
The following paper was originally published in the

Proceedings of the 3rd USENIX Windows NT Symposium
Seattle, Washington, USA, July 12–13, 1999

H I G H E R - O R D E R C O N C U R R E N T
W I N 3 2 P R O G R A M M I N G

Riccardo Pucella

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Higher-Order Concurrent Win32 Programming

Riccardo Pucella
Bell Laboratories

Lucent Technologies
riccardo@research.bell-labs.com

Abstract

We present a concurrent framework for Win32 program-
ming based on Concurrent ML, a concurrent language
with higher-order functions, static typing, lightweight
threads and synchronous communication channels. The
key points of the framework are the move from an event
loop model to a threaded model for the processing of
window messages, and the decoupling of controls noti-
fications from the system messages. This last point al-
lows us to derive a general way of writing controls that
leads to easy composition, and can accommodate Ac-
tiveX Controls in a transparent way.

1 Introduction

Programming user interfaces on the Windows operating
system at the level of the Win32 API, its lowest level, is
hard under the best conditions and maddening the rest of
the time. At least three points underlie the difficulty:

� the API is large (more than a thousand functions)
and growing;

� the system is input-driven, making it difficult to
perform intensive computations and remain inter-
active;

� the system is centered around an event loop, yield-
ing control-flow that is hard to understand.

The first problem is hard to circumvent, considering that
the API is large because it covers a lot of functional-
ity required by applications. However, a better struc-
turing can help reduce the burden of using the API, as
demonstrated by the popularity of C++ class frameworks
such asMicrosoft Foundation Classes(MFC) or Bor-
land’s Object Windows Library(OWL). The remaining

two problems are in fact related, consequences of Win32
being a message-passing API based on callback proce-
dures [12].

It has been recognized that to ensure interactivity of ap-
plications in the presence of computation-intensivecode,
multiple threads should be used [2, 5]. It turns out that
by using a truly concurrent approach rather than the
system-level threads available from the NT kernel, one
can construct a framework that also solves the last prob-
lem, the event loop control-flow nightmare [15, 7, 5].

EXene [6] is a user interface toolkit for the X Win-
dows windowing system [20], built on top of Concurrent
ML, a concurrent language providing higher-order func-
tions, static typing, lightweight threads and synchronous
communication channels [18]. EXene uses a threading
model from the grounds up, leading to a design both el-
egant and simplifying a lot of the difficulties typically
encountered in user interface toolkits. It is important
to note that eXene interacts directly via the X protocol,
without relying on an underlying toolkit.

The goal of this paper is to isolate the difficulties in
providing an eXene-style framework for programming
Win32 applications. We focus specifically on the two
following points: moving from an event loop model to a
threaded model with channel-based communication, and
decoupling the handling of system messages from the
interaction with controls to help implement easily com-
posable controls. The resulting system, although fairly
conservative in its abstractions, is still much simpler to
use than the raw Win32 API, and further supports the
thesis that moving to a framework based on a high-level
concurrent language leads to a simpler system with good
modularity properties.

This paper is structured as follows: after reviewing the
structure of Win32 programs, we describe Concurrent
ML and give an outline of the framework, focusing on
the important points of window management. We then
describe how controls are handled, including predefined

controls and custom controls. We also describe how to
handle ActiveX Controls within the same framework in
as transparent a way as possible. We conclude with some
discussion of related and future work.

We assume the reader has a passing knowledge of
higher-order languages in general.

2 Win32 programming

We review in this section the fundamentals of Win32
programming, at the level of tutorial books such as [14].
The Win32 API is closely linked with a given program
structure. A Win32 program has an entry pointWin-
Main , whose role is to initialize the application by cre-
ating the various windows making up the interface. The
program then goes in a loop, reading messages from its
message queue and dispatching them to the appropriate
window for processing.

Classes. Every window belongs to a class, which needs
to be registered prior to being used. A class sets the de-
fault icons, cursors, background colors and menu for ev-
ery window of that class. A class also contains a pointer
to a window procedure, which is a function invoked ev-
ery time a message is sent to the window. Since a win-
dow procedure is associated with a given class, this im-
plies that every window of that class share the same win-
dow procedure.

Window procedures. A window procedure is called
whenever a message is sent to an application, either by
another window or by the system. Messages are sent
when a window is created, moved, resized or destroyed,
when the mouse moves over the client area of the win-
dow, when the mouse buttons are clicked, when a key
is pressed and the window has focus, when the window
needs repainting, when a timer expires, and so on. Win-
dows provides default handling for all of these messages,
but an application will want to deal with some of them
to provide its functionality.

Child windows. To simplify the creation of user in-
terfaces, it is possible to use child windows to subdi-
vide the area of a window into more manageable com-
ponents. Each child window has its own window pro-
cedure, thereby encapsulating the behavior of the child
window and allowing a certain amount of abstraction.
The child window can decide to only send a few digested
messages back to its parent window, which can deal with
them more easily than otherwise possible. Typical ex-

ample of child windows includecontrols, such as but-
tons, scrollbars and edit controls.

That’s all there is to Win32 programming, really. Ev-
erything else is concerned with the processing of mes-
sages and their arguments, to do things such as draw-
ing in a window (by processing theWMPAINT mes-
sage), handling mouse movement (by processing the
WMMOUSEMOVEmessage), handling keyboard input
(by processing theWMKEYDOWNmessage). Handling
controls such as pushbuttons and edit controls is also
done through messages. A pushbutton, for example, no-
tifies its parent window of an interesting event (e.g. it
has been clicked) by sending aWMCOMMANDmessage
to the parent, with a code identifying the control and the
notification code as arguments.

3 Concurrent ML

The language we use to express our concurrent frame-
work is Concurrent ML (CML) [18], a concurrent ex-
tension of the mostly-functional language Standard ML
(SML) [11]. SML provides among other things higher-
order functions, static typing, algebraic datatypes and
polymorphic types. CML is provided as a library-style
extension to SML, with the following (simplified) signa-
ture:

structure CML : sig
type ’a chan
type ’a event
type thread_id
val channel : unit -> ’a chan
val spawn : (unit -> unit) -> thread_id
val sendEvt : ’a chan * ’a -> ’a event
val recvEvt : ’a chan -> ’a event
val wrap : ’a event * (’a -> ’b) -> ’b event
val choose : ’a event list -> ’a event
val sync : ’a event -> ’a

end

CML is based on the notion of athreadwhich is concur-
rently executing thread of control. A functionspawn is
used to create a thread that evaluates a given function.
Communication between threads is done viachannels.
Communication is synchronous: a send blocks until a re-
ceive reads the value on the channel, and vice versa. To
help design abstract communication protocols, a first-
class notion ofevent is introduced. An event decou-
ples the communication capability of an operation from
its actual execution (synchronization). Sending a value
over a channel is actually a two-step process: we first
create an event that says that the communication opera-
tion to be done will send a value over the channel, and

when we synchronize on that event, the value is sent over
the channel. Synchronization blocks until the communi-
cation is performed. Basic event constructors include
sendEvt and recvEvt for sending and receiving a
value over a channel. Synchronization is performed by
thesync operation.

Decoupling definition from synchronization allows for
the building of combinators to describe more refined
communication mechanisms. For example, given an
event, thewrap operation wraps a function around that
event creating a new event that behaves as follows: when
you synchronize on the event, the original event is syn-
chronized on, and the result of the synchronization is
fed to the function which is evaluated. Given a set
of events, you can also create a new event that is a
non-deterministic choice over all those events with the
choose operation: when you synchronize on the event,
one of the original events is non-deterministically cho-
sen and synchronized on. Finally, note that channels
and events arepolymorphicover the carried type (repre-
sented by the type variable’a): a channel of typeint
chan carries values of typeint , and so on.

Concurrent ML is currently distributed with the Stan-
dard ML of New Jersey compiler [1].

4 The basic framework

We outline in this section our framework for pro-
gramming Win32 user interfaces using the concurrency
model provided by CML. The framework is built on
top of a direct binding of the Win32 API in SML. An
overview of the binding as well as examples of use are
given in [16]. The binding was derived from an IDL
description of the API using a tool for compiling IDL
descriptions to SML code interfacing the described API
[17]. This turned out surprisingly well1 and allowed us
to use code found in tutorial material such as [14].

For our framework, we build on top of the raw Win32
API some layers of abstractions that simplify and ab-
stract away from many low-level details. We still remain
very much in the spirit of Win32 however, in the sense
that most functions are simply lifted from the underlying
API. Abstractions are mainly concerned with replacing
the event loop by an independent thread and allowing a

1There were some interesting issues raised in providing the Win32
API bindings — both in terms of support of the Win32 API in a
strongly-typed setting, and in terms of the mapping from IDL to SML
— that may or may not be described in a future article.

more compositional treatment of controls.

The framework aims at supporting more or less the func-
tionality described in the first volume of [10], along
with various simplifying assumptions. This paper fur-
ther simplifies matters for the purpose of presentation,
and in order not to overwhelm the reader with superflu-
ous and confusing details. Note that we only give the
signatureof the modules in this paper, that is the type of
the operations and values provided by the various mod-
ules. Implementation details are not discussed.

Figure 1 presents theRun module, which is the main
entry point of the framework. The main function of a
program in our framework is a function of type

instance -> ’a

taking as argument the instance handle of the program
and returning some type (exactly which type is returned
is unimportant). This function will be in charge of cre-
ating the various windows of the application, and call-
ing the message loop of the main window. The func-
tiondoit of theRun module invokes the main function,
supplying the application instance handle.

Various modules are provided that simply encapsulate
some aspect of the API, lifting the functions without try-
ing to generalize or abstract away some of the function-
ality. For example, Figure 2 and 3 present modules that
deal respectively with icons and menus. Other modules
such asCursor , Bitmap , Rect , Pen, DCencapsu-
late different aspects of the API. All of these are fairly
straightforward, and aside from their sheer number, their
implementation does not offer any difficulties. It is def-
initely the case that future work should aim at finding
new abstractions to reduce either the size or the com-
plexity of this part of the framework.

The most important module from our point of view is the
one that focuses onwindow management. Window man-
agement describes anything that relates to the manip-
ulation of windows, including their creation, deletion,
movement, as well as the management of the classes. As
we saw, every window belongs to a class, that assigns a
default icon, cursor and colors for every window of that
class. Moreover, in raw Win32, the class also provides
a window procedure to process messages to the window.
The window procedure is shared amongst all windows
of the class. It is not clear why this design was chosen.
Informal explanations are given that this helps guarantee
that every window of a given class can behave the same
way. But since the window procedure upon reception

structure Run : sig
type instance
val doit : (instance -> ’a) -> ’a

end

Figure 1: TheRun module

structure Icon : sig
type icon
val application : icon
val hand : icon
val question : icon
val exclamation : icon
val asterisk : icon
val load : Run.instance * string -> icon
val draw : DC.hdc * int * int * icon -> unit

end

Figure 2: TheIcon module

structure Menu : sig
type menu
val load : Run.instance * string -> menu
val get : Window.window -> menu
val create : unit -> menu
val createPopup : unit -> menu
val appendItem : menu * int * string -> unit
val appendPopup : menu * menu * string -> unit
val destroy : menu -> unit

end

Figure 3: TheMenu module

structure Window : sig
type class
type window
datatype class_style = CS_HREDRAW

| CS_VREDRAW
| ...

datatype window_style = WS_OVERLAPPEDWINDOW
| ...

datatype show_style = SW_NORMAL
| ...

val class : string * Run.instance * Cursor.cursor * Icon.icon * Brush.brush * class_style list -> class
val unregister : class -> unit
val create : class * string * window_style list * window option * int option * int option * int option *

int option * Menu.menu option * Run.instance * (window * Msg.msg chan -> unit) -> window
val createChild : class * string * window_style list * window * int option * int option *

int option * int * int * Run.instance * (window * Msg.msg chan -> unit) -> window
val show : window * show_style -> unit
val update : window -> unit
val setForeground : window -> unit
val move : window * int * int -> unit
val getClientRect : window -> Rect.rect
val destroy : window -> unit
val send : window * Msg.msg -> unit
val quit : int -> unit
val msg_loop : window -> int
val default : window * Msg.msg -> unit

end

Figure 4: TheWindow module

of a message also receives the handle of the window to
which the message is addressed, it is very easy to write
a window procedure that handles messages differently
depending on the recipient of the message.

In our framework, we would like to have a thread re-
placing the window procedure, and actual messages over
channels instead of the Win32 messages passed to win-
dow procedures. In order to keep messages lightweight,
we would like to drop the requirement of passing the
handle of the target window when a message is sent.
Indeed, our function to send a message should extract
the communication channel from the window type, and
send the message to that channel, implicitly determin-
ing which window the message is sent to. To help this
setup, we will have a thread assigned on aper window
basis. Of course, one can still support shared processing
amongst all windows of a given class by delegating ev-
ery messages to a centralized thread that communicates
with every window of a class.

Figure 4 presents an excerpt of theWindow module con-
taining the interesting parts of the code. Types are de-
fined for classes, windows, and various style parameters
for both classes and windows. A functionclass cre-
ates a class given the appropriate parameters, and auto-
matically registers it. The functionscreate andcre-
ateChild are used to create windows, given the class,
title, optional owner window, position and size (a value
of NONEfor these forces the use of a default, equivalent
to a CWUSEDEFAULTin raw Win32), optional menu,
instance handle and a function to process messages. This
last function is spawned automatically on its own thread
and is passed the window being created and a channel to
communicate with the window. A child window is sim-
ilar, but instead of a menu it takes an integer that should
uniquely identify the child window and that will be use
to communicate with the parent window. Functions are
then provided to show, move and destroy the window. A
functionmsg loop is used to initiate the message loop
of a window2. A functionsend is used to send a mes-
sage to a window. The functionquit simply posts the
WMQUIT message in the message queue of the applica-
tion, a requirement for exiting a message loop.

As an example, consider the following main function for
an application that bounces a logo around a window.
This example is taken from chapter 7 of [14], and is
given in its entirety in Appendix A. It is as simple an
initialization function as can be: only one class, a win-
dow created with mostly default values, and a simple
message loop.

2This assumes that windows in the framework use standard mes-
sage loops, a simplifying assumption.

fun winmain (instance) = let
val c = Window.class

("BouncingSMLN", instance,
Cursor.arrow, Icon.application,
Brush.white,
[Window.CS_HREDRAW,

Window.CS_VREDRAW])
val w = Window.create

(c, "Bouncing SML/NJ",
[Window.WS_OVERLAPPEDWINDOW],
NONE, NONE, NONE, NONE, NONE,
NONE, instance, bounce)

val v = Window.msg_loop (w)
in

Window.unregister (c);
v

end

The moduleMsg, outlined in Figure5, defines the var-
ious messages that can be sent to windows by the sys-
tem and by other windows through theWindow.send
function. There is a datatype constructor per message,
and message parameters are automatically unfolded for
easy retrieval and building. The function given toWin-
dow.create will be spawned and passed the newly
created window and a newly created channel on which
the thread will receive its messages. At this point, Win32
rules for processing messages apply: every message not
processed by the application must be passed to default
processing, which means invokingWindow.default
with the message as argument, and so on. Often, the
thread will simply read from the input channel and pro-
cess the messages, but it can also listen concurrently
for events coming from other parts of the application or
from controls.

Finally, although we will not discuss them here, we men-
tion that most errors in Win32 functions get mapped to
SML exceptions.

5 Controls

The first step in the creation of our concurrent frame-
work for Win32 involved lifting window procedures into
actual threads with which one can communicate using
CML-style message-passing. We now turn to the sec-
ond important aspect of our framework: compositional
controls.

A control is “... a child window an application uses in
conjunction with another window to carry out simple in-
put and output (I/O) tasks.” [10]. In reality, controls can
achieve any level of complexity chiefly through compo-
sition: putting a bunch of controls together forms a big-
ger control with potentially a higher-level semantics. It
is possible in raw Win32 to compose controls, but the
amount of plumbing one has to write is mind-numbing.

Our aim is to make creating new controls by combining
existing ones easy, while staying within the philosophy
of Win32.

A requirement for this to work is that there be no differ-
ence between a predefined control (such as a pushbut-
ton or an edit control) and a composed control. We also
would like the communication to and from the control
to be independent of the window procedure of the par-
ent window. The basic idea is that a control will have
a notification channel on which it communicates inter-
nal changes and interesting events. Communication to
the control is achieved by invoking appropriate functions
acting on the control.

5.1 Predefined controls

Many controls are predefined in Win32. These include
various kind of buttons (push, check, radio), editing con-
trols, list and combo boxes, scrollbars, and static con-
trols. Providing them in our framework is fundamen-
tally a matter of presenting them the right way to the
user. For example, Figure 6 and 7 give the modules im-
plementing respectively pushbuttons and edit controls.
Note the similar format of the modules: both define a
type for the control, a datatype defining the various no-
tification messages that the control can report, a CML
event that a thread can synchronize on to get the noti-
fication, functions to communicate with the control, a
function to create the control, and a function to access
the control as a normal window, allowing one to apply
functions from theWindow module.

The problem with such an interface is that it com-
pletely contradicts the default interface for controls im-
plemented in raw Win32. A predefined control sends
notifications directly to its parent window by sending a
WMCOMMANDmessage to the window procedure, with
its control ID as an argument and the notification as the
other. What we want is to intercept that message and
redirect it onto a CML channel.

One way to achieve this is for the system to to transpar-
ently create a child window around the control, which
will be the parent of the control, in charge of captur-
ing theWMCOMMANDmessages and sending them onto
a CML channel assigned when the control is created.
All very straightforward, but some work is involved in
making sure that all the messages sent to the control are
communicated to the transparent child window. For ex-
ample, applyingWindow.move to the control should
move the control but also move the transparent child

window, and similarly for resizes and most other win-
dow operations.

5.2 Custom controls

Custom controls are controls defined by the program-
mer. To create a new control, a programmer must de-
termine the appearance of the control and its interaction
with its subcontrols, if any, and its parent. The simplest
example of a custom control is a layout control, which
is in charge of maintaining the layout of its subcontrols
according to some constraint criterion. Other more in-
volved controls can include dozens of subcontrols inter-
acting in a complex way. Dialog boxes can also be seen
as a type of complex control.

By uniformity, we would like custom controls to respect
the informal specifications given in the previous subsec-
tion. Technically, a custom control is a child window,
created via theWindow.createChild function. The
thread associated with the window, in charge of handling
messages to the window, defines the appearance of the
control by handling theWMPAINT message, and so on.
Communication with subcontrols is achieved by listen-
ing for the notification events from the subcontrols, con-
currently with handling messages for the window. Sim-
ilarly, a channel for reporting notification events for the
custom control needs to be allocated.

For example, a new control that encapsulates two push-
buttons might have a single notification message defined
as:

datatype notify_msg = CLICKED of int

which simply reports which button has been clicked,
and a controlling thread processing messages to the win-
dow that also listens to notification events from the two
subcontrols and sends the appropriate notification when
clicks occur (assuming a notification channelnoti-
fyCh , and pushbuttonsb1 andb2):

...
sync (choose ([wrap (recvEvt (ch), handle_message),

wrap (PushButton.notifyEvt (b1),
fn (PushButton.BN_CLICKED) =>

send (notifyCh,CLICKED 1)
| _ => ()),

wrap (PushButton.notifyEvt (b2),
fn (PushButton.BN_CLICKED) =>

send (notifyCh,CLICKED 2)
| _ => ())]

...

structure Msg : sig
datatype msg = WM_SIZE of int * int

| WM_PAINT of Rect.rect
| WM_DESTROY
| WM_TIMER of int
| ...

end

Figure 5: TheMsg module

structure PushButton : sig
type push_button
datatype notify_msg = BN_CLICKED

| BN_DOUBLECLICKED
val notifyEvt : push_button -> notify_msg event
val create : string * int * int * int * int * Run.instance -> push_button
val windowOf : push_button -> Window.window

end

Figure 6: ThePushButton module

structure Edit : sig
type edit
datatype notify_msg = EN_CHANGE

| EN_ERRSPACE
| EN_HSCROLL
| EN_KILLFOCUS
| EN_MAXTEXT
| EN_SETFOCUS
| EN_UPDATE
| EN_VSCROLL

val notifyEvt : edit -> notify_msg event
val getSel : edit -> (int * int)
val setSel : edit * int * int -> unit
val replaceSel : edit * string -> unit
val canUndo : edit -> bool
val emptyUndoBuffer : edit -> unit
val undo : edit -> unit
val create : string * int * int * int * int * Run.instance -> edit
val windowOf : edit -> Window.window

end

Figure 7: TheEdit module

Decoupling the logic of the communication with the
subcontrols from the handling of system messages to
the control greatly helps modularizing the code. Indeed,
given a custom control, we could easily reuse the com-
munication logic for some other control having the same
“behavior”, but maybe a wildly different appearance [9].

5.3 ActiveX Controls

No discussion of controls would be up-to-date without
mentioningActiveX Controls[3]. The ActiveX Con-
trols technology goes back toVisual Basic Extensions
(VBX), a mechanism for writing control components for
use in the Visual Basic environment. These were gener-
alized toOLE Controlsfor use in a general COM-based
environment [19]. The main problem with OLE Con-
trols is that they required the programmer to implement
a large number of interfaces that had to be present for
the control to be usable. This did not mix well with the
lightweight requirement for downloadable controls over
a network, and so ActiveX Controls were introduced,
fundamentally OLE Controls with looser requirements.

ActiveX Controls are simply COM objects3, and the
support for ActiveX Controls in any framework is based
on the corresponding support for COM objects. An ap-
plication that can use ActiveX Controls is called acon-
trol container. The functionality of an ActiveX Control
is divided into four parts (from [3]):

� providing a user interface;

� allowing the container to invoke the control’s meth-
ods;

� sending events to the container;

� learning about properties of the container’s envi-
ronment and allowing the control’s properties to be
examined and modified.

As we discussed in [16], calling the methods of a COM
object from SML is fairly easy. It is harder to make the
framework into a control container, because that implies
presenting the whole framework as a COM object with
the appropriate interfaces that ActiveX Controls can ac-
cess to communicate events. This is not impossible, but
most implementations of SML do not allow this to be
done easily. Given a suitable implementation of such a
capability, it is not hard to see how ActiveX Controls fit

3They must also support self-registration.

in the above framework. Current work on the SML/NJ
runtime system is in part aimed at solving this particular
problem.

6 Related work

The idea that concurrency helps in programming user
interfaces is not new. Building on the original work of
Squint [15] and Montage [7], eXene [6] exemplifies the
consistent use of concurrency as a foundation for user
interface construction [5]. More recently, Haggis [4], a
functional framework built on top of a concurrent ex-
tension to Haskell, also demonstrated the usefulness of
concurrency in such a context. However, as opposed to
eXene and our approach, the model presented to the user
is strictly sequential — concurrency is only used inter-
nally.

Compositionality of user interface elements is a require-
ment for a programmer-friendly toolkit. Systems such
as Tk [13] are mostly based on the notion that a user in-
terface is a widget (in our terminology, a control) com-
posed of subwidgets. Building a user interface is a mat-
ter of composing the controls together in a hierarchi-
cal fashion. Tk however uses Tcl as its underlying lan-
guage, and because of its lack of large-scale program-
ming structures, it is not well suited to building large
systems (although some large systems have indeed been
built using Tcl/Tk). The basic ideas underlying compo-
sitionality are best presented from the point of view of
the so-called Model-View-Controller approach, and we
refer the reader to articles such as [9] for a deeper cov-
erage of the issues.

Of course, another closely related system is the Mi-
crosoft Foundation Classes framework, which provide
C++ classes structuring most of the Win32 API. MFC
also allows the definition of methods to handle messages
directly, removing the need to explicitly code up the win-
dow procedure. However, the model is still based on an
event loop, and it is still hard to program computation-
intensive applications that remain interactive. Kernel
threads must be used to help manage the complexity.
More experience with our system is required before fur-
ther comparison can be made, especially with respect to
the efficiency, maintainability and reuse possibilities of
the code.

7 Conclusion

We have described in this paper the design of a simple
concurrent framework for Win32 programming, based
on a high-level concurrent language with lightweight
threads. The description we have given is very much
an outline, and indeed even our implementation is in-
complete. We have not talked about color, dialog boxes,
keyboard and mouse handling, multiple-document inter-
faces, floating menus, common dialogs, to name a few.

The important points about our framework are the move
from an event loop foundation to a threaded model, and
a decoupling of the processing of system messages from
the notification messages from controls. This gives us
a chance to derive easily composable controls. It also
gives us a natural way to incorporate ActiveX Controls
transparently into the framework.

Although the framework does not introduce a great
many abstractions over the underlying Win32 API, the
framework is still much easier to use than a raw Win32
system, and the resulting code more modular, thereby
increasing reusability.

Future work . As we mentioned, the framework is quite
simplistic, and does not go as far as it could go to ab-
stract away from the underlying system. This was an ex-
periment to try to impose a concurrent communication
mechanism onto Win32 that supports an abstract view
of controls decoupled from the window procedure, and
nothing else. We tried to stay as close as possible to the
raw Win32 programming style. Future work is planned
in two directions. First, this project is but a first step in
implementing a Win32 interface to Standard ML of New
Jersey. The next step is the design of a real toolkit that
can manage both X-windows and Windows (and even-
tually others), with an even more abstract notion of con-
trols. An investigation into the use of reactive sublan-
guages [8] to express the logic behind the controls inter-
actions in such a toolkit is also in the works. Second, we
plan to investigate the feasibility of transferring some of
this work to a C/C++ framework, perhaps at the cost of
introducing a custom version of lightweight threads.

Acknowledgments. Thanks to John Reppy for many
discussions relating to the subject of concurrency in user
interfaces that led to the experiment described in this pa-
per.

Availability . The Standard ML of New Jersey
distribution is available fromhttp://cm.bell-
labs.com/cm/cs/what/smlnj , and information

on the framework presented here can be found
on the author’s web page athttp://cm.bell-
labs.com/cm/cs/who/riccardo .

References

[1] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey.
In Third International Symposium on Programming Languages
Implementation and Logic Programming, volume 528 ofLecture
Notes in Computer Science, pages 1–13. Springer-Verlag, Au-
gust 1991.

[2] J. Beveridge and R. Wiener.Multithreading Applications in
Win32. Addison Wesley Developers Press, 1996.

[3] D. Chappell.Understanding ActiveX and OLE. Microsoft Press,
1996.

[4] S. Finne and S. Peyton Jones. Composing Haggis. InPro-
ceedings of the Fifth Eurographics Workshop on Programming
Paradigms for Computer Graphics. Springer-Verlag, 1995.

[5] E. R. Gansner and J. H. Reppy. A foundation for user interface
construction. In B. A. Myers, editor,Languages for Developing
User Interfaces, chapter 14, pages 239–260. Jones and Bartlett
Publishers, 1992.

[6] E. R. Gansner and J. H. Reppy. A multi-threaded higher-order
user interface toolkit. In Bass and Dewan, editors,User Interface
Software, volume 1 ofSoftware Trends, pages 61–80. John Wiley
& Sons, 1993.

[7] D. Haahr. Montage: Breaking windows into small pieces. In
Proceedings of the USENIX summer conference, pages 289–297.
USENIX, June 1990.

[8] N. Halbwachs.Synchronous Programming of Reactive Systems.
Kluwer Academic Publishers, 1993.

[9] G. E. Krasner and S. T. Pope. A cookbook for using the
model-view-controller user interface paradigm in smalltalk-
80. Journal of Object-Oriented Programming, 1(3):26–49, Au-
gust/September 1988.

[10] Microsoft Corporation. Win32 Programmer’s Reference. Mi-
crosoft Press, 1993.

[11] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Defi-
nition of Standard ML (Revised). The MIT Press, Cambridge,
Mass., 1997.

[12] B. A. Myers. Separating application code from toolkits: Elimi-
nating the spaghetti of call-backs. InACM SIGGRAPH Sympo-
sium on User Interface Software and Technology, 1991.

[13] J. K. Ousterhout.Tcl and the Tk Toolkit. Addison Wesley, 1994.

[14] C. Petzold.Programming Windows 95. Microsoft Press, 1996.

[15] R. Pike. A concurrent window system.Computing Systems,
2(2):133–153, 1989.

[16] R. Pucella, E. Meijer, and D. Oliva. Aspects de la programmation
d’applications Win32 avec un langage fonctionnel. InActes des
Journées Francophones des Languages Applicatifs, pages 267–
291. INRIA, 1999.

[17] R. Pucella and J. H. Reppy. An abstract IDL mapping for Stan-
dard ML, 1999. In preparation.

[18] J. H. Reppy. CML: A higher-order concurrent language. In
Proceedings of the 1991 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 293–
305. ACM Press, 1991.

[19] D. Rogerson.Inside COM. Microsoft Press, 1997.

[20] R. W. Scheifler and J. Gettys. The X window system.ACM
Transactions on Graphics, 5(2):79–109, April 1986.

A Bounce example

fun bounce (window,ch) = let
val timerID = 1
val rate = 20
val moveR = 10
val xTotal = 158
val yTotal = 131
val xRadius = 59
val yRadius = 45
fun onTimer (xS,yS,xC,yC,xM,yM,b) = let

val hdc = DC.get (window)
val hdcMem = DC.createCompatible (hdc)
val _ = (Bitmap.select (hdcMem,b);

DC.bitBlt (hdc,xC - (xTotal div 2), yC - (yTotal div 2),
xTotal, yTotal, hdcMem,0 , 0, DC.SRCCOPY);

DC.release (window,hdc);
DC.delete (hdcMem))

val xC’ = xC + xM
val yC’ = yC + yM
val xM’ = if (xC’ + xRadius >= xS) orelse (xC’ - xRadius <= 0) then ˜xM else xM
val yM’ = if (yC’ + yRadius >= yS) orelse (yC’ - yRadius <= 0) then ˜yM else yM

in
(xS,yS,xC’,yC’,xM’,yM’,b)

end
fun computeArgs (x,y,b) = (x,y,x div 2, y div 2, moveR, moveR, b)
fun loop (args as (xS,yS,xC,yC,xM,yM,b)) =

case (recv (ch))
of Msg.WM_SIZE (x,y) => loop (computeArgs (x,y,b))

| Msg.WM_DESTROY => (Timer.kill (window,timerID);
Bitmap.delete (b);
Window.quit (window,0))

| Msg.WM_TIMER (t) => let
val args’ = if (t=timerID) then onTimer (args) else args

in loop (args’) end
| m => (Window.default (window,m); loop (args))

fun init () =
case (recv (ch))

of Msg.WM_CREATE => (Timer.set (window,timerIR,rate,NONE);
loop (0,0,0,0,0,0,

Bitmap.load ("smlnj.bmp")))
| m => init ()

in
init ()

end
fun winmain (instance) = let

val c = Window.class ("BouncingSMLN", instance,
Cursor.arrow, Icon.application,
Brush.white,
[Window.CS_HREDRAW, Window.CS_VREDRAW])

val w = Window.create (c, "Bouncing SML/NJ",
[Window.WS_OVERLAPPEDWINDOW],
NONE, NONE, NONE, NONE, NONE,
NONE, instance, bounce)

val v = Window.msg_loop (w)
in

Window.unregister (c);
v

end

