
The following paper was originally published in the

Proceedings of the 3rd USENIX Windows NT Symposium
Seattle, Washington, USA, July 12–13, 1999

H A R D R E A L - T I M E W I T H R T X
O N W I N D O W S N T

Mike Cherepov and Chris Jones

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Hard Real-Time With RTX on Windows NT

Mike Cherepov, Chris Jones
{cher, clj}@vci.com

VenturCom, Inc.
Cambridge, MA

www.vci.com

Abstract

For a variety of reasons, Microsoft Windows NT is
increasingly being considered as a platform for de-
ployment of real-time systems. In order to meet the
stringent latency requirements of hard real-time sys-
tems, it is necessary to augment the capabilities of
Windows NT. We examine VenturCom's RTX, which
provides a real-time subsystem running on Windows
NT. It implements deterministic scheduling of real-time
threads, inter-process communication mechanisms be-
tween the real-time environment and the native NT
environment, and other extensions to Windows NT
which are often found in specialized real-time operating
systems. We discuss how the components of RTX pro-
vide these features, explore current results and experi-
ences, and point out possible future directions for en-
hancement.

1 Introduction

Microsoft Windows NT’s popularity and market share
have been growing. The reasons for this are varied,
including:
§ The increasing power and declining price of Win-

dows NT platforms.
§ The many applications available on the platform.
§ The variety of development tools available on the

platform.
§ The richness of the Win32 Application Program-

ming Interface (API).
§ The large number of developers, support personnel,

and end users who are familiar with the system.

Because of the added complexity and cost of maintain-
ing a heterogeneous computing environment, more
companies are striving to use Windows NT as their
Operating System (OS) at all levels of the industrial
hierarchy. Its use as a network server system or as a
desktop system is easy to understand, since these are
the very environments for which Windows NT was
designed. However, there is also an impetus to use it in
other environments, such as the factory floor. A com-

mon characteristic of these environments is that they
often require hard real-time system behavior.

Can Windows NT fulfill this need? The answer is, not
as delivered. However, with additional software, it is
possible to realize hard real-time performance on Win-
dows NT. The remainder of this paper justifies these
statements and describes VenturCom’s RTX environ-
ment including RTSS, a Real-Time SubSystem, for
Windows NT running on the PC architecture (i.e., Intel
x86 and compatible systems).

An earlier paper [Carpenter 97] discussed this effort
during its development. This paper offers a closer look
at the actual implementation as delivered, including
performance numbers and enhancements made in the
meantime, as well as a look at future areas for devel-
opment.

2 Windows NT and the Real-time World

2.1 What it means for a system to be real-time

A real-time system is one in which the correct operation
of the system depends not only on the results that are
delivered, but when they are delivered. It is important
to note that “real-time” does not necessarily mean
“fast”; rather it refers to how deterministic the response
time characteristics of the system are. That is, the im-
portant measure is not average response time but worst-
case response time. Real-time systems are sometimes
further classified as hard or soft real-time systems. A
hard real-time system is one in which the response time
determinism requirement is absolute; for a soft real-
time system, some small deviations are tolerated. A
fundamentalist viewpoint would consider “soft real-
time” to be an oxymoron, and for the remainder of this
paper, when we say “real-time” we mean hard real-
time.

An example of a real-time system is a system control-
ling a piece of capping machinery over a conveyer belt
transporting bottles to be capped. It is not enough for

the system to correctly position the cap dispenser; it
must do so when a bottle is in position to be capped. All
the accuracy in positioning is worthless if the dispenser
arrives in position after a bottle has passed.

In addition to this determinism, there are a number of
other requirements that real-time systems have typically
come to provide:

§ A multithreaded, preemptive scheduler with a large
number (typically 64-256) of thread priorities.

§ Predictable thread synchronization mechanisms.
§ A system of priority inheritance.
§ Fast clocks and timers.

2.2 Why is stock Windows NT unsuitable as a real-
time system?

Microsoft Windows NT has been designed as a general-
purpose operating system, suitable for use both as an
interactive system on the desktop and as a server sys-
tem on a network [Solomon 98]. The shortcomings of
NT in real-time applications have been thoroughly re-
searched [Ramamritham 98] [Timmerman & Monfret
96]:

§ Too few thread priorities.
§ Opaque and non-deterministic scheduling deci-

sions.
§ Priority inversion, particularly in interrupt proc-

essing.

The logic of RTX design is dictated by several factors.
The stock NT operating system is a mass-market prod-
uct, not readily tweaked for niche applications like real-
time. While Microsoft-sponsored research into real-
time NT has produced some interesting results [Som-
mer 96], especially for cases when applications adver-
tise their resource requirements in advance [Sommer

97][Sommer & Potter 96], it is doubtful that this oper-
ating system, aiming for a very broad market, should
absorb the overhead and complexity of real-time func-
tionality [Microsoft 95]. This factor suggests that the
proper way to add real-time to NT is via an extension,
or a plug-in to the generic product [Jones 98].

2.3 Why extend Windows NT to a real-time sys-
tem?

At the same time, NT offers a very rich and sophisti-
cated device driver model. That, and the customizable
Hardware Abstraction Layer (HAL), offer a developer
great flexibility and control over system behavior, and
scope for creativity in tackling technical challenges.
Thus, real-time functionality can be implemented “by
the book” following the Microsoft NT Device Driver
Kit (DDK) and HAL models [Baker 97].

Finally, for a writer of NT kernel extensions who is not
employed by Microsoft, the NT kernel is akin to sili-
con, as its interfaces and behavior are fixed. Rather than
lament the fact, one can make virtue of necessity and
produce a compact design for the extension, easily
portable between different versions of NT, and, indeed,
between NT and other operating systems such Win-
dows CE or Unix. Below we illustrate how RTX lived
up to these portability goals.

3 So, You Want to Write A Hard Real-
Time NT Environment?

3.1 Why extend Windows NT to a real-time sys-
tem?

Given that many of the shortcomings of NT just men-
tioned are due to its thread model and thread scheduler,
it is logical that the extension have its own thread
model with its own scheduler. Likewise, the NT syn-

Figure 1. RTX Architecture

chronization objects such as events, semaphores, and
mutexes lack the necessary real-time semantics (in par-
ticular, they neither ready threads waiting on an object
in priority order nor prevent priority inversion). For
these reasons, the extension should implement its own
synchronization objects [Bollella 95].

If, following the logic of the NT environment, you have
decided to implement a hard real-time subsystem for
NT, your real-time environment should be able to:

§ Preempt NT anywhere, at least outside critical NT
interrupt-processing code.

§ Defer NT interrupts and faults while running real-
time tasks.

§ Process real-time interrupts while running real-time
tasks.

The notion of preempting high-level IRQ activity of NT
and its drivers for unbounded periods of real-time ac-
tivity may strike one as dangerous. Yet, such events are
commonplace, and NT is designed to handle them:
high-IRQL events intrude on lower-IRQL ones, bus-
mastering by DMA peripherals may defer even the
highest-level interrupt processing, and PCI devices may
stall CPU accesses to the I/O space (see RTX and Inter-
rupt Latency). Thus, from the NT point of view, RTSS
activity that steals its cycles is equivalent to taking and
coming back from an interrupt. Such an event is well
handled by NT, regardless of its duration.

Functional needs of the real-time subsystem would in-
clude IPC with the Win32 subsystem, access to the NT
kernel functionality (interrupt management, port I/O,
shutdown/crash handlers), and – importantly – com-
patibility with Win32, at least at the source code level.

3.2 RTX Structure

RTX is implemented as a collection of libraries (both
static and dynamic), a real-time subsystem (RTSS) re-
alized as an NT kernel device driver, and an extended
HAL (see Figure 1) [Carpenter 97]. The subsystem im-
plements the real-time objects and scheduler previously
mentioned. The libraries provide access to the subsys-
tem via a real-time API (RTX API). RTX API provides
access to these objects. Note that the RTX API is call-
able from the standard Win32 environment as well as
from within RTSS. While using RTX API from Win32
does not provide the determinism available within
RTSS, it does allow much of the application develop-
ment to be done in the friendlier Win32 programming
environment rather than that provided by the DDK [An-
schuetz 98]. All that is necessary to convert a Win32
program to an RTSS program is to relink with a differ-
ent set of libraries.

RTX applications – just as RTX itself – are imple-
mented on top of loadable NT drivers, although they
lack the I/O Manager-related hooks. It is a natural fit:
Windows NT drivers are process-like from the NT
Service Manager’s point of view, controllable by users,
and get loaded into the kernel address space.

4 RTX in Depth

4.1 The Real-time HAL

The HAL is the one piece of the Windows NT system
whose source is available for modification and exten-
sion. RTX has modified the HAL for three purposes:

1) To add interrupt isolation between NT and RTSS
threads.

Figure 2. RTSS Detailed Architecture

2) To implement high-speed clocks and timers.
3) To implement shutdown handlers.

Interrupt isolation means that it is impossible for an NT
thread or an NT-managed device to interrupt RTSS. It
is also impossible for an NT thread to mask an RTSS-
managed device. The HAL ensures that these condi-
tions are met by controlling the processor’s interrupt
mask. When running an RTSS thread, all NT-controlled
interrupts are masked out. When an NT thread calls to
set the interrupt mask, the HAL, which is the software
that actually manipulates the mask, ensures that no
RTSS-controlled interrupt is masked out.

NT provides clocks and timers with a maximum reso-
lution (i.e., smallest granularity) of 1 msec. The RT-
HAL extends this to 1 µsec. It also provides access to
the second clock on the PIC.

4.1.1 Protection from NT Crashes
In addition to interrupt management and fast-timer
services, the real-time HAL also provides NT shutdown
management. An RTSS application can attach an NT
shutdown handler for cases where NT performs an or-
derly shutdown, or crashes, producing a so-called Blue
(Stop) screen. An orderly shutdown allows RTSS to
continue unimpaired and resumes when all RTSS shut-
down handlers return. In a blue-screen shutdown, RTSS
shutdown handlers run with certain limitations, unable
to call NT services (e.g., for memory allocation) or to
handle faults. In practice, it means that a shutdown
handler should clean up and reset any hardware state,
possibly alert an operator, or switch to a hot spare when
the system stops, due to either a normal shutdown or a
crash.

4.2 Extending the HAL

Whereas earlier releases of RTX replaced the HAL, the
latest one – RTX 4.3 – extends the standard NT HAL
dynamically. The HAL extension driver, starting at OS
initialization time (SERVICE_SYSTEM_START),
performs dynamic HAL detection in memory, inter-
cepts interrupt, timer, and shutdown-related calls, and
re-directs them to their RTX counterparts. This binary
hooking technique has a number of advantages over
HAL replacement:

§ RTX handles a broader range of OEM platforms,
as call re-direction is limited to calls which vary
little among different OEMs and SPs.

§ RTX is compatible with a greater range of NT
Service Pack (SP) releases, as we do not need to

merge RTX changes with the latest SP’s HAL
sources.

§ Installation becomes more robust, as the on-disk
copy of the HAL is untouched, hence RTX is unaf-
fected by SP upgrades.

§ Upgrades to newer versions of NT become easier,
if not effort-free.

The benefits of the HAL extension were demonstrated
when RTX has installed and run successfully on Win-
dows 2000 (neè NT 5.0) Beta 2. This required no de-
velopment effort on Win2000, although effort certainly
will be needed to improve performance to NT4.0 levels.

4.3 RTX and Interrupt Latency

4.3.1 Software Causes of Latency
A switch from NT to RTSS happens on an interrupt,
either from the RTX high-speed clock, or from another
device generating RTX interrupts. Therefore, achieving
RTX ISR determinism requires reducing NT interrupt
latency. Let us examine the sources of this latency.

The most significant is IRQ masking by the NT kernel
and drivers, routinely done for periods up to several
milliseconds via NT KeRaise/LowerIrql calls. The NT
kernel, HAL, and certain special drivers also perform
processor-level masking of all interrupts via x86
STI/CLI instructions, for periods of up to 50 µsec.

NT and RTX interrupt processing, naturally, masks
interrupts, thereby adding to ISR latency. Although NT
relies very heavily on interrupts in many situations
(e.g., raising software exceptions, or unwinding a
thread’s stack), the NT interrupt sequence is reasonably
compact in its contribution to the worst-case ISR la-
tency.

4.3.2 Hardware Causes of ISR Latency
The most obvious hardware-related problem is cache
dirtying and flushing by applications and the operating
system. This category also includes re-filling of the
TLBs. Video drivers are particularly aggressive users of
caches, causing contention-related flushes when an
RTX interrupts starts running. Histograms of ISR be-
havior in the presence of cache-dirtying applications
would typically have a double-hump profile, with most
samples near the best-case band, and another large
number of samples in the flushing-related band (see
Figure 3).

Power management, especially on portable devices,
creates occasional long-latency events when the CPU is
put in a low-power-consumption state after a period of

inactivity. Such problems are usually quite easy to de-
tect. A typical system can disable those features via
BIOS setup.

Bus mastering events can cause long-latency CPU
stalls. Such cases include high-performance DMA SCSI
devices, causing CPU stalls for periods of many micro-
seconds, or video cards that insert wait cycles on the
bus in response to a CPU access. Sometimes the be-
havior of such peripherals can be controlled from the
driver, trading off throughput for lower latency.

While no operating system can protect an application
against such hardware factors, RTX offers a panoply of
tools to diagnose platform-related latencies, and iden-
tify the misbehaving peripherals. Being mindful of such
factors and using RTX tools to qualify one’s develop-
ment platform are essential for a system’s overall per-
formance.

4.4 RTX Interrupt Latency Reduction Techniques

RTSS entirely eliminates latencies from IRQL masking
by NT and NT drivers. The RT HAL performs interrupt
isolation, re-programming the PIC when switching
between NT and RTSS. The result is that RTX inter-
rupts can always interrupt NT, while RTX masks all NT
interrupts while RTSS is running.

Processor-level interrupt masking, on the other hand,
can not be defeated, other than through the perilous use
of x86 NMIs (non-maskable interrupts). RTX adopts a
static solution hooking gratuitous cases of interrupt
preemption (e.g., page-zeroing operations) to use IRQ
locks instead. The RTX Dynamic Hook driver scans the
NT kernel for signatures of such operations, hooking
them to use spin locks (or IRQ-based synchronization
on a uniprocessor) instead.

These techniques provide worst-case interrupt latencies
of under 50 microseconds on a typical 200MHz PC
platform.

4.5 RTX Objects

The RTSS Environment has a fast streamlined object
manager (see Figure 2). The objects it supports satisfy
the following criteria: 1) Usefulness for real-time pro-
gramming, and 2) Compatibility with Win32. The IPC
objects are also available to Win32 applications and
device drivers, allowing programmers to harness the
full power of NT. The IPC set includes mutexes, events,
semaphores, and shared memory objects.

The RTSS object manager uses the Windows NT non-
paged memory pool for its storage requirements. There
are advantages and disadvantages to this approach. Us-
ing kernel-provided mechanisms decreases RTX's de-
velopment time and resource consumption. Object al-
location, however, is non-deterministic.

4.6 RTSS Scheduler

The RTSS scheduler implements a priority based pre-
emptive policy with priority promotion to prevent pri-
ority inversion. The RTSS environment provides for
128 priority levels, numbered from 0 to 127, with 0 the
lowest priority. The RTSS scheduler will always run
the highest priority thread that is ready to run (in the
case of multiple ready threads with the same priority,
the thread which has been ready the longest will run
first). An RTSS thread will run until a higher priority
ready thread preempts it or until it voluntarily relin-
quishes the processor by waiting (there is no time-
slicing among ready threads at the same priority).

The scheduler has been coded with the requirements of
real-time processing in mind. Most importantly, its op-
eration is low latency, and is unaffected by the number
of threads it is managing. Each priority has its own
ready queue, maintained as a doubly linked list. This
allows the execution time of insertion (at the end of the
list) and removal (from anywhere in the list) to be inde-
pendent of the number of threads on the list. A bit array
keeps track of which lists are non-empty, and manipu-
lating this bit array is done by high-speed assembly-
coded routines.

While an RTSS thread is running, all NT-managed in-
terrupts, as well as any interrupts managed by threads
of a lower priority than the current thread, are masked
out. Conversely, all interrupts managed by higher pri-
ority threads are unmasked, allowing for a higher-
priority thread to preempt the current thread. In addition
to these device interrupts, other mechanisms that can
cause the currently running thread to be preempted are
the expiration of a timer that causes a higher priority
thread to become ready, or the signaling of a synchroni-
zation object (by the currently running thread) for
which a higher priority thread is waiting.

In order to deal with priority inversion, RTSS imple-
ments the classic solution [Nakajima 93] [Sha 90], pri-
ority promotion, to prevent this situation. For the dura-
tion of the time that a low priority thread owns an ob-
ject for which a high priority thread is waiting, its
effective priority is promoted to that of the high priority
thread.

4.7 Service Request Interrupt (SRI)

An important architectural feature of RTX is its lock-
less interrupt-driven interface between NT and RTSS.
This clean architectural separation has enabled ports of
RTSS to various environments (e.g., multiprocessor
RTX product, and RTSS demo for Windows CE2.0),
while ensuring a fast and robust implementation. The
NT side of the RTX driver and the RTSS environment
communicate by inserting commands into one of the
two buffer queues (one in each direction) and initiating
a Service Request Interrupt (SRI) to request service by
the other side. A server thread executes a request and a
reply message is posted in the other buffer. A typical
NT-to-RTSS request is an IPC operation like Wait-
ForSingleObject or a Release operation on a RTSS ob-
ject. A typical RTSS-to-NT operation is a memory allo-
cation or a file I/O request. The SRI design favors
lower response time over throughput, responding to an
RTSS request as soon as possible.

4.8 Win32-RTSS IPC

Inter-environment IPC is a key feature of RTX, allow-
ing tightly integrated applications where hard real-time
processes run in the more resource-intensive RTSS en-
vironment, and the rest of the application runs in the
Win32 subsystem. This section describes the IPC de-
sign.

4.8.1 RTSS Proxy Model
IPC, as the rest of the NT-RTSS communication, uses
the SRI channel. Given that the SRI channel prevents
NT threads from queuing directly for RTX objects,
RTX uses proxy processes and threads to support
blocking IPC from Win32. When a Win32 thread ac-
cesses an RTX object, RTSS uses a proxy thread on its
behalf. This model is clean and economical, its advan-
tages being:

§ No state-keeping on the NT side for blocking IPC
requests.

§ No special-casing in RTSS for external Win32 wait
requests.

§ Handle and object cleanup for Win32 process and
thread termination is handled automatically by
RTSS proxy process/thread cleanup.

Although proxies involve some memory and CPU
overhead, the clean design and quick implementation
were worth the tradeoff.

4.8.2 Taming the NT I/O Manager
Preserving seamless Win32 semantics and achieving
good performance for cross-environment IPC presents
several challenges.

The NT 4.0 DDK provides no exposed interfaces for
driver thread notification in case a Win32 thread using
that driver terminates. Yet, Win32 mutex semantics,
require such a mechanism. An RTX mutex acquired,
but not released, by a thread at the time of the thread’s
termination, must be marked as “abandoned”, indicat-
ing that the shared data it protects may be inconsistent.
To implement thread-termination cleanup, RTX takes
advantage of I/O Manager’s IRP (I/O Request Packet)
cleanup: each thread attached to the RTX Win32 Dy-
namically Linked Library (DLL) sends a “death IRP” to
the RTX driver. When the thread terminates, NT calls
this IRP’s cancel routine, notifying the RTX driver and,
thereby, the RTSS object layer. The I/O Manager pres-
ents a powerful, yet often challenging environment, as
its event delivery is asynchronous. E.g., calls to the
MJ_CLEANUP driver dispatch routine and the cancel
routine call can come in any order, requiring careful
synchronization for the RTX driver’s per-thread and
per-process structures.

Performance of the Win32-RTSS IPC presented another
concern. In an early implementation, the total latency of
an uncontested RtWaitForSingleObject call from
Win32 averaged 130µsec. Analysis has shown that
about 40µsec of the total (over 30%) was spent in the
NT I/O Manager. Therefore, RTX4.2 has undergone a
redesign of the IPC code, using direct signaling and
shared memory between the RTX driver and the Win32
IPC client [Tomlinson 97]. RTX user and kernel
threads share synchronization objects, signaling each
other directly, thus shrinking the overhead and the la-
tency of the NT I/O manager by a factor of four.

Note that operations on RTX synchronization objects
locked by Win32 applications become non-
deterministic [Carpenter 97]: as any RTSS thread can
preempt an NT thread holding such a lock, causing an
apparently unbounded case of priority inversion. This,
however, is a matter of application design: locking an
object shared from Win32 should be left to a non-
critical RTSS thread. Furthermore, this issue is amelio-
rated when RTSS and NT run on different dedicated
processors, in a multiprocessor RTX system.

4.9 Fast Timer Support

On all PC platforms real-time HAL provides clock
resolution of 1µsec or better, and timer period of

100µsec or better. When RTSS is not used, there are no
timing differences between a real-time HAL and a
regular HAL systems.

4.10 Dynamically Linked Libraries

No tour of Win32 would be complete without a men-
tion of DLLs. RTSS supports Win32 DLL API (Load-
Library, GetProcAddress). Currently, all the static and
global data in an RTSS DLL is shared between all
RTSS processes attached to that DLL.

4.11 Structured Exception Handling in RTSS

Structured Exception Handling (SEH) is a relatively
little known but rather important feature of Win32 and
NT kernel environments. Its pedigree goes back to
OS/2 and OSF Unix implementation. SEH provides
exception handling via try/except and try/finally con-
structs of the Microsoft C implementation. C++ excep-
tion handling is layered on top of SEH, as are libc sig-
nal/raise calls, making SEH a necessity for any Win32-
compliant environment. The salient features of this
model are:

§ Compiler-specific exception handlers.
§ Operating system-specific stack unwinder and ex-

ception dispatcher routines.
§ User-supplied exception filters.
§ Two-stage exception handling algorithm which

first invokes the OS-specific dispatcher routine to
scan the thread’s stack backwards calling filters in
search of a suitable handler, then the OS-specific
unwinder to roll back the stack, if necessary.

§ Last-chance default and user-supplied exception
routines.

§ A special mechanism for nested exceptions and
“collided” unwinds.

The RTSS SEH implementation maintains compatibil-
ity with Microsoft structures, handler-calling conven-
tions, SEH API behavior, etc. In addition, it is engi-
neered for real-time, to minimize processor-level inter-
rupt masking and disruptions to RTSS threads:

§ Win32 generates a software interrupt when raising
a software exception via the Win32 RaiseExcep-
tion API; RTSS calls a user-mode exception dis-
patcher.

§ Win32 SEH uses a special interrupt when it sets a
new user context after unwinding the stack; RTSS
restores context in user mode.

§ NT may “edit” (move) an exception trap frame
with interrupts disabled; RTSS does this in user
mode.

For hardware exceptions, the RTSS algorithm doctors
the trap frame to call the RTSS exception dispatcher;
then “returns” from the ISR to the dispatcher, and han-
dles the exception. Thus, a software exception involves
no ISR latency penalty for other threads; a hardware
exception only adds the worst-case penalty of a single
interrupt.

5 Performance

Table 1 presents selected performance numbers for a
recent release of RTX.

Table 1. Typical latencies for a 266MHz Pentium II

Operation Latency
(µsec)

Interrupt thread: avg., max 9, 38
Timer interrupt: avg., max 10, 43
Context switch (yield): avg. 3.5
Context switch (semaphore): avg. 5.5
Thread priority change: avg. 3
Thread yield: avg. 3
Acquire semaphore, uncontested: avg. 1.5
Acquire semaphore: avg. 5
Win32-to-RTSS semaphore call: avg. 50

Figure 3 is a typical look from the RTSS interrupt la-
tency measurement utility in the presence of a typical
NT workload: disk searches, video updates, network
activity, screen saver, etc. The lower and narrower sec-
tions of the chart's bars represent activity during the last
second only.

Figure 3. RTSS timer interrupt latency histogram for a typical
workload. X axis – µsec, Y axis – number of samples.

Figure 4 is the Win32 counterpart for the same kind of
workload on the same machine – Gateway GP5-166
running NT4.0 Workstation SP4. An astute reader may
point out that the first histogram describes Win32
threads, whereas the second – kernel driver threads.
However, the difference between the two amounts to
the several microseconds of kernel-user transition over-
head for the Win32 threads, so the worst-case latencies
of NT driver and Win32 threads differ very little under
the same workload.

Figure 4. Win32 timer interrupt latency histogram for a typi-
cal workload. X axis – µsec, Y axis – number of samples.

Copious performance results are available from inde-
pendent evaluations of RTX and other real-time NT
extensions [OMAC 98] [Real-Time 98] [Timmerman
98].

5.1 Performance Tools

RTX performance tools enable developers to qualify
and tune performance on their platforms. Ksrtm is a
driver and a Win32 utility for HAL-level timer interrupt
latency measurement. Running in the kernel makes it
relatively insensitive to cache jitter. Ksrtm also deter-
mines which NT component or device driver is causing
the greatest latency event: after such an event, the
Ksrtm ISR obtains the address of the interrupted se-
quence from the stack, then resolves it to a loaded NT
kernel module. The Srtm application is a simple RTX
API timer latency measurement tool running either in
RTSS or Win32, which produces a histogram, realisti-
cally reflecting timer latency observed by an applica-
tion. The Lpt tool determines long-latency events due
to bus mastering events.

6 Future Directions

6.1 Multiprocessing

The initial releases of RTX ran on single processor
systems. The most recent release runs on multiproces-
sor systems that conform to the Intel Multiprocessor
Specification Rev 1.4.

This specification provides for interrupts to be con-
trolled by an Advanced Programmable Interrupt Con-
troller (APIC), suitable for a multiprocessor system.
Through the APIC, different interrupts can be steered to
different sets of processors. RTSS dedicates one proc-
essor of the system to running RTSS threads, while the
remaining processors run NT threads. This dramatically
lessens the latency of real-time threads (from 50 µsec to
less than 13 µsec,) while preventing the processor star-
vation of NT threads, possible on a single processor
system

6.2 Ways to Grow

RTSS can serve as a basis for other real-time environ-
ments, like Newmonics’ real-time RTSS-based Java-
compatible virtual machine [Nilsen 98] [Nilsen & Lee
98]. It also can be linked with other NT subsystems
such as Interix by Softway [Walli 97]. Other possibili-
ties include a COM interface to RTSS objects accessed
from Win32 or, indeed, making COM available within
the RTSS environment.

7 Conclusion

VenturCom's RTX has shown that, with a selected col-
lection of extensions, it is possible to augment Win-
dows NT to provide the features of a real-time operat-
ing system at the same time it continues to be used as a
general purpose platform. The resulting system meets
the constraints of determinism which are a necessary
part of the real-time world, while providing an envi-
ronment more familiar to a wide body of users.

Availability

RTX is available from www.vci.com.

References

[Anschuetz 98] E. Anschuetz, M. Biddle, S. Giambar-
beree, B. Riner, J. Dube, Real Time Flight Simulators
Under NT, Proceedings of the 1998 Inter-
service/Industry Training, Simulation and Education
Conference (I/ITSEC 12 1998).

[Baker 97] Art Baker, The Windows NT Device Driver
Book, Prentice Hall, 1997.

[Bollella 95] G. Bollella and K. Jeffay, Support For
Real-Time Computing Within General Purpose Oper-
ating Systems: Supporting co-resident operating sys-
tems, Proc. IEEE Real-Time Technology and Applica-
tions Symposium Chicago, IL, May 1995.

[Carpenter 97] Bill Carpenter, Mark Roman, Nick Va-
silatos, Myron Zimmerman, The RTX Real-Time Sub-
system for Windows NT, Usenix Windows NT Sympo-
sium, 1997.

[Jones 98] C. Jones, M. Cherepov, Windows-based
systems and the Win32 API, Real-Time Magazine 98/3.

[Microsoft 95] Microsoft, Real-Time Systems and Mi-
crosoft Windows NT; http://www.msdn.microsoft.com.

[Nakajima 93] T.Nakajima, T.Kitayama, H.Arakawa,
H.Tokuda , Integrated Management of Priority Inver-
sion in Real-Time Mach, IEEE Real-Time Systems
Symposium, December 1993.

[Nilsen 98] Kelvin Nilsen, Simanta Mitra, Sairam
Sankaranarayananan, Venkatesh Thanuvan, Asynchro-
nous Java Exception Handling in a Real-Time Context,
Workshop on Programming Languages for Real-Time
Industrial Applications '98, Madrid, Spain, December 1,
1998.

[Nilsen & Lee 98] Kelvin Nilsen, Steve Lee, Perk(TM)
Real-Time API, July 1998, Newmonics, Inc.
www.newmonics.com/WebRoot/perc.info/perc.api.pdf.

[OMAC 98] Open Modular Architecture Controls
(OMAC) Users Group, Hard Real-time Extensions of
Windows NT© Evaluation Report Test Plan and Phase
1 & 2; www.arcweb.com/omac/Docs&NRs/ntrtrpt2.pdf.

[Ramamritham 98] Krithi Ramamritham, Chia Shen,
Oscar Gonzalez, Shubo Sen, Shreedhar B Shirgurkar,
Using Windows NT for Real-Time Applications: Ex-
perimental Observations and Recommendations Pro-
ceedings of IEEE RTAS'98 (the IEEE Real-Time Tech-

nology and Applications Symposium), June 3-5, 1998.
Denver, Colorado.

[Real-Time 98] Real-Time Magazine, Windows NT RT
Extensions - Evaluation Reports; www.realtime-
info.be/encyc/market/rtos/eval_roadmap.htm.

[Sha 90] L. Sha, R. Rajkumar, and J. P. Lehoczky,
Priority Inheritance Protocols: An Approach to Real-
Time Synchronization, IEEE Transactions on Comput-
ers, 39 (9):1175-1185, Sept. 1990.

[Solomon 98] David A. Solomon, Inside Windows NT,
Second Edition, Microsoft Press, 1988.

[Sommer 96] Sommer, S., Removing Priority Inversion
from an Operating System, Proceedings of the Nine-
teenth Australasian Computer Science Conference
(ACSC'96), Melbourne, Australia, January 31 - Febru-
ary 2, 1996.

[Sommer & Potter 96] S. Sommer and J Potter, An
Overview of the Real-Time Dreams Extensions Pro-
ceedings of the Third Australasian Conference on Par-
allel and Real-Time Systems, September 1996.

[Sommer 97] Sommer, S., Dreams in a Nutshell, Pro-
ceedings of the USENIX Windows NT Workshop, Se-
attle, Washington, August 11-13, 1997.

[Timmerman & Monfret 96] M. Timmerman and J.
Monfret, Windows NT as Real-Time OS? Real-Time
Magazine; http://www.realtime-info.be.

[Timmerman 98] Martin Timmerman, Bart Van Bene-
den, Laurent Uhres, Windows NT Real-Time Exten-
sions: better or worse? Real-Time Magazine - 98/3.

[Tomlinson 97] Paula Tomlinson, Understanding NT:
Signaling Apps from Drivers, Windows Developer’s
Journal, March 1997.

[Walli 97] Stephen R. Walli, OPENNT: UNIX Appli-
cation Portability to Windows NT via an Alternative
Environment Subsystem, Proceedings of the USENIX
Windows NT Workshop, Seattle, Washington, August
11-13, 1997.

