
The following paper was originally published in the

Proceedings of the 3rd USENIX Windows NT Symposium
Seattle, Washington, USA, July 12–13, 1999

H I G H - P E R F O R M A N C E D I S T R I B U T E D O B J E C T S
O V E R S Y S T E M A R E A N E T W O R K S

Alessandro Forin, Galen Hunt, Li Li, and Yi-Min Wang

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

High-Performance Distributed Objects over System Area Networks

Alessandro Forin Galen Hunt Li Li Yi-Min Wang
Microsoft Research Microsoft Research Cornell University Microsoft Research

Abstract

In this paper, we describe an approach to build high-
performance, commercial distributed object systems over
system area networks (SANs) with user-level networking.
The specific platforms we use in this study are the Virtual
Interface Architecture (VIA) and Microsoft’s Distributed
Component Object Model (DCOM). We give a detailed
functional and performance analysis of DCOM and apply
optimizations at several layers to take full advantage of
modern high-speed networks. Our optimizations preserve
the full set of DCOM features including security,
alternative threading models, and Microsoft Transaction
Server (MTS). Through extensive runtime, transport and
marshaling optimization, our system achieves round-trip
latencies of 72 microseconds for DCOM calls and 174
microseconds for MTS calls, and an application
bandwidth of 86.1 megabytes per second. We also examine
the performance gains in real applications.

1. Introduction
With the explosive growth of the Internet and advances

in high-speed networking, distributed computing is
becoming a predominant programming paradigm for
building mission-critical applications. In recent years,
research and development efforts along three lines have
significantly changed distributed computing. First,
researchers have long observed that the software overhead
in the communication protocol stacks accounts for a
significant fraction of the end-to-end transmission delay.
The intervention of the operating system in the critical
path and repeated copying of intermediate buffers hinder
the delivery of order-of-magnitude improvements in raw
network speed to applications. Several research projects
have proposed and implemented fast networking protocols
and interfaces that allow user-level access to high-speed
networking devices. Examples include Cornell U-Net
[V95], Illinois Fast Messages (FM) [P97], Princeton
Virtual Memory-Mapped Communication (VMMC)
[B94], etc.

Another trend in distributed computing is the increasing
popularity of server clusters. By connecting a number of
relatively inexpensive machines with high-speed System
Area Networks (SANs), such configurations offer a cost-
effective approach to achieving high performance and
availability. The Virtual Interface Architecture (VIA)
[V97], proposed as an industrial standard user-level
networking architecture, promises to deliver much of the
raw power of SAN directly to applications.

The third trend is object orientation. Distributed object
systems, such as Distributed Component Object Model
(DCOM) [B98], Common Object Request Broker
Architecture (CORBA) [C95], and Java Remote Method
Invocation (RMI) [W95], extend the benefits of object-
oriented programming to the networked environment.
These systems provide an infrastructure that hides the
details of low-level communication mechanisms and
presents a higher-level abstraction to programmers to
simplify distributed programming.

Just as high-speed networks shift the performance
bottleneck to protocol stacks, commercial user-level
networking shifts the bottleneck to distributed-object
infrastructures. In this paper, we use DCOM over VIA as
an example to investigate the design issues in providing
high-performance distributed object systems over user-
level networking. The target application environments are
physically secure server clusters consisting of
homogeneous machines connected by a high-speed system
area network. Our goal is to implement a set of software
modules that can be integrated into the existing DCOM
infrastructure. These modules will be loaded for inter-
server communications within a cluster, while client
machines outside the cluster continue to contact the server
machines through traditional protocol stacks running over
traditional networks.

N etw o rk

M a rsh alin g laye r
(P ro x ie s)

D C O M c lien t

D C O M ru n tim e
(C h an n e l la yer)

R P C ru ntim e

L o a d ab le tran sp o rt

P ro to co l s ta ck s

C
ustom

 m
arshaling

approach

T
ransport

approach

D C O M se rv er

M a rsh alin g laye r
(S tu b s)

D C O M ru n tim e
(S tu b m an a g er)

R P C ru ntim e

L o a d ab le tran sp o rt

P ro to co l s ta ck s

Figure 1. Layered architecture of DCOM.

Figure 1 illustrates the high-level architecture of
DCOM. The marshaling layer packs method-call
parameters and converts data formats between machines
with different architectures. The DCOM runtime
maintains object and interface identities, enforces DCOM-
level access control, and supports different threading

models. The RPC runtime manages thread pools, message
multiplexing, interface bindings, and authentication. At
the loadable-transport layer, each transport exports a
common interface to encapsulate network protocol-
specific details from the runtime layer. Loadable
transports reside in dynamic link libraries (DLLs) separate
from the runtime DLLs.

Figure 1 suggests several approaches to run DCOM
over VIA with different tradeoffs. The custom marshaling
approach [C98][Ma98] uses a custom marshaling layer to
run DCOM applications directly on VIA, bypassing all
runtime support from DCOM and RPC. This approach can
deliver almost all of the raw VIA performance, but does
not support the full set of DCOM features. The transport
approach adds a new loadable transport module that
encapsulates all VIA-specific details. The new transport
transparently supports all DCOM and RPC applications,
however the RPC runtime seriously limits potential
performance gains [Z98].

In contrast, our system, Millennium Falcon, leverages
the existing DCOM runtime layer to support the full set of
DCOM features. Optimizations for VIA are implemented
in the loadable transport, RPC runtime, and marshaling
layers. At the loadable transport layer, we exploit RPC
semantics to perform efficient flow control. At the
marshaling layer, we achieve zero buffer copies by
exposing scatter-gather I/O to proxies and stubs. At the
RPC runtime layer, we implement a new binding-handle
module to improve DCOM critical-path performance. We
address both latency and bandwidth issues. The former is
important for the common case of method calls with
small-size parameters. The latter is important for
applications that perform bulk data transfer, including
scientific, database, and checkpoint applications.

The paper is organized as follows. Section 2 gives an
overview of Virtual Interface Architecture, RPC, and
DCOM. Section 3 presents a layered performance
analysis of current DCOM implementation on Windows
NT. The design and implementation of Millennium
Falcon are described in Section 4, and extensive
performance measurements are presented in Section 5.
Section 6 covers related work, and Section 7 gives the
conclusions.

2. Background
2.1. Virtual Interface Architecture (VIA)

The Virtual Interface (VI) Architecture is an industrial,
user-level networking architecture for high-bandwidth,
low-latency, and low-overhead communication [V97]. In
contrast to traditional network architectures where the
operating system virtualizes network hardware into a set
of logical endpoints, the network adapters in the VI
architecture take over the task of endpoint virtualization,
data multiplexing and transfer scheduling to reduce OS
involvement. Each VI represents an endpoint with a
direct, protected interface to network hardware. A process

may acquire multiple VIs exported by one or more
network adapters.

A VI consumer is typically an application program that
uses VIs through some communication facility such as
sockets. The communication facility usually loads a VI
user agent library supplied by the hardware vendor to
abstract the details of the underlying VI provider. The VI
provider consists of a network interface controller that
implements the VIs and directly performs data transfer
functions, and a VI kernel agent that performs setup and
resource management functions. The VI consumer
registers the memory buffer with the VI provider before
submitting a data transfer request. This allows the
consumer to reuse the registered memory buffer for
subsequent data transfers to avoid the overhead of
duplicate page lock/unlock operations and address
translations.

Each VI consists of two work queues: a send queue and
a receive queue. A request from the VI consumer to send
(or receive) data is posted on the send (or receive) queue
as a descriptor, which contains all the information needed
by the VI provider to process the request. A doorbell
associated with each work queue notifies the network
adapter that a new descriptor has been posted. The VI
provider asynchronously processes the descriptors and
marks them with status values upon completion.

2.2. Remote Procedure Call (RPC) and
Distributed Component Object Model (DCOM)

Microsoft RPC is an implementation of the DCE RPC
[D95] specification. It uses the Network Data
Representation (NDR) format for data marshaling in
heterogeneous environments. Typical RPC client and
server applications are structured as follows. The server
application specifies a protocol in an RPC API call, which
loads the corresponding transport DLL and creates a
communication endpoint. The server invokes another API
to register the RPC interfaces on which it expects to
receive method calls. An interface consists of a set of
functionally related method calls. Each RPC interface is
identified by a 128-bit Universally Unique Identifier
(UUID) called an Interface ID (or IID), and is specified in
an Interface Definition Language (IDL) file. Once the
server is ready to receive calls, it constructs an RPC string
binding, which contains sufficient information to identify
the server endpoint. The string binding is propagated to
the client through a naming service or some other means.
The client constructs a binding handle from the string and
makes RPC calls through the handle.

DCOM extends DCE RPC to support the notion of
objects with multiple interfaces and to provide a
mechanism for server activation. At the marshaling layer,
the current DCOM implementation reuses MSRPC NDR
code for data marshaling and augments it with the support
for marshaling object interface pointers into object
references. An object reference contains sufficient

information to locate a unique object interface instance
within a unique server endpoint. On the client side,
DCOM inserts a channel layer between the marshaling
layer and RPC runtime, as illustrated in Figure 1. Each
channel object encapsulates an RPC binding handle and
manipulates the DCOM-specific part of each RPC packet.
The counterpart of the channel object on the server side is
the stub manager, whose main task is to dispatch each
incoming call to its target stub.

Typical DCOM client-server interactions proceed as
follows. The client application invokes the CoCreate-
InstanceEx() API to either activate a server application or
connect to a running server process. The client specifies a
Class ID (or CLSID), which is the UUID of an object
class, and the IID of the interface to which it is requesting
a pointer. As a result of this activation, the server process
creates an object instance of CLSID and (logically) returns
to the client a pointer to the object’s IID interface. The
client can then invoke methods through that pointer as if
the object resides in the client’s own address space. When
the client needs a pointer to another interface of the same
object instance, it makes a QueryInterface() call on the
current interface pointer and supplies a new IID. In
Section 4, we will describe in more detail how current
DCOM implementation provides this object-oriented
abstraction on top of MSRPC, and discuss its impact on
performance.

3. Where Do The Cycles Go
We present here an analysis of the overhead

distribution among layers in the current DCOM
implementation over TCP. Measurements were obtained
by analyzing DCOM/RPC source code and intercepting
layer-crossing calls through binary instrumentation. The
analysis identifies performance bottlenecks and predicts
the effectiveness of candidate optimizations. Our
measurement setup consists of a pair of Gateway 2000 E-
5000 PCs, each with a 333 MHz Pentium II CPU and 256
Mbytes of RAM, and running Windows NT Workstation
4.0 with Service Pack 3 (NT4 SP3). The machines are
directly connected through a pair of 1.25-Gb/s GigaNet
GNN 1000 adapters. The test program, PingPong,
invokes a DCOM call to send buffers of the same size
back and forth. The buffer size is specified as the first
method parameter followed by the pointer to the buffer
specified as an [in,out] parameter. The standard,
compiled proxy/stub code generated by the Microsoft IDL
(MIDL) compiler is used.

Figure 2 illustrates the round-trip overhead distribution
across different DCOM data sizes. All numbers are
averaged over 1,000 runs. In both plots, at the top layer,
the marshaling overhead results from gathering call
parameter data into the RPC buffer. In the middle, the
runtime overhead represents the data-size-independent
portion of DCOM and RPC processing. At the bottom, the
transport overhead includes the execution times of the

RPC loadable transport, the TCP protocol stack, and the
actual wire time.

0

400

800

1200

1600

2000

0 2048 4096 6144 8192

Data size (bytes)

M
ic

ro
se

co
n

d
s

Transport Runtime Marshaling

0

2000

4000

6000

8000

10000

12000

14000

0 16384 32768 49152 65024

Data size (bytes)

M
ic

ro
se

co
n

d
s

Transport Runtime Marshaling

Figure 2. Round-trip overhead distribution of DCOM over TCP:
small data size (top); large data size (bottom).

Round-trip Latency (null call) 413 µs

Round-trip Latency (64KB) 12.6 ms

Max. DCOM Bandwidth 11.4 MB/s

DCOM/RPC Runtime 100 µs

Marshaling Time
7 µs + 18 µs/KB +

34 µs/KB above 50K

Transport Time
313 µs + 110 µs/KB +

260 µs/5840 bytes

Table 1. Summary of DCOM-over-TCP performance numbers
on GigaNet GNN 1000.

Table 1 summarizes the essential numbers from the two
plots. The average round-trip latency for DCOM calls
without any parameters is 413 µs. At the other extreme,
the latency for close to 64KBytes is 12.6 ms. (The
Maximum Transfer Unit, MTU, for the GigaNet cards is
17 bytes below 64KB.) The maximum bandwidth of 11.4
megabytes per second is achieved at a data size around

20KB. The fixed DCOM and RPC runtime overhead is
approximately 100 µs.

Table 1 also gives the analytical equations for the
curves that fit the transport time and marshaling time.
Since the RPC-over-TCP implementation uses a maximum
buffer size of 5840 bytes, there is an additional fixed
overhead for every 5840 bytes (the discontinuity in the top
graph of Figure 2).

Both plots show that transport overhead dominates
round-trip latency for the simple PingPong program,
which suggests that replacing the slow kernel-mode
protocol stack with a fast user-mode network such as VIA
can significantly improve DCOM application
performance. Specifically, the transport overhead
accounts for 313 µs (76%) of the 413 µs round-trip latency
for the null-call case, and is responsible for 11 ms (87%)
of the 12.6 ms at the other extreme. With VIA, the
transport times can be reduced to 30 µs and 1.4 ms,
respectively.

The results also imply that once the transport overhead
is reduced, runtime and marshaling overhead will become
significant. Specifically, at the low end, DCOM
applications would be ((100+30)-30)/30 = 333% slower
than raw VIA applications. At the high end, DCOM
applications would be ((12.6-11+1.4)-1.4)/1.4 = 114%
slower than raw VIA applications and marshaling
overhead would account for (12.6-11-0.1)/(12.6-
11+1.4)=50% of latency, which translates into a 50%
reduction in application bandwidth, compared with raw
VIA. To make DCOM a competitive programming
environment in the high-performance application market,
we must apply optimizations at the runtime and
marshaling layers to reduce overhead.

4. Millennium Falcon: Fast DCOM over VIA

Motivated by the overhead analysis described in the
previous section, our Millennium Falcon prototype applies
optimization at three layers of the DCOM architecture. At
the transport layer, we take advantage of RPC semantics to
perform efficient flow control. At the marshaling layer,
we provide support for marshaling and unmarshaling of
DCOM application buffers directly to and from network
adapters. At the runtime layer, we analyze the critical
paths of DCOM calls and build a new RPC binding-handle
module to eliminate unnecessary RPC runtime overhead
for DCOM applications. The effectiveness of the
transport-layer optimization is specific to VIA, while the
other two optimizations are applicable to the existing
DCOM/RPC protocol stacks as well. We implemented the
optimizations by modifying the NT4 SP3 DCOM and RPC
source code and adding new modules for the new stack.

4.1. Transport and Marshaling Optimization for
User-Level Networking

4.1.1. RPC Loadable Transport
To build a new RPC loadable transport for user-level

networking, we first implemented a socket layer over VIA
to hide the details of memory registration, VI
management, etc. We then built the VIA loadable
transport module on top of the socket layer to make it
portable across different hardware and VIA
implementations.

To preserve performance in a layered architecture,
special attention must be paid to flow control. In VIA,
incoming data is delivered directly, through DMA, to user-
level buffers without kernel buffering. The receiver must
post its buffers before the sender commences transfer;
otherwise, VIA fails the transmission and closes the
connection. For reliable communication, VIA applications
must employ active flow control. Our first choice was to
implement flow control in the socket layer. However,
preliminary measurements showed that socket-layer flow
control adds about 130 µs to the round-trip time, severely
restricting performance. This overhead is mainly due to
context switches and additional interrupts on both sides.

While socket-layer flow control is necessary for
arbitrary applications, more efficient flow control can be
achieved at a higher level by exploiting the RPC
semantics. To achieve this, our socket layer supports
optional disabling of flow control. Our loadable transport
performs RPC-specific flow control as follows. When the
server-side transport is about to accept a connection
request from a client, it pre-posts a buffer for receiving the
first method call so that the client can make calls
immediately after it successfully makes a connection to
the server. Before the client-side transport sends out the
marshaled method call, it pre-posts a buffer for receiving
the reply so that the server is free to send back a reply any
time after the request is processed. Similarly, before the
server sends a reply, it pre-posts a buffer for receiving the
next request from the client. Essentially, in the RPC
context, flow control messages are piggybacked on request
and reply messages. Such an optimization is compatible
with the original implementation in which concurrent calls
between threads of the same pair of processes do not share
the same socket connection. With this optimization, round-
trip latency is reduced to 30 µs for small data sizes, an
order-of-magnitude improvement over the transport
overhead for DCOM over TCP (313 µs).

Two issues remain beyond the above simple flow
control. First, VIA transmission will fail if the receiver
buffer is smaller than the incoming data packet. In our
current prototype, both the client and the server post
buffers with size equal to the MTU of the network, which
is close to 64KB on GigaNet GNN1000. A more practical
solution is to adopt a default size smaller than the MTU
and sufficient for most cases. When one side occasionally

needs to send data larger than the buffer size, it first sends
a control message (with 30-µs round-trip time) to the other
side to request a larger buffer, and then sends the actual
data. Alternatively, if the network adapters support true
Remote Direct Memory Access (RDMA) mode, the
control message can request a large RDMA buffer on the
receiving side and the actual data can be transferred using
one VIA descriptor.

Second, even in the RPC context, there can be non-
RPC-style communication. For example, as will be
discussed later, Millennium Falcon uses Windows NT
LanManager challenge-response protocol for connect-time
authentication. This protocol consists of three legs: client
sends an authentication request, server replies with a
challenge, and finally client sends a response. At this
point, the client is free to send its first request if using a
traditional kernel-mode network protocol. In our
prototype, special care needs to be taken because we rely
on the RPC semantics for flow control. A straightforward
solution is to add a fourth leg from the server back to the
client to maintain the RPC semantics. Alternatively, the
third leg can be combined with the first client call.
4.1.2. Eliminating Data Copying

While user-level networking eliminates data copy
between user-level buffers and kernel buffers, the data
marshaling process in DCOM and RPC introduces another
data copy at a higher layer. Specifically, the proxy code is
responsible for gathering method call parameters and
packing them into an RPC buffer. This buffer can be
directly accessed by the network adapters without
additional copying. The analysis in Section 3 showed that
the remaining data copy at the marshaling layer could
significantly limit the achievable application bandwidth.
Intuitively, because VIA supports scatter-gather operations
and data conversion is not needed within a homogeneous
cluster, it is possible to have network adapters directly
access the memory regions of each individual call
parameter without an intermediate copy. One could
imagine a general scheme in which the IDL compiler is
modified to generate proxy/stub code that does not copy
call parameters into the RPC buffers; instead, the code
constructs a gather or scatter list for VIA DMA access.

While such a general solution to optimal marshaling
performance in user-level networking is beyond the scope
of this paper, our current prototype provides support to
reduce data copying on both the client and the server sides.
Applications that require high bandwidth can supply
modified proxy/stub code to take advantage of the support.
We now describe our marshaling optimization by
following the sequence of steps of a method call that
involves only simple arrays of basic types.

Client side sending a request. A new RPC flag is
added to allow modified proxy/stub code to declare that it
is requesting the scatter-gather mode of transmission.
When this flag value is set, the RPC runtime interprets the

data buffer as a list of scatter-gather entries, each
consisting of a starting memory address and a data length.
The RPC runtime adjusts the entries to include RPC
headers and passes the list down to the loadable transport,
which calls the socket layer to perform a gather-send
operation. Unflagged proxies and stubs still use copy-
mode marshaling.

Server side receiving a request. Since the server-side
RPC runtime may receive calls on any methods supported
by the server process, it is in general not possible to
specify a receive scatter list for any arbitrary method in
advance. However, since the receiving RPC buffer is
dedicated to the on-going RPC call for its entire duration,
the stub code and the method implementation can use the
buffer data directly without copying. Even for complex
data structures, intelligent proxy/stub code can adjust data
layout to use the incoming buffer directly [C98].

Server side sending a reply. This is basically similar
to the client-side send. The only complication is when the
client passes a pointer as an [out] parameter to request a
variable-size array, whose size is determined at run time
by the server. In this case, a properly designed COM
interface method allocates space for the resulting array by
calling CoTaskMemAlloc(), and the client is responsible
for calling CoTaskMemFree() to free the buffer. To
support this memory allocation paradigm, the original
proxy/stub code does the following: the server-side stub
frees the server-side application buffer once it has been
copied into the reply RPC buffer; the client-side proxy
allocates an application buffer once it knows the proper
size, and copies the data from the RPC buffer to the
application buffer.

On a user-mode network, the stub code cannot free the
application buffer until the loadable transport has finished
sending out the entire data directly out of the buffer. To
simplify the task of modifying the standard proxy/stub
code to delay freeing the buffer, we allow the stub to pass
down a callback function pointer and a context pointer,
along with the scatter-gather list. When the loadable
transport finishes using the application buffer, it invokes
the callback function with the context pointer. The
callback function frees the application buffer.

Client side receiving a reply: Unlike the server side,
since the client-side receive operation expects a reply for a
particular method call, the proxy code can specify a reply
scatter list to transfer incoming data directly into the
memory of the [out] parameters and the return value.
However, the variable-size array example mentioned
previously poses certain restrictions. First, the size of the
return array is unknown to the proxy when the call is
made. It is not possible for the proxy to pre-allocate a
buffer of the right size and post it in a scatter list. The
reply must be received by an RPC buffer in this case.
Furthermore, unlike the server side, it is not desirable for
the client application to use the data directly from the RPC
buffer because it may hold on to the buffer for an

undeterminable period before calling CoTaskMemFree().
So a memory copy is still needed in this case.

4.2. RPC Runtime Optimization for DCOM
Once the transport and marshaling optimizations are in

place, the fixed runtime overhead of 100 µs becomes
highly visible. In this section, we investigate how RPC
runtime can be optimized to efficiently support DCOM.
Optimizations at this layer are generally applicable to
speeding up DCOM on any network, although the
performance gain is much more significant in the SAN
environment. As briefly introduced in Section 2, DCOM
was designed as a thin layer on top of DCE RPC to
leverage existing distributed system functionality provided
by RPC. We re-examine this design decision from a
performance point of view. Our study shows that, while
DCOM benefits from the threading, connection, and
security management support of RPC, it suffers from the
unnecessary performance penalty due to RPC’s interface
management. We then describe the design and
implementation of a new RPC runtime module that is
optimized for DCOM.
4.2.1. Critical Path Analysis

Distributed object systems such as DCOM provide an
abstraction to simplify distributed programming by hiding
low-level communication details. To identify critical
paths and apply effective optimization, we must
understand how network traffic is generated in response to
DCOM calls. The following is a critical-path analysis of
critical events for typical DCOM client-server interactions.

Getting the first interface pointer to an object. When
a DCOM client invokes CoCreateInstanceEx(), the client-
side Service Control Manager (SCM) forwards the request
to the SCM on the server machine. The server-side SCM
locates or starts a process capable of hosting objects of the
requested class. When the object implementation returns a
pointer to the requested interface, DCOM marshals that
pointer into an object reference by generating a 128-bit
locally unique Interface Pointer Identifier (IPID) that
identifies that particular interface instance. DCOM also
registers with the RPC runtime the requested interface ID
(IID) and an access control callback function if support for
security is desired. Finally, the SCM asks the server to
create an endpoint and construct a string binding. The
SCMs then ferry both the object reference and the string
binding back to the client process. Together the object
reference and string binding uniquely identify the newly
created interface instance. The client-side DCOM runtime
constructs a binding handle from the string, loads the
appropriate proxy code for the requested IID, and returns
to the client a pointer to a proxy interface. Note that at this
point no socket connection has been established between
the client process and the server process.

We do not consider performance optimization for Co-
CreateInstanceEx() in this paper for two reasons. First,
CoCreateInstanceEx() is only called once when the client

initiates the first contact with an object. For applications
that make a large number of subsequent method calls,
object creation can be considered out of the critical path.
Second, since CoCreateInstanceEx() involves expensive
object creation logic, its performance will not be
significantly improved by low-level runtime and transport
optimizations alone. Changing the application architecture
to move CoCreateInstanceEx() out of the critical path
would be a much more effective solution. For example,
server process A can pre-fetch and cache interface pointers
from server process B running on another node of the
same SAN cluster.

Making the first call to a server process. When the
client makes the first call on a newly acquired interface
pointer, the RPC runtime tries to reuse an existing socket
connection to the server process that hosts the target
object. If none is available, it opens a new socket
connection. After the server accepts the request, if the
authentication mode is turned on, the client starts the
authentication process by sending a BIND message.
Different authentication protocols may require different
numbers of security related messages to be exchanged. As
the result of a successful authentication, security contexts
representing the calling principal are established on both
sides. Finally, the client-side RPC runtime sends the
request on the newly opened connection. Since the
overhead of this entire connection process is amortized
across all method calls between the client-server pair, it
can be considered out of the critical path. If desirable, a
process can pre-fetch an interface pointer from another
process and make one initial call on it to set up the
connection and security contexts in advance.

Making the first call to an interface. As part of the
BIND process for establishing security contexts, a
presentation context associated with the IID of the call is
also established. A per-IID binding entry is inserted into
the binding dictionary on both sides. The purpose of the
presentation context is to ensure that the server indeed
supports the requested IID, and to facilitate future call
dispatching on the server side, which basically involves
mapping an IID to the dispatch function and security
callback function that were registered for it. When the
DCOM client makes the first call to another IID of the
same process, the RPC runtime sends an alter-context
round trip to establish a presentation context for the new
IID. In contrast, the socket connection and its associated
security contexts are shared across IIDs.

Since it is quite common for DCOM clients to request
an interface pointer and make only a very small number of
calls on that pointer, the first calls to each IID should be
considered inside the critical path. The extra alter-context
round-trips may impose serious performance degradation.
From DCOM’s point of view, these round trips are
needless overhead for three reasons. First, when a DCOM
client successfully obtains an interface pointer through
either the QueryInterface() or CoCreateInstanceEx() calls,

it has the implicit acknowledgement from the server that
the IID is supported and has been properly registered. The
additional RPC-level verification is redundant. Second,
because all DCOM interfaces register the same RPC
dispatch function, namely the entry point to the DCOM
stub manager, it is unnecessary for the RPC runtime to
lookup the binding dictionary to map an IID to its dispatch
function. (The true DCOM call dispatching is performed
inside the stub manager based on IPID.) Third, since all
DCOM interfaces register the same per-process RPC
access control function, the RPC runtime IID to security
callback mapping is not needed.

Based upon the above analysis, we conclude that the
interface (IID) management at the RPC runtime layer is
unnecessary for DCOM applications. In our new binding-
handle module optimized to run DCOM, we removed the
entire IID notion from this layer to eliminate unnecessary
network traffic, memory consumption, and performance
overhead.

Making additional calls. The rest of the calls are
certainly on the critical path. Removing the notion of IID
from the RPC runtime layer improves the performance at
several places along the critical path. On the client side,
the binding dictionary lookup is eliminated. Since this
operation required locking a dictionary shared by multiple
threads, the performance gains are even larger for multi-
threaded clients. The RPC runtime need not match
presentation context to find a connection with the correct
security context. On the wire, the IID is not transmitted
because the IPID alone is sufficient for correct
dispatching. On the server side, the RPC runtime invokes
the security callback function and the DCOM stub
manager directly without any dictionary or table lookup.
Latency numbers in Section 5 demonstrate the
effectiveness of these optimizations.
4.2.2. Binding-handle Optimization

We implemented our RPC runtime optimization as a
new binding-handle module. This module sits under the
common RPC API layer, which provides handle-type-
independent processing. Our new module operates at the
same level as the three existing binding-handle modules
for connection-oriented protocols, connectionless
protocols, and Local Procedure Calls. On the client side,
when a call is made on a handle instance, the module finds
the target-server endpoint. Then it searches for an
available socket connection for the endpoint and, if there
is none, creates a new connection. On the server side, the
module maintains a thread pool based on the total number
of active calls. Each thread, upon receiving a client
request, performs appropriate security checks and
forwards the request to the DCOM stub manager.

Security is one of the most important features provided
by DCOM and RPC, and it plays an essential role in
commercial client-server applications. DCOM security
consists of three parts: authentication for verifying clients’
identities and messages’ authenticity; access control for

restricting object access rights to a subset of users; and
impersonation for allowing servers to execute under
clients’ credentials. Our new module supports all three
security functions, while taking into account the special
characteristics of the SAN environments.

DCE RPC supports multiple levels of authentication
including connect-time-only authentication, per-call or
per-packet header protection, per-packet payload
protection, and per-packet encryption. Because our target
environment is a physically secure server cluster, the last
three protections against malicious attacks from outside
agents are unnecessary. However, connect-time
authentication is still necessary to prevent one legal user
from gaining unauthorized access to the private data of
another legal user. Specifically, once a client obtains an
interface pointer, almost all future interactions between the
client and the server will happen directly between the
DCOM and RPC runtime libraries running inside the
application processes. Therefore, even if the machines and
kernels within the cluster trust each other, DCOM
applications do not necessarily trust each other and so
support for connect-time authentication is necessary.
Fortunately, the overhead of this level of security is mostly
outside the critical path, as discussed previously.

Our current prototype uses Windows NT LanManager
challenge-response protocol for connect-time
authentication. Once the client is authenticated, security
contexts established on both sides serve as the basis for
other security functions. When the server invokes DCOM
APIs to impersonate the client, the task is mostly
delegated to the security context. When the DCOM
runtime performs an access permission check, it first
impersonates the client and then retrieves the thread token
to check against the access control list. Since DCOM
provides APIs for client applications to dynamically
change security-related information on a per-call basis, the
client-side binding-handle module ensures that every
method call is sent along a socket connection with the
correct security context.

5. Performance Measurements
In this section, we present the performance comparison

between our Millennium Falcon prototype and the existing
DCOM implementation to quantify the performance gains
of our optimizations. We use the same hardware setup as
described in Section 3 for most of the measurements.

5.1. Round-Trip Latency
Figure 3 compares the round-trip latency for data sizes

ranging from 0 to 8K bytes. The curves marked VIA-copy
and VIA-direct represent DCOM over VIA with and
without RPC buffer copying, respectively, as described in
Section 4.1.2. For data of size zero, our implementation
reduces the round-trip latency from 413 µs to 74 µs, a
more than 5-time improvement. (The best number is 72
µs, with 74 µs being the average over 1,000 runs.)

Profiling data indicate that the overhead distribution is
approximately 42 µs for runtime and 32 µs for transport,
compared to 100 µs and 313 µs in the TCP case. For data
of size 8K bytes, VIA-copy reduces the latency from 1540
µs to 457 µs and VIA-direct further reduces the number to
268 µs. The analytical equation for the VIA-direct curve is
22 µs (marshaling) + 42 µs (runtime) + (32 µs + 21 µs/KB
* size) (transport). (The marshaling overhead as shown
here is independent of the data size, but it can be a
function of the number of call parameters in general.)

0

400

800

1200

1600

0 2048 4096 6144 8192

Data size (bytes)

M
ic

ro
se

co
n

d
s

TCP LPC

VIA-copy VIA-direct

Figure 3. Comparison of DCOM round-trip latency (PingPong)
over TCP, LPC, and VIA with and without data copying.

We also include the curve for DCOM over Local
Procedure Calls (LPCs) in Figure 3. (LPC is one of the
cross-process communication mechanisms within a single
Windows NT machine.) The figure shows the interesting
fact that, for this data range, cross-process local DCOM
calls and cross-machine remote DCOM calls over VIA
(with buffer copying) actually have very similar
performance. The null-call round-trip latency for the
DCOM over LPC case is 73 µs, where 45 µs comes from
runtime and 28 µs from LPC. By eliminating data
copying, the latency of VIA-direct at data size 8K is only
about 60% of the corresponding DCOM-over-LPC
latency. This result can have great impact on system
designs that must decide between local versus remote
execution and communication. For example, algorithms
that tend to place communicating processes on the same
machine in order to minimize communication overhead
now have the flexibility of spreading processes across the
network to take advantage of remote processing power.

For Figure 3, both client and server threads spin
waiting for an incoming message to avoid delays due to
context switching. For a discussion on the performance
impact of blocking, see the full technical report [L98].

5.2. Application Bandwidth
Figure 4 compares DCOM application bandwidth for

the three implementations. Due to the high overhead of
the kernel-mode protocol stack, inefficient transport
management assuming small network MTUs, and several

intermediate buffer copies, the current DCOM-over-TCP
implementation can only deliver a maximum bandwidth of
11.4 MB/s. Using user-level networking and taking
advantage of the large MTU, VIA-copy increases the
maximum bandwidth to 43.4 MB/s. However, that is still
less than 50% of the raw VIA bandwidth of the GigaNet
GNN1000 (about 105 MB/s). By eliminating all buffer
copies on both sides, VIA-direct achieves a bandwidth of
86.1 MB/s.

0

20

40

60

80

100

0 16384 32768 49152 65536

Data size (bytes)

B
an

d
w

id
th

 (
M

B
/s

)

VIA-direct VIA-copy TCP

Figure 4. Comparison of DCOM application bandwidth
(PingPong) over TCP and VIA.

The dramatic increase in available bandwidth
demonstrates the importance of the marshaling layer
optimization. Today, many applications use DCOM as
their main programming paradigm, but use separate,
lower-level communication primitives such as sockets for
bulk data transfer. Since the VIA-direct implementation
preserves 96% of the bandwidth available to a raw socket
implementation (90.1 MB/s), a consistent programming
paradigm based on DCOM can now be applied throughout
an application for both control and bulk data transfer.

5.3. Secure Calls and First Interface Calls
Next, we compare the round-trip latency of secure calls

and the first call to a new IID (after a socket connection
has been established). The top portion of Table 2 shows
that, with security turned off, the latency of the first call to
an IID is more than twice that of later calls in the TCP
case. Overhead comes from the alter-context round trip
(Section 4.2.1), the initialization of the RPC binding
handle, and the initialization of the DCOM channel object.
By eliminating the alter-context round trip and by moving
the initialization of RPC binding handle out of the critical
path, our implementation achieves a round-trip latency of
109 µs, which is 8 times faster than its TCP counterpart.
The remaining overhead of 109-74=35 µs is due to per-
interface DCOM channel initialization for supporting per-
interface security.

The lower portion of Table 2 shows latency when
connect-time authentication is enforced. Ideally, this level
of security should impose zero overhead for all calls using

an existing connection. However, the current DCOM-
over-TCP implementation has a 448-413 = 35 µs overhead
that comes from two sources. First, the client-side RPC
runtime must match, on a per-call basis, the security
setting of the current call against the security context of
existing connections. The second source of overhead is an
implementation issue where the RPC layer performs
security tasks that are unnecessary for DCOM. By
removing the second source in our binding-handle module,
the per-call overhead is reduced to only 76-74 = 2 µs.

Without Security Later Calls First Calls
DCOM over TCP 413 µs 880 µs
DCOM over VIA 74 µs 109 µs
With Security
(Connect-time-only) Later Calls First Calls
DCOM over TCP 448 µs 1600 µs
DCOM over VIA 76 µs 300 µs

Table 2. Comparison of DCOM round-trip latency for secure
and non-secure, first and subsequent interface calls.

The lower portion of Table 2 shows that, for DCOM
over TCP, the latency of first secure calls is more than 3
times that of later calls. A detailed discussion on the
source of the overhead and our optimizations can be found
in [L98]. For the VIA case, out of the 300 µs, about 186 µs
are spent on acquiring the caller’s credentials for
supporting dynamic security.

5.4. Apartment Threading
DCOM supports two different threading models for

servers: free threading and apartment threading. So far,
we have limited our discussion to the free threading
model, in which the RPC threads responsible for receiving
client requests are also the threads that eventually invoke
the object stubs. In the free threading model, the
application programmer must synchronize data accesses.
In contrast, apartment threading simplifies concurrent
programming by providing automatic access
synchronization. By having a single thread operate in a
Single-Threaded Apartment (STA), all accesses to objects
in that STA are serialized and there is no need for
additional programmatic synchronization.

The servers-side DCOM runtime implements apartment
threading by posting each incoming DCOM call to the
Windows message queue associated with the target STA,
thereby serializing all calls into that STA. Apartment-
threaded servers are in general slower than free-threaded
servers due to the context switches between RPC and
application threads. Unlike transports based on custom
marshaling, Millennium Falcon preserves full support for
apartment threading.

Our measurements show that, for both TCP and VIA,
apartment threading adds an additional 90 to 160 µs on top
of the free-threading numbers across different data sizes.
(See [L98] for performance graphs.) In particular, the null-

call latency in the VIA case more than doubles to 168 µs,
and the maximum bandwidth is reduced by 7% to 80.3
MB/s. This suggests that the current implementation of
apartment threading may need to be redesigned to take full
advantage of user-level networking.

5.5. Microsoft Transaction Server
Microsoft Transaction Server (MTS) provides a

runtime environment combining the features of a
Transaction Processing (TP) monitor and an object request
broker. MTS supports the notion of automatic
transactions: a developer builds a COM object in DLL
form and registers it with MTS. When a client activates
the object, an MTS surrogate process loads the DLL and
automatically wraps it with a transaction context so that
the object can participate in transactional interactions.
MTS is currently built on top of apartment threading.

Table 3 compares the latency for null MTS calls. For
the VIA case, of the 280 µs for an MTS call with role-
based security, 168 µs are from apartment threading, 6 µs
from transactional wrapping, 2 µs from DCOM security,
and 104 µs from MTS security. More efficient
implementations of apartment threading and MTS security
are needed once the DCOM and RPC layers have been
optimized for user-level networking.

Without Security With MTS Security
MTS over TCP 558 µs 698 µs
MTS over VIA 174 µs 280 µs

Table 3: Round-trip latency comparison for MTS calls.

5.6. Real Applications
We next discuss two categories of DCOM applications

and present some preliminary results. The first category is
off-the-shelf consumer applications. We use the distributed
version of Microsoft PhotoDraw 2000, created by the
Coign auto-partitioning tool [H99] to run on two
machines. PhotoDraw 2000 is an application for
manipulating digital images. It is composed of
approximately 112 COM component classes in 1.8 million
lines of C++ source code. In the particular runs used in our
measurements, PhotoDraw 2000 loaded a 3MByte
graphical composition from storage, displayed the image,
and exited. It created 295 COM objects and made
approximately 9000 DCOM calls. Results showed that
Millennium Falcon reduced the total execution time from
24.0 seconds to 21.8 seconds, a 9.2% improvement in
performance. On average, the per-call performance gain is
around (24.0 - 21.8) / 9000 = 244 µs.

The second category is client/server applications
involving database operations. Our measurement shows
that an MTS-over-TCP call involving an SQL SELECT
operation takes 3.45 ms on SQL Server 6.5. Making the
same call over Millennium Falcon reduces the round-trip
latency to 3.14 ms, a 9.0% performance gain. For an SQL

INSERT operation, the corresponding numbers are 5.06ms
vs. 4.79ms, a 5.3% improvement.

6. Related Work
Madukkarumukumana et al. built a custom marshaling

layer for DCOM over VIA [Ma98]. Their implementation
sacrifices DCOM features for speed. Zimmer and Chien
built a UDP loadable transport for MSRPC over Illinois
Fast Messages [Z98]. They pointed out that the current
RPC implementation imposes serious limitations on
potential performance gains. Our work on RPC runtime
optimization was partly motivated by their observations.

Bilas and Felten [B97] modified SunRPC to run over
Shrimp VMMC. In their SunRPC-compatible
implementation, their marshaling layer optimization and
ours share similar basic ideas, but differ in IDL semantics.
Their second system, ShrimpRPC, forgoes application
compatibility with SunRPC to allow further optimizations.
In contrast, our goal was an efficient RPC layer capable of
supporting existing DCOM applications.

Gokhale and Schmidt [G96][G97] evaluated
commercial CORBA and RPC implementations. They
discovered that some had inefficient server-side
dispatching, and that the conversion of typed data to XDR
format in SunRPC is a major source of extraneous
overhead for homogenous machines. Unlike the studied
CORBA implementations, DCOM’s dispatch mechanism
is already highly optimized, and the NDR conversion in
MSRPC occurs only at the receiver side and only if sender
and receiver employ different representation formats.

Two classes of optimization have been proposed for the
marshaling layer. The first class reduces data copying.
Thekkath and Levy [T93] marshaled RPC arguments
directly in the kernel to avoid data copying to kernel
buffers for ATM and FDDI. This optimization is
unnecessary for user-level networking. Some of our
optimizations are similar to the buffer caching and
aggregation used in [D93], although they dealt with
additional cross-domain issues. The second class of
marshaling optimizations applies known compiler
transformations to stub generation [E97][Mu98]. Such
optimizations are essentially orthogonal to our work.

7. Conclusions
We have demonstrated an effective approach to

reducing round-trip latencies and increasing application
bandwidth for a commercial distributed-object system
over user-level networking. Just as high-speed networks
shifted the performance bottleneck to the protocol stacks
and user-level networking shifted the bottleneck to the
communication infrastructures of distributed object
systems, our optimizations have again shifted the
bottleneck to the support for security and threading, and
the initialization overhead of internal data structures.
Performance measurements suggest that existing
architectures and implementations in these areas need to

be carefully reevaluated in order to take full advantage of
high-speed networking.
Acknowledgement
We thank Jim Gray, Karin Petersen, and the anonymous
reviewers for their valuable comments.

References
[B97] A. Bilas and E. W. Felten, “Fast RPC on the SHRIMP

Virtual Memory Mapped Network Interface,” in J. Parallel
and Distributed Computing, Feb. 1997.

[B94] M. A. Blumrich et al., “Virtual Memory Mapped Network
Interface for the SHRIMP Multicomputer,” in Proc. Int. Symp.
on Computer Architecture, pp. 142-153, 1994.

[B98] N. Brown and C. Kindel, Distributed Component Object
Model Protocol -- DCOM/1.0, 1998.

[C95] The Common Object Request Broker: Architecture and
Specification, Revision 2.0, July 1995.

[C98] C.-C. Chang and T. von Eicken, “A Software Architecture
for Zero-Copy RPC in Java,” Cornell CS Technical Report 98-
1708, Sep. 1998.

[D95] DCE 1.1: Remote Procedure Call Specification.
[D93] P. Druschel and L. L. Peterson, “Fbufs: A High-bandwidth

Cross-domain Transfer Facility,” in Proc. SOSP, 1993.
[E97] E. Eide et al., “Flick: A flexible, optimizing IDL

compiler,” in Proc. ACM SIGPLAN’97 Conf. On
Programming Language Design and Implementation (PLDI),
pp. 44-56, June 1997.

[G96] A. Gokhale and D. C. Schmidt, “Measuring the
Performance of Communication Middleware on High-speed
Networks,” in Proc. SIGCOMM, Aug. 1996.

[G97] A. Gokhale and D. C. Schmidt, “Measuring and
Optimizing CORBA Latency and Scalability Over High-speed
Networks,” IEEE Trans. on Computers, Vol. 47, No. 4, 1998.

[H99] G. Hunt and M. L. Scott, “The Coign Automatic
Distributed Partitioning System,” in Proc. OSDI, 1999.

[L98] L. Li et al., “High-Performance Distributed Objects over a
System Area Network,” Tech. Rep. MSR-TR-98-68,
Microsoft Research, 1998.

[Ma98] R. S. Madukkarumukumana, C. Pu, and H. V. Shah,
"Harnessing User-Level Networking Architectures for
Distributed Object Computing over High-Speed Networks," in
Proc. USENIX NT Symposium, pp. 127-135, Aug. 1998.

[Mu98] G. Muller et al., "Fast optimized Sun RPC using
automatic program specialization," Proc. ICDCS, May 1998.

[P97] S. Pakin, V. Karamcheti, and A. A. Chien, “Fast Messages:
Efficient, Portable Communication for Workstation Clusters
and MPPs,” IEEE Concurrency, 5(2):60-73, 1997.

[T93] C. A. Thekkath and H. M. Levy, “Limits to Low-latency
Communication on High-speed Networks,” ACM Trans. on
Computer Systems, 11(2):179-203, 1993.

[V97] Virtual Interface Architecture Specification, Version 1.0,
Dec. 1997. (http://www.viarch.org)

[V95] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net:
A User-Level Network Interface for Parallel and Distributed
Computing,” in Proc. ACM SOSP, 1995.

[W95] A. Wollrath, R. Riggs and J. Waldo, “A Distributed
Object Model for the Java System,” USENIX Journal,
Computing Systems, Vol. 9, No. 4, pp.265-289, 1996.

[Z98] O. M. Zimmer and A. A. Chien, “The Impact of
Inexpensive Communication on a Commercial RPC System,”
submitted, 1998.

