knowledge of application reference
streams. Later work [22] mentions, but does not evalu-
ate, possible heuristics for accomodating imperfect ref-
erence streams.

The TIP prefetching system [5] uses a cost-benefit
model to control prefetching into, and eviction from, a
file cache of limited size. When an application provides
an access hint, the possiblebenefit of prefetching that
block is weighed against thecost of evicting the least
valuable block in the cache. However, because TIP only
deals with buffer allocation for prefetched data, the cost-
benefit analysis is simpler than ours, which must also
deal with page allocations of no direct benefit to normal
execution.

One aspect of our design that we would like to im-
prove further is memory management. Demke and
Mowry [2] demonstrate substantial benefits by proac-
tively evicting pages from memory when memory con-
tention is high. They describe a compile-time technique
which deduces the accesses an application will make
during execution and insertsrelease hints for blocks that
are unlikely to be accessed in the near future. When cou-
pled with their compile-time prefetch hints, a run-time
system can approximate Cao’s scheduling rules. Unfor-
tunately, static insertion of release hints is limited by
difficult interprocedural analysis. We hypothesize that
a speculative execution approach may be able to expand
the range of applications for which release hints could
be automatically generated.

Finally, Chang [9] demonstrates that speculative exe-
cution can improve system performance even when con-
current processes contend for processing cycles or disk
bandwidth. While our memory control mechanism was
designed with multi-process systems in mind (for exam-
ple, speculative process overheads are measured individ-

ually) it has yet to be evaluated in a multi-programming
environment.

9 Conclusions

Recent work demonstrated that speculative execution
has the potential to greatly improve the performance of
I/O-intensive applications, while overcoming the limita-
tions of compiler-assisted prefetching approaches. How-
ever, the previous user-level design requires the im-
plementation of a complex, architecture-specific binary
modification tool, benefits only explicit-I/O applications
that have been transformed by such a tool, and does not
limit the overhead incurred by increased memory con-
tention.

In this paper, we present an in-kernel design for
capturing the benefits of speculative execution while
overcoming these limitations. We demonstrate that,
for explicit-I/O applications, a simple design which
leverages existing operating system mechanisms deliv-
ers benefits comparable to the prior user-level design.
We then show that specialized versions of standard OS
mechanisms – a fast, preemptible reforking operation
and directional copy-on-write – greatly increase the ben-
efits provided to swapping applications. Finally, we
demonstrate a mechanism for limiting speculative over-
head, while not impeding beneficial speculative execu-
tion, by scheduling speculative executions based on their
memory impact. Our experience in implementing and
evaluating speculative execution within Linux suggests
that providing speculative execution within an operating
system can be both feasible and effective.

Acknowledgements

We would like to thank Garth Gibson, Khalil Amiri and
the anonymous reviewers for providing many helpful
comments that greatly improved the paper. We would
also like to thank Angela Demke for making her I/O
benchmark suite available to us.

References

[1] E. Grochowski. IBM magnetic hard disk
drive technology. http://www.almaden.ibm.com/
sst/html/leadership/leadership.htm, 2001.

[2] A. D. Brown and T. C. Mowry. Taming the memory
hogs: Using compiler inserted releases to manage phys-
ical memory intelligently. InProceedings of the 4th
USENIX Symposium on Operating Systems Design and
Implementation, 2000.

2003 USENIX Annual Technical Conference USENIX Association338

[3] F. Chang and G. Gibson. Automatic I/O hint generation
through speculative execution. InProceedings of the 3rd
USENIX Symposium on Operating Systems Design and
Implementation, 1999.

[4] T. Mowry, A. D. Brown, and O. Krieger. Automatic
compiler-inserted I/O prefetching for out-of-core appli-
cations. InProceedings of the 2nd USENIX Symposium
on Operating Systems Design and Implementation, 1996.

[5] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. In
Proceedings of the 15th ACM Symposium on Operating
System Principles, 1995.

[6] D. Bitton, C. Orji, and C. Turbyfill. The AS3AP bench-
mark. InDatabase and Transaction Processing Sys. Per-
formance Handbook. Morgan Kaufmann, 1991.

[7] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The
NAS Parallel Benchmarks. Technical Report RNR-91-
002, NASA Ames Research Center, 1991.

[8] M. Ebling, L. Mummert, and D. Steere. Overcoming the
network bottleneck in mobile computing. InWorkshop
on Mobile Computing Systems and Applications, 1994.

[9] F. Chang. Using speculative execution to automatically
hide I/O latency. Technical Report CMU-CS-01-172,
Carnegie Mellon University, 2001.

[10] R. J. Feiertag and E. I. Organisk. The multics in-
put/output system. InProceedings of the 3rd ACM Sym-
posium on Operating Systems Principles, 1971.

[11] M.K. McKusick, W.J. Joy, S.J. Leffler, and R.S. Fabry. A
fast file system for UNIX.ACM Transactions on Com-
puter Systems, 2(3):181–197, 1984.

[12] D. Kotz and C. Ellis. Practical prefetching techniques for
parallel file systems. InProceedings of the 1st Interna-
tional Conference on Parallel and Distributed Informa-
tion Systems (PDIS), 1991.

[13] T. Madhyastha, G. A. Gibson, and C. Faloutsos. In-
formed prefetching of collective I/O requests. InPro-
ceedings of the ACM/IEEE SC99 Conference, 1999.

[14] C. Tait and D. Duchamp. Detection and exploitation
of file working sets. InProceedings of the 11th Inter-
national Conference on Distributed Computing Systems,
1991.

[15] M. L. Palmer and S.B. Zdonik. FIDO: A cache that learns
to fetch. InProceedings of the Conference on Very Large
Data Bases, 1991.

[16] K.M. Curewitz, P. Krishnan, and J.S. Vitter. Practical
prefetching via data compression. InProceedings of the
1993 ACM Conference on Management of Data (SIG-
MOD), 1993.

[17] J. Griffioen and R. Appleton. Reducing file system la-
tency using a predictive approach. InProceedings of the
USENIX Summer Technical Conference, 1994.

[18] H. Lei and D. Duchamp. An analytical approach to file
prefetching. InProceedings of the USENIX Winter Tech-
nical Conference, 1997.

[19] T. Kroeger and D. Long. The case for efficient file access
pattern modeling. InProceedings of the 7th Workshop on
Hot Topics in Operating Systems (HOTOS), 1999.

[20] K. S. Trivedi. On the paging performance of array algo-
rithms. IEEE Transactions on Computers, 26(10):938–
947, 1977.

[21] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A study
of integrated prefetching and caching strategies. InPro-
ceedings of the ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, 1995.

[22] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Im-
plementation and performance of integrated application-
controlled file caching, prefetching and disk scheduling.
ACM Transactions on Computer Systems, 14(4):311–
343, 1996.

