The following paper was originally published in the

Proceedings of the 3rd USENIX Windows NT Symposium

Seattle, Washington, USA, July 12—-13, 1999

PORTING A USER-LEVEL
COMMUNICATION ARCHITECTURE TO NT:
EXPERIENCES AND PERFORMANCE

Yuqun Chen, Stefanos N. Damianakis, Sanjeev Kumar, Xiang Yu, and Kai Li

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved
For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org WWWhttp://www.usenix.org
Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Porting a User-Level Communication Architecture to NT"

Experiences and Performance

Yuqun Chen, Stefanos N. Damianakis, Sanjeev Kumar, Xiang Yu, and Kai Li
Department, of Computer Science
Princeton University, Princeton, NJ-08544
{yuqun, snd, skumar, xyu, li}@cs.princeton.edu

Abstract

This paper describes our experiences in porting the
VMMC' user-level communication architecture from
Linux to Windows NT. The original Linux im-
plementation required no operating system changes
and was done entirely using device drivers and user-
level libraries. Porting the Linux implementation to
NT was fairly straightforward and required no ker-
nel modifications. Our measurements show that the
performance of both platforms is fairly similar for
the common data transfer operations because they
bypass the OS. But Linuz performs better than NT
on operations that require OS support.

1 Introduction

The primary goal of the SHRIMP project is to in-
vestigate how to design high-performance servers by
leveraging commodity PC hardware and commod-
ity PC software. A key research component is to
design and implement a communication mechanism
whose performance is competitive with or better
than that of custom-designed multicomputers. The
challenge is to achieve good communication perfor-
mance without requiring special operating system
support. This paper describes our design decisions,
experience, and performance results of porting our
virtual memory-mapped communication (VMMC)
mechanism and stream sockets to Windows NT.
Our previous work on fast communication for
PC clusters was done for the Linux operating sys-
tem. During the initial phase of the project,
we studied how to design a network interface to
support VMMC and successfully implemented a
16-node prototype PC cluster with our custom-
designed network interfaces and an Intel Paragon
routing network [5, 7, 6]. The VMMC mechanism,
our low-level communication layer, performs di-
rect data transfers between virtual memory address
spaces, bypassing the operating system. Its main

ideas are separating control from data transfer and
using virtual memory mechanism to provide full
protection in a multi-programming environment.
We demonstrated that VMMC on Myrinet achieves
3.75 ps end-to-end latency using a custom-designed
network interface.

During the second phase, we designed and im-
plemented a VMMC mechanism with extended fea-
tures for PC clusters connected via Myrinet, a
commercial system area network and the operat-
ing system was again Linux [15, 9]. With a pro-
grammable network interface (Myrinet), we showed
that VMMC achieves about 14 us end-to-end la-
tency and delivers bandwidth close to the hard-
ware limit. We also designed and implemented
several compatibility communication layers such as
message-passing [1], RPC [3], and Unix stream
sockets [14], and showed that they deliver good per-
formance.

We recently ported VMMC and several com-
patibility software libraries to PCs running Win-
dows NT 4.0 and 5.0 Beta. Several factors moti-
vated our entry into the NT world. First, we want
to leverage more PC hardware devices and software
systems that are available for the NT platform. We
particularly want to use high performance graphics
cards that have only NT drivers. Second, we needed
good kernel support for SMPs. Linux did not have
such solid support for multiprocessors. The ever
changing nature of Linux kernel sources also poses
a daunting task for maintaining our VMMC soft-
ware up-to-date. It also makes it really difficult
to distribute our software to other research insti-
tutes. Porting VMMC to Windows NT eliminates
this concern and allows us to take advantage of the
huge NT user base.

This paper describes our design decisions, port-
ing experience, and performance results. We also
address the questions, whether the promise of re-
quiring no special OS support still holds when port-

Applications

Communication Librarie: } RPC, SVM

sockets

VMMC System

Figure 1: Communication Architecture

ing the communication mechanisms to NT, and
whether the porting retains good communication
performance. Lastly we would like to share our ex-
perience with the readers about the pros and cons
of porting user-level communication mechanisms to

Windows NT.

2 Communication Architecture

The communication architecture developed in the
SHRIMP project (Figure 1) consists of two lay-
ers: (i) high-level communication libraries, and (ii)
virtual memory-mapped communication (VMMC)
mechanisms. Applications such as scientific compu-
tation, parallel rendering, and storage servers can
use the VMMC primitives directly or use the high-
level communication libraries.

The VMMC layer consists of a set of simple,
yet powerful and efficient communication primi-
tives for protected, user-level communication in a
multi-programming environment. The basic idea
of VMMC is to transfer data directly between vir-
tual address spaces across a network with mini-
mal overhead. The approach taken was to pro-
vide a mechanism to set up protected communica-
tion among virtual memory address spaces across a
network, and a separate mechanism to initiate di-
rect data transfers between virtual address spaces
at user level efficiently, conveniently, and reliably.
The VMMC layer is system dependent. It provides
very low-overhead communication with network in-
terface hardware support [5, 7] and quite efficient
communication with a programmable network in-
terface [15].

The high-level communication libraries take ad-
vantage of VMMC primitives to support applica-
tions which use legacy or complex communication
APIs. In the SHRIMP project, we implemented
Unix stream sockets [14], remote procedure call [4],
NX message-passing library [1], and various shared
virtual memory systems [17, 21, 6]. Critical to our
layered approach is the requirement that the un-
derlying VMMC layer provides convenient mech-
anisms for the high-level communication libraries
to implement zero-copy protocols, in particular,

connection-oriented communication protocols. It is
also important to consider the tradeoffs as to which
layer implements reliable communication. Our ap-
proach was to implement a retransmission proto-
col at VMMC layer, so that we can achieve low-
latency and high-bandwidth reliable communica-
tion and simplify the construction of high-level li-
braries such as stream sockets.

The main rationale of the two-layer communi-
cation architecture is to minimize system depen-
dence. Because the communication libraries sit di-
rectly on top of VMMC, they are system indepen-
dent. Our porting of the communication architec-
ture from Linux-based PC clusters to Windows NT
clusters validated our design rationale.

3 Porting VMMC to NT

In this section, we first describe the components
of VMMC, then discuss porting issues, and finally
report the lessons that we learned from our porting
experience.

3.1 VMMC Components

The VMMC layer consists of three sets of primi-
tives. The first set contains the primitives for set-
ting up VMMC communication between virtual ad-
dress spaces in a PC cluster. The primitives in-
clude import and export as well as unimport and
unexport of communication buffers in virtual ad-
dress spaces. Implementation of these primitives
requires system calls because they need access to
information about memory pages and permission
checkings. These primitives are intended for appli-
cations to use during communication setup phase.
In general their performance is not very critical.

The second set of primitives are for data trans-
fer between virtual address spaces. They include
synchronous and asynchronous ways to send data
from a local virtual memory buffer (VM buffer) to
an imported remote VM buffer, and to fetch data
from an imported remote VM buffer into a local
VM buffer. Initiation of these primitives is done
entirely at user level, after the protection has been
set up via the setup primitives. Thus data transfers
are very fast and also fully protected in a multi-
programming environment. An optional notifica-
tion mechanism allows a data transfer primitive to
invoke a user-level handler in the remote process,
upon transfer completion. VMMC also includes
primitives for redirecting incoming data into a new
VM buffer in order to maximize the opportunity
to avoid data copy when implementing high-level
communication libraries.

The third set of primitives are utility calls for
applications to get information about the commu-
nication layer and the low-level system. The prim-
itives also include calls to create remote processes,
and obtain and translate node and process ids.

VMMC User-Level Library } user-level

VMMC Device Driver } kernel

VMMC Network Interface Support

hardware
firmware

Figure 2: The VMMC System Architecture

Figure 2 shows our initial implementation of
VMMC for a Myrinet-based PC cluster which runs
on Linux OS. This implementation consists of three
components: the network interface (NI) firmware,
a device driver, and a user-level library. The NI
firmware (also called Myrinet Control Program or
MCP) implements a small set of hardware com-
mands for user-level, protected VMMC communica-
tion. The device driver initializes the NI hardware,
downloads the MCP, and performs firmware ini-
tializations. The device driver also implements the
setup primitives of VMMC. The user-level library
implements all data transfer primitives. For each
virtual address space, there is a memory-mapped
command buffer for the user program to initiate
data transfer commands at user level.

A unique feature of the VMMC is the use of
a User-managed TLB (UTLB) to perform address
translation. The UTLB mechanism does demand
page-pinning. It pins a local buffer when it is used
in communication for the first time. Subsequent
data transfers using the same buffer will be able
to translate addresses efficiently and safely at user
level. The UTLB mechanism may unpin the buffer
according to some memory allocation strategy. For
applications that display spatial locality in their
communication patterns, the cost to pin and unpin
the virtual pages is amortized over multiple com-
munication requests. A recent paper [9] provides
the details about the design, implementation, and
evaluation of UTLB.

In addition, the VMMC also implements a re-
transmission protocol at the data link level and a
dynamic network topology mapping mechanism to
provide high-level libraries and programs with a re-
liable low-level communication layer.

3.2 Porting to NT

Although NT is quite different from Linux, the ar-
chitecture components of the Linux VMMC imple-
mentation fit NT quite well. We therefore main-
tained the original structure. However, we did need
to make several changes besides restructuring the
device driver for NT.

The first is to use NT kernel threads to enable
VMMC for shared memory multiprocessor (SMP)
nodes. The original VMMC for Linux did not use
threads, because until recently Linux did not offi-
cially support threads. Because VMMC provides
protected communication in a multi-programming
environment, our SMP clusters using Linux used
multiple address spaces on each node to implement
communication libraries such as SVM [21]. The
main drawback of this approach is that the cost of
a process context switch is much higher than a ker-
nel thread context switch. During the NT port, we
used NT events, semaphores and conditional vari-
ables to perform synchronizations for VMMC calls
so that multi-threaded user programs can safely use
VMMC without explicitly performing synchroniza-
tions.

The second is to use NT kernel threads to im-
plement notifications. The Linux version uses Unix
signal to implement a notification. After the NI
DMAs a packet into the host memory, it puts the
the virtual address and the value of the last word
in the data into a message queue, which is shared
by driver and mcp, and then triggers an interrupt
to the host processor. On Linux, the host inter-
rupt handler directly sends a signal to the receiving
process. The kernel schedules the signal handler
to run in the user process’ context. NT does not
provide Unix-style signals. Instead, the host inter-
rupt handler (actually a Deferred Procedure Call
or DPC handler) triggers an NT event on which
a dedicated notification thread is waiting. Upon
wakeup, the notification thread calls the appropri-
ate handler in user context. Our NT port also al-
lows a thread to wait on an event explicitly, by-
passing the notification handler mechanism. The
event can allocated for each exported buffer. This
is a useful feature for multi-threaded applications,
because each thread can explicitly wait on its own
messages.

The third is to deal with remote process cre-
ation. The Linux version uses rsh to spawn a re-
mote process. However, we cannot use this method
because, at the time of porting, we were not aware
of any method to specify a working directory for
a remotely launched program (on a central file
server). To get around this restriction, remote pro-

cess creation is handled by a service running on each
node in the cluster. The master process uses RPC
to talk to the remote service to create a process.
The service then maps the remote directory to a
local drive letter and starts the program. We also
implemented cluster management such as redirect-
ing the output of each process to central file system,
through the service,

3.3 Lessons Learned

Windows NT provides more mature support for de-
vice driver development than Linux. NT has com-
plete documentation, many example sources, and a
good kernel debugger to work with. But, since we
do not have NT kernel source code, sometimes it is
difficult to pinpoint bugs in the driver. On Linux,
there is little documentation on device drivers; we
had to study existing device drivers and kernel
source code. Further, we had to modify the kernel
source to export more symbols that were needed for
our VMMC device driver.

NT supports SMP and provides a set of kernel
primitives to support thread synchronization. How-
ever, they can not be used in all places, ie. interrupt
handler, kernel DPC handler, and device IOCTL
can use different subset of primitives. It took us
some time to figure out which primitives to use.

Much of the porting effort was focused on mak-
ing VMMC thread-safe to take advantage of NT’s
kernel threads. For example, our Linux SVM sys-
tem used multiple processes on each SMP, while our
newer NT SVM uses a single process with multiple
kernel threads. Using kernel threads resulted in a
significant performance improvement for SVM.

4 Porting Sockets to NT

The user-level stream sockets library allows appli-
cations based on stream sockets to leverage our
fast communication substrate with no code mod-
ification. This library was initially developed for
VMMC Linux clusters. In this section we first de-
scribe the sockets model and how it differs on Win-
dows NT. Then we discuss the issues involved in im-
plementing Winsock library using the Unix stream
sockets as the base. We end this section with the
lessons learned during the porting process.

4.1 Stream Sockets

A wide variety of distributed applications rely on
the Berkeley Unix stream sockets model for inter-
process communication [18]. The stream socket

interface provides a connection-oriented, bidirec-
tional byte-stream abstraction, with well-defined
mechanisms for creating and destroying connections
and for detecting errors. There are about 20 calls
in the API including send(), recv(), accept(),
connect (), bind(), select(), socket(), and
close(). Traditionally, stream sockets are imple-
mented on top of UDP so that applications can run
across any networks using TCP/IP protocol.

Our stream sockets implementation is for system
area networks and was originally implemented on
top of VMMC for PC clusters using Linux.

The VMMC model now supports a mechanism
called transfer redirection. The basic idea is to use
a default, redirectable receive buffer in case when
a sender does not know the final receive buffer ad-
dresses. Stream sockets makes heavy use this mech-
anism.

Redirection is a local operation affecting only
the receiving process. The sender does not have to
be aware of a redirection and always sends data to
the default buffer. When the data arrives at the
receive side, the redirection mechanism checks to
see whether a redirection address has been posted.
If no redirection address has been posted, the data
will be moved to the default buffer. Later, when the
receiver posts the receive buffer address, the data
will be copied from the default buffer to the receive
buffer, as shown in Figure 3(a).

If the receiver posts its buffer address before the
message arrives, the message will be put into the
user buffer directly from the network without any
copying, as shown in Figure 3(b). If the receiver
posts its buffer address during message arrival, the
message will be partially placed in the default buffer
and partially placed in the posted receive buffer.
The redirection mechanism tells the receiver exactly
how much and what part of a message is redirected.
When partial redirection occurs, this information
allows the receiver to copy the part of the message
that is placed in the default buffer.

VMMC stream sockets performs quite well with
a one-way latency of 20 us and a peak bandwidth of
over 84 Mbytes/s. The bandwidth performance is
due, in large part, to redirection. Without redi-
rection bandwidth would be limited by the sys-
tem copy bandwidth because one copy would be
required by the receiver to move incoming data to
its final destination.

Because our stream sockets is a user-level li-
brary, it does not allow open sockets to be preserved
across fork() and exec() calls. With fork, the
problem is arbitrating socket access between the
two resulting processes. exec is difficult because
VMMC communicates through memory and exec

Default
buffer
User User
+— | i -
buffer network copy buffer
Sender Receiver

(a) A copy takes place when the receiver postsits
buffer address too late.

Default
buffer)
User | | User
buffer L L —|" buffer
network
Sender Receiver

(b) A transfer redirection moves data directly
from network to the user buffer .

Figure 3: Transfer redirection uses a default buffer
to hold data in case receiver posts no buffer address
or posts it too late, and moves data directly from
the network to the user buffer if the receiver posts
its buffer address before the data arrives.

allocates a new memory space for the process. This
limitation was not due to the sockets implementa-
tion but rather it is a fundamental problem with
user-level communications in general.

4.2 Implementing NT VMMC Sockets

Windows sockets, or WinSock, adapts the sockets
communication model to the Windows program-
ming environment. As a result, WinSock contains
many Windows-specific extension functions in ad-
dition to the core Unix stream socket calls.
Instead of implementing Winsock, we decided
to support only a subset of Winsock calls, the same
set of functions that were in our VMMC sockets
Linux implementation. The current implementa-
tion does not support (for now) out-of-band (OOB)
data, scatter/gather operations, and polling with

!Maeda and Bershad [19] discuss how to implement
fork() and exec() correctly in the presence of user-level
networking software.

recv() (MSG_PEEK). We call this implementation
NT VMMC Sockets.

The two main issues in implementing NT
VMMC sockets were: (i) seamless user-level inte-
gration of the library for binary compatibility with
existing applications, and (ii) integration of user-
level VMMC sockets with NT kernel sockets. The
solution that satisfied both requirements was us-
ing a wrapper DLL (dynamic-link library) that in-
tercepts WinSock calls and allowed for a user-level
implementation of sockets.

NT provides support for sockets via two DLLs,
wsock32.d11 (WinSock 1.1) and ws2.32.d11
(WinSock 2.0). All calls in wsock32.d11 end up
calling into either ws2_32.d11 or mswsock.dll.
Since we only support a subset of the original
Berkeley sockets functions that are in WinSock 1.1,
we just need to deal with the functions in
wsock32.d11. Our wrapper DLL for wsock32.d11,
intercepts WinSock 1.1 calls and implements user-
level sockets using VMMC. To disambiguate be-
tween the two identically named files we refer to
the VMMC-based library as wsock32.d11lymme-
By simply placing a copy of wsock32.d11lymmc in
the application’s directory (or path) WinSock 1.1
calls are automatically intercepted. Removing (or
renaming it) allows the application to use NT’s
wsock32.d11.

We also wanted to support both types of stream
connections: user-level VMMC and NT kernel (i.e.
Ethernet). In order to accomplish this, the user-
level sockets library allocates a socket descriptor
table that contains one entry for each open socket,
regardless of the socket type. When NT ker-
nel sockets are used, wsock32.d1lyyme forwards
calls through to either ws2_32.d11 or mswsock.d11,
while still maintaining a descriptor table entry.
Also, our library uses calls to wsock32.d11 in or-
der to bootstrap the VMMC connection. Figure 4
illustrates the software layers in our user-level im-
plementation.

Building a wrapper DLL wsock32.d11yyme Was
straightforward. We used the dumpbin utility pro-
vided by Microsoft Win32 SDK to produce the list
of exported functions in the wsock32.d11l as well
as their forwarding information. We wrote a perl
script to find the function prototype for each ex-
ported function from a list of header files and pro-
duce a stub call that uses GetProcAddress() to
obtain the address of the corresponding function
in either ws2_32.d11 or mswsock.dll. This script
also produces the definition (.def) file needed to
build the DLL along with the correct function or-
dinals. wsock32.d11yy,me uses LoadLibrary() to
load both ws2_32.d11 and mswsock.d1l so that it

Applications

VMMC Winsock
(wsock32.dll)

VMMC
(user library)

Kernel Winsock
(ws2_32.dIl / mswock.dll)

l

Myrinet Ethernet / ATM...

Figure 4: Socket layers

can, as needed, forward calls to them.

4.3 Lessons Learned

It turned out that we were very lucky: A staff
researcher at Microsoft later pointed to us that
our approach to produce a wrapper DLL worked
because wsock32.d1l is not a preloaded DLL.
Preloaded DLL is a Microsoft term for DLLs that
are loaded during system startup. They cannot be
replaced by any wrapper DLLs.

However, one can easily disable the preload at-
tribute of a DLL by removing its name from a reg-
istry (KnownDLL). Using this trick, we were able
to build a wrapper around kernel32.d11 to build a
user-level fast file system. Working with DLLs gave
us the flexibility to leverage user-level communica-
tion and minimize the overhead of kernel calls.

The Linux version of VMMC sockets maintains
an internal socket descriptor table that is index with
the socket descriptor. But WinSock adds a new
data type, SOCKET, because socket descriptors are
no longer equivalent to file descriptors, as in Linux.
This change forces wsock32.d11lyyme to convert
SOCKET values to table indices and vice versa. A
small but important detail.

VMMC sockets is thread-safe and written with
support for a preemptive user-level threads pack-
age for Linux [16]. When VMMC sockets was be-
ing developed, support for kernel threads in Linux
was not dependable and was still work in-progress.
Therefore, we decided to use a user-level threads
package instead. Using user-level threads required
that we worry about invoking system calls and pos-
sibly blocking the process. We added functionality
to the VMMC sockets implementation to stop this
from happening. VMMC sockets also integrated
support for asynchronous I/O. A special socket was

reserved through which requests were made to asyn-
chronous I/0. All of this additional complexity was
necessary because Linux then lacked kernel threads.
Porting to NT allowed us to take advantage of ker-
nel threads and simplify the thread support for
wsock32.d11yyme- We no longer needed to support
asynchronous I/O or or worry about threads calling
blocking system calls.

Recall that the VMMC Linux sockets have the
limitation that sockets are not preserved across
fork() and exec() calls. Windows NT elimi-
nates this limitation because it does not support the
fork/exec model for process creation. But NT in-
troduces a the same problem in a different form be-
cause processes can ask share sockets. Still, NT is a
net gain for VMMC sockets because socket sharing
in NT is less pervasive than fork/exec on Linux.

Our experience with a distributed file system
(DFS) [22] led us to extend the sockets API to sup-
port pointer-based data transfers [13]. Using point-
ers allows the DFS to eliminate copying from the
transfers of file data. We use ioctlsocket() to
access the pointer-based API of wsock32.d11lymme-

Finally, we plan to add support for out-of-
band (OOB) data, scatter/gather operations, and
polling with recv() (MSG_PEEK). Further we
want to produce a more complete implementation
of VMMC sockets that supports many WinSock 2.0
calls directly.

5 Performance evaluation

VMMC minimizes OS involvement in common com-
munication datapaths. However, some OS involve-
ment is still necessary for tasks like communication
setup and virtual-to-physical address translation.
Therefore, we want to evaluate the impact of the
operating system on the three distinct aspects of
user-level communication:

e OS impact on the communication setup per-
formance

e OS impact on the data transfer performance

e OS impact on the control transfer performance

Methodology The ideal approach would be to
run identical applications on both Linux and Win-
dows NT platforms. Unfortunately, we do not have
such applications for a variety of reasons. First,
our OpenGL applications are written for the NT
platform because it is the single most popular plat-
form that all high-end graphics accelerator vendors
support. Second, the shared-memory applications

currently use an SVM library that was solely de-
veloped for the Win32 platform, primarily due to
its mature support for kernel threads. The incom-
patibility between the Linux and Win32 API also
made it very difficult to have a single SVM protocol
library that works for both OSes.

Since we do not have the identical applications
on the two platforms, we perform the evaluation as
follows: First, we use microbenchmarks to measure
the various aspects of the communication system
and the relevant aspects of operating systems on
the two platforms. Then we instrument the appli-
cations to measure the frequency of occurrence of
the various events like UTLB misses and notifica-
tions on applications running on windows NT plat-
form. Finally, we combine the two measurements
to predict the impact of the OS on the applications
performance.

Platform All measurements are performed on a
cluster of PCs. Each has a 450 MHz Intel Pen-
tium II processor, 1 GB memory and a Myricom
network interface card with LANai 4.x micropro-
cessor and 1MB on-board SRAM. The PCs are set
up for dualboot between Linux 2.0.36 kernel®> and
Windows NT 4.0 SP5.

5.1 Impact on Communication Setup

The VMMC communication is set up via export and
import calls. A process can export the read and/or
write rights on its virtual memory buffer. Another
process on a different or the same machine can gain
the access rights through an import operation; af-
terwards, it can directly read from or write to this
buffer. The export-import semantics provides pro-
tection in VMMC. Export is implemented inside the
device driver and invoked through the ‘octl mecha-
nism. Table 1 lists the cost of kernel entry and exit
using the ioctl mechanism.

| Platform || Linux | Windows NT |
ioctl kernel entry || 1.1 us 6.6 us
ioctl kernel exit 1.0 ps 7.8 us

Table 1: Overhead of kernel calls

The export call pins the exported buffer in phys-
ical memory. In current implementation, exported
pages are never unpinned. The cost of pinning a
user buffer is listed in Table 2. On NT, exporting
a one-page buffer takes 43 us of which 18.3 us is

2We can not simply use the newer Linux 2.2.x kernel,
because bringing our VMMC software up to the 2.2 kernel
requires non-trival changes.

B

S

)

5

]

- 104 — 10
5 — —5
0 T T T T T T 0

4 8 16 32 64 128 256 512

Message Size (in bytes)

Figure 5: Remote send latency for small messages

OS specific (ioctl call + pinning a page) while im-
porting a memory buffer costs 68 us none of which
involves the OS.

In most of our applications, the connection setup
occurs only at the beginning. For client-server ap-
plications that use sockets, the connection setup
happens each time a socket is opened. In both
cases, the setup cost accounts for a small frac-
tion of the execution time. The small difference in
the setup performance on the two platforms should
have little impact on application performance.

5.2 Impact on Data Transfer

The impact of operating system on the perfor-
mance of user-level data transfer is quite limited.
In VMMC, the OS involvement is needed only
when the address translation is not available in the
UTLB translation table. To evaluate this effect,
we first measure the performance in the common
case in which all the address translation is in the
UTLB translation table and therefore requires no
operating system involvement. We then measure
the UTLB overheads when the translations are not
available in the translation table. Finally we mea-
sure the UTLB overheads in a few real applications
and parallel programs.

Common case Figure 5 shows the one way la-
tency while Figure 6 shows the bandwidth of syn-
chronous remote send operations on the two plat-
forms. The latency is measured using a pingpong
benchmark in which two processes on two different
machine send synchronous messages to each other
back and forth. The bandwidth is measured us-
ing a pair of processes on two different machines
where one process continuously does synchronous
sends to the second process. Because the PCI bus
bandwidth(133 MB/s) and Myrinet bandwidth(160
MB/s) are very high, the dominant portion of time

| No. Of Pages || 1 | 4 | 8 | 12 | 16 |
Linux Pin 3.6 pus| 40pus | 5.0 pus | 6.4 us | 10.7 pus
Unpin || 2.8 pus | 11.0 ps | 19.1 ps | 28.2 ps | 34.5 us
. Pin 29 pus | 89 us | 17.0 us | 24.0 us | 32.8 us
s NT
Windows Unpin || 1.6 us | 4.6 us | 8.6 us | 12.5 us | 16.7 us

Table 2: Overhead of pinning and unpinning pages in memory (excluding ioctl overhead).

110

110 |

920

90 -

" —>— WinNT §Y o
70 / 70
60 # 60
50

40 g 40
30

20 /8 20
10 ‘/ﬂ 10
OM I B B B e e s e e Y

4 8 16 32 64 128256512 1K 2K 4K 8K 16K32K64K128R56812K1M

100

Bandwidth (MB/s)

M essage Size (in bytes)

Figure 6: One-way send bandwidth

for small message communication is the processing
overhead on the the network interface, therefore is
independent of the OS. The one-way latency for
small messages is 14 us while the peak bandwidth
is about 96 MB/s on both platforms.

The VMMC communication model also provides
a remote-read capability to fetch data from the
memory of the remote machine without the involve-
ment of host processor that machine. Figures 7 and
8 show the latency and bandwidth performance re-
spectively. Both measurements are performed us-
ing a pair of processes on two different machines
where one process repeatedly performs reads from
the second process’ memory using the remote-read
operation.

As expected, we see that the OS has little impact
on the data transfer in the common case. Later
optimizations on NT further reduce the latency by
6 us.

UTLB overheads Two kinds of overhead occur
in the slow path but not the fast path. The first
overhead occurs when there is a host translation
miss: when the local source buffer of a send opera-
tion or the local destination buffer of a fetch opera-
tion is not currently pinned and needs to be pinned
for DMA transfer. Since only a limited amount
of virtual memory can be pinned, this may result

50 —_
sl —O Linux
—>— WInNT
@ 40
S C-—-g-—-9Q—-—
g 35
]
S 30 - 30
25 - 25
20 | T T T T T 2
4 8 16 32 64 128 256 512
Message Size (in bytes)
Figure 7: Remote fetch latency
110 | 110
100 - 100
© —-0—- Linux 0
—>— WIinNT
80 z(80
g 70 / 70
% 60 /d 60
.'g 50 / 50
©
& o //, 4
30 30
20 /S 20
10 10

7T 7T T 7T 7T T 7T 17T 1T 1T 171
4 8 16 32 64 128256512 1K 2K 4K 8K 16K32K64K128R56812K1M

Message Size (in bytes)

Figure 8: Remote fetch bandwidth

in unpinning other pages. The second overhead is
caused by a translation miss in the network inter-
face UTLB cache; in this case, the network inter-
face directly DMAs the translation from the host
memory. Note that only the first overhead involves
the operating system (Table 1 for ioctl overhead
and Table 2 for pinning and unpinning overhead).
To evaluate the overhead of UTLB operations in a
more realistic scenario, we instrumented 7 applica-
tions that run either directly on VMMC NT or on
VMMC Winsock and report the measured UTLB
overhead.

Applications From the SPLASH-2 suite, we chose
4 SVM applications, radix, barnes, fft, and water-

| Applications || vis | glaze | vdd | fft | barnes | radix | water |
memory footprint 21.4MB | 399 MB | 789 MB | 57.4 MB | 16.6 MB | 54.4 MB | 8.9 MB
host lookup hit rate 99.93% | 99.99% | 99.99% | 79.38% | 98.62% | 67.36% | 99.35%
avg lookup hit cost 0.65pus | 063 pus | 241 pus | 032 pus | 046 us | 0.32 ps | 0.40 ps
avg lookup pages 1.00 1.94 54.8 1.00 1.00 1.04 1.00
avg pin overhead on NT 54.3 us | 401.6 pws | 939.0 us | 473 us | 53.1 us | 50.9 us | 55.6 us
avg pages pinned on NT 1.00 97.0 289.0 1.00 ps 1.13 ps 1.00 pus | 1.25 us
avg miss overhead on NT || 63.4 us | 557.1 pus | 1294 pus | 50.7 pus | 57.5 us | 54.6 us | 60.0 us
predicted ovhd on Linux 41.7 pus | 410.1 us | 882 us 34.7 us | 405 us | 42.0 us | 47.4 us
avg host overhead on NT || 0.69 us | 0.69 us | 2.54 us | 10.71us | 1.25 pus | 18.04us | 0.79 us
predicted ovhd on Linux 0.68 us | 0.67 us | 2.50 us 7.41us 1.01 pus | 13.92us | 0.71 us
Table 3: UTLB performance without memory constraint
| Applications || fft | barnes | radix | water |

memory footprint 57.4 MB | 16.6 MB | 54.4 MB | 8.9 MB

memory constraint 50.0 MB | 16.0 MB | 30.0 MB | 6.0 MB

host lookup hit rate 64.46% | 96.67% | 54.99% | 97.63%

host pin-page rate 35.54% 3.33% 45.01% | 2.3™%

host unpin-page rate 23.36% | 2.13% | 36.10% | 2.27%

avg lookup hit cost 0.36 us | 0.50 us | 0.35 ps | 0.40 us

avg pin overhead on NT 39.1 us | 40.0 us | 42.1 ps | 29.6 us

avg pages per pin on NT 1.00 1.07 1.00 1.07

avg unpin overhead on NT (| 33.2 us | 36.7 us | 35.2 us | 35.0 us

avg miss overhead on NT 422 pus | 49.6 us | 68.7 pus | 32.8 us

predicted ovhd on Linux 21.6 us | 293 us | 464 us | 8.6 us

avg host overhead on NT 1523 us | 213 pus | 31.1 us | 1.27 us

predicted ovhd on Linux 791 us | 1.45 us | 21.1 pus | 0.59 us

Table 4: UTLB performance with memory constraint

nsquare. They all use the SVM protocol devel-
oped by our colleagues at Princeton [26]. The
SVM protocol communication is built directly on
top of VMMC, using the send and remote fetch
mechanism. In addition, we selected 3 applications
from Princeton Display Wall Project [11] glaze, iso-
surface, and vdd. These applications use VMMC
Winsock as their underlying communication mech-
anism.

Vis is a visualization program, implemented by
our colleagues that uses a cluster of 13 PCs to visu-
alize isosurfaces of scientific data. The program has
three components: client control, isosurface extrac-
tion, and rendering. The client control runs on a
single PC to implement the user interface for users
to steer the entire visualization process. The iso-
surface extraction uses 4 PCs in the cluster to ex-
tract isosurfaces in parallel, and sends them to the
rendering program which runs on 8 PCs. Each ren-
derer PC simply receives isosurfaces, renders and
displays the rendered images on a tiled, scalable
display wall. VMMC Winsock is used for all inter-

process communication among the PCs running the
client control, isosurface extraction, and rendering
programs.

Glaze is a commercial OpenGL evaluation pro-
gram from Evans & Sutherlands. An OpenGL
framework, developed by our colleagues, allows us
to use one PC to drive OpenGL animation of any
commercial software on a tiled display. We ran the
glaze program on a PC; a custom wrapper DLL
(opengl32.dll) intercepts the OpenGL calls made by
the program and distributes the commands to 8 sep-
arate PCs which together drive a 2x4 tiled display.
The wrapper DLL transmits rendering commands
over the VMMC Winsock layter to the renderers.
The renders behave just like those in vis: they sim-
ply receive the commands and render them for its
portion of the tiled display.

Vdd is a virtual display driver that imple-
ments a large desktop that has the same resolution
(3850x1500) as the Display Wall. It is installed on
a 450 MHz Pentium II PC running NT 5B2 OS.
A user process is responsible for packetizing the

updates made to the vdd’s memory-resident frame-
buffer and distributing them to the 8 PCs that drive
the wall. We used NT VMMC Sockets with the
pointer-based extensions to distribute framebuffer
updates efficiently [13].

Results Table 3 presents OS-dependent compo-
nents of UTLB overhead, without any memory con-
straint. The miss rates and overheads for the NT
platform are measured directly by running the 7 ap-
plications on our NT VMMC cluster. We use these
numbers, as well as the micro-benchmark results,
to predict the overheads on Linux. In the table,
host pin rate is the ratio between the number of pin
operations and the number of UTLB lookups; and
similarly for host unpin rate. Memory footprint is
the total amount of distinct virtual memory that
is involved in data transfer for each application.
Lower page-pin rate (or lookup miss rate) translates
into lower average UTLB overhead. Since the host
UTLB miss rates are quite low, the OS overhead for
pinning and unpinning user buffers has little impact
on the average UTLB host overhead.

Under tight memory constraints, such as in a
multi-programming environment or a large-memory
applications, there may not be enough physical
memory to absorb the entire memory footprint of
applications. UTLB deals with such low-memory
situations by unpinning virtual pages that are not
currently involved in data transfer. This is a crit-
ical feature for UTLB-based VMMC to be use-
ful in a multi-programming environment. Table 4
presents the the same experiments with additional
memory constraints such that the total amount of
application-pinnable physical memory is less than
the memory footprint. Due to varying nature of the
applications, the memory constraint is set differ-
ently on a per-application basis. And also, it turned
out that our Display Wall applications require most
of their working sets to be pinned as receive buffers.
This is because each DisplayWall application uses a
small buffer (often less than 1 MB) to gather com-
mands and send the whole chunk to the receivers.
Therefore, we only present the memory-constrained
results for the 4 SVM applications. Again, the mea-
surements are all taken by running the applications
on the NT cluster, and predictions are made for the
Linux platform.

With low memory constraint, we see higher
UTLB miss rates and page unpin rates. Note that
our prediction for UTLB performance on Linux sug-
gests that faster page-pin and page-unpin OS calls
further reduce the average UTLB overhead by as
much as 50%. We conclude that improving system
calls such as page-pin and page-unpin benefits user-

level communication.

5.3 Impact on Control Transfer

In VMMC, messages are deposited directly into the
memory of the receiving process without interrupt-
ing the host processor. The receiving process can
detect message arrival by polling memory locations.
But it can also use the VMMC notification mech-
anism to reduce the CPU polling overhead. For
instance, the sockets library uses notifications ex-
tensively to avoid polling while waiting for data to
arrive on a socket.

The VMMC notification mechanism allows a re-
ceiving process to associate a message handler with
each exported buffer. The message handler is exe-
cuted when a message with notification request ar-
rives in the exported buffer. Since interrupts are
used to deliver notifications to the corresponding
process, different OS platforms show different per-
formance.

50 I I l
3 309 @ /
5 20 / o Switch back
3 a / === Schedule

104 | A &= DPC Delay

; \ S =W [nterrupt
Linux WinNT
Platform

Figure 9: Receive-side notification overhead break-
downs

Figure 9 shows the breakdown of the notification
overhead on the receiving machine. The interrupt
cost is the time from when the network interface
issues the interrupt to the time when the interrupt
handler in the driver starts to execute. Surpris-
ingly®, both Linux and NT take about 10 us to
reach the handler on our test platform. Once inter-
rupted, Linux uses 17 us to schedule the user level
message handler through the process signal mech-
anism. On NT, because there are restrictions on
what can be executed in the interrupt handler, the
interrupt handler has to queue a Deferred Proce-
dure Call (DPC) in the kernel which invokes the
user-level notification handler later. By the time
the control reaches the start of the DPC handler,

3The cost on some other similar machines is much less.
We are still investigating the cause for this high overhead.
This won’t affect our platform comparison.

18 us has already passed. After this, NT uses 16 us
to schedule the user level message handler by wak-
ing up the user thread that executes the message
handler. Once the notification handler terminates,
Linux uses 3 us to return to the interrupted process
while NT uses 7 us to switch back to the interrupted
thread. The overall overhead for a notification is
30 ps on Linux and 52 us on NT.

6 Related Work

User-level communication architectures for system-
area networks is a very active research area [15, 8,
12, 23, 20, 2, 24, 10].

But, only two other user-level communication
systems are currently available for Windows NT. A
Myrinet-based Fast Messages (FM) [20] implemen-
tation has recently been ported to the NT platform.
Since it is implemented entirely at user-level, it does
not require any OS support. U-net [2] has also been
ported to an NT cluster. However, they use Fast
Ethernet and require kernel modifications to imple-
ment low-overhead kernel entry and exit.

While this paper only presents the results of
our porting VMMC to Windows NT, there is a
lot of published work describing the various ef-
forts that are part of the SHRIMP project. The
VMMC mechanism [5, 15, 9], our low-level com-
munication layer, performs direct data transfers
between virtual memory address spaces bypass-
ing the operating system. We have also designed
and implemented several compatibility communi-
cation software including NX message-passing li-
brary [1], RPC [3], and Unix stream sockets [14],
and showed that they deliver good performance.
Finally, applications are implemented using the
higher level APIs: (i) distributed file system [22],
(ii) SPLASH2 [25], and (iii) distributed OpenGL
graphics applications.

7 Conclusions

Our experience with porting to Windows NT has
been positive. NT has fairly complete device driver
support and good documentation. In addition, it
has good support for threads and SMP systems. We
found the DLL mechanism to be very convenient.
The Display Wall project uses a Windows NT-based
VMMC cluster for high-performance communica-
tion.

Our measurements indicate that the OS over-
head on Windows NT is significantly higher than
on Linux. However, it provides much better func-
tionality especially in terms of threads and SMP
systems.

Finally, we find that the VMMC user level
communication architecture is successful in deliver-
ing high-performance to applications on both plat-
forms.

Our software is publicly available at
http://www.cs.princeton.edu/SHRIMP/.

Acknowledgments

This project is sponsored in part by DARPA under
grant N00014-95-1-1144, by NSF under grant MIP
9420653 and CDA96-24099, and by Intel Corpora-
tion.

We would like to thank Paul Pierce from Intel
Corp. for doing the initial port of VMMC to NT,
Allison Klein and Rudro Samanta from Princeton
University for providing us with Display Wall appli-
cations, and Richard Shupak from Microsoft Corp.
for answering our NT questions. We also want to
thank the program committee, anonymous review-
ers, and the shepherd of this paper, Thorsten von
Eicken, for the helpful feedback.

References

[1] Richard Alpert, Cezary Dubnicki, Edward W. Fel-
ten, and Kai Li. Design and Implementation of NX
Message Passing Using SHRIMP Virtual Memory-
Mapped Communication. In Proceedings of the In-
ternational Conference on Parallel Processing, Au-
gust 1996.

[2] Anindya Basu, Matt Welsh, and Thorsten von
Eicken. Incorporating Memory Management into
User-Level Network Interfaces. In Presentation at
IEEE Hot Interconnects V, August 1997. Also
available as Tech Report TR97-1620, Computer
Science Department, Cornell University.

[3] A. Bilas and E. W. Felten. Fast RPC on the
SHRIMP Virtual Memory Mapped Network Inter-
face. Journal of Parallel and Distributed Comput-
ing, 40(1):138-146, January 1997.

[4] Andrew D. Birrell and Bruce Jay Nelson. Imple-
menting Remote Procedure Calls. ACM Trans.
Comp. Sys., 2(1):39-59, November 1984.

[5] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Fel-
ten, and J. Sandberg. A Virtual Memory Mapped
Network Interface for the Shrimp Multicomputer.
In Proceedings of the 21st Annual Symposium on
Computer Architecture, pages 142-153, April 1994.

[6] Matthias A. Blumrich, Richard D. Alpert, Yuqun
Chen, Douglas W. Clark, Stefanos N. Damianakis,
Cezary Dubnicki, Edward W. Felten, Liviu Iftode,
Kai Li, Margaret Martonosi, and Robert A. Shill-
ner. Design Decisions in the SHRIMP System: An

(14]

(16]

(17]

Empirical Study. In Proceedings of the 25th An-
nual Symposium on Computer Architecture, June
1998. To appear.

Matthias A. Blumrich, Cezary Dubnick, Ed-
ward W. Felten, and Kai Li. Protected, User-
Level DMA for the SHRIMP Network Interface.
In IEEE 2nd International Symposium on High-
Performance Computer Architecture, pages 154—
165, February 1996.

Greg Buzzard, David Jacobson, Milon Mackey,
Scott Marovich, and John Wilkes. An Imple-
mentation of the Hamlyn Sender-Managed Inter-
face Architecture. In Proceedings of the Second
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 245-260, Octo-
ber 1996.

Yuqun Chen, Angelos Bilas, Stefanos N. Dami-
anakis, Czarek Dubnicki, and Kai Li. UTLB:
A Mechanism for Translations on Network Inter-
face. In Proceedings of the 8th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, pages 193—204,
October 1998.

Compaq/Intel/Microsoft. Virtual Interface Archi-
tecture Specification, Version 1.0, December 1997.

Princeton University Computer Science Depart-
ment. The Princetion Display Wall Project.
http://www.cs.princeton.edu/omniwall, 1999.

C. Dalton, G.Watson, D. Banks, C. Calamvokis,
A. Edwards, and J. Lumley. Afterburner. IEEFE
Network, 7(4):36-43, 1995.

Stefanos N. Damianakis. Efficient Connection-
Oriented Communication on High-Performance
Networks. PhD thesis, Dept. of Computer Science,
Princeton University, May 1998. Available as tech-
nical report TR-582-98.

Stefanos N. Damianakis, Cezary Dubnicki, and Ed-
ward W. Felten. Stream Sockets on SHRIMP. In
Proc. of 1st Intl. Workshop on Communication and
Architectural Support for Network-Based Parallel
Computing (Proceedings available as Lecture Notes
in Computer Science 1199), February 1997.

Cezary Dubnicki, Angelos Bilas, Kai Li, and James
Philbin. Design and Implementation of Virtual
Memory-Mapped Communication on Myrinet. In
Proceedings of the IEEE 11th International Paral-
lel Processing Symposium, April 1997.

David R. Hanson. C' Interfaces and Implementa-
tions: Techniques for Creating Reusable Software.
Addison-Wesley, Reading, Massachusetts, 1997.

Liviu Iftode, Cezary Dubnicki, Edward Felten, and
Kai Li. Improving Release-Consistent Shared Vir-
tual Memory using Automatic Update. In Pro-
ceedings of IEEE 2nd International Symposium on
High-Performance Computer Architecture, Febru-
ary 1996.

(18]

20]

(21]

(22]

25]

[26]

S. J. Leffler, M. K. McKusick, M. J. Karels, and
J. S. Quarterman. The Design and Implementation
of the 4.3BSD Uniz Operating System. Addison
Wesley, 1989.

Chris Maeda and Brian N. Bershad. Protocol
Service Decomposition for High-Performance Net-
working. In Proceedings of 14th ACM Symposium
on Operating Systems Principles, pages 244-255,
December 1993.

Scott Pakin, Mario Lauria, and Andrew Chien.
High Performance Messaging on Workstations:
Nlinois Fast Messages (FM) for Myrinet. In Pro-
ceedings of Supercomputing ’95, 1995.

R. Samanta, A. Bilas, L. Iftode, and J.P. Singh.
Home-based SVM protocols for SMP clusters: De-
sign and Performance. In Proceedings of 4th Inter-
national Symposium on High-Performance Com-
puter Architecture, February 1998.

Robert A. Shillner and Edward W. Felten. Simpli-
fying Distributed File Systems Using a Shared Log-
ical Disk. Technical Report TR-524-96, Princeton
University Computer Science Department, Prince-
ton NJ, 1996.

J.M. Smith and C.B.S. Traw. Giving Applica-
tions Access to Gb/s Networking. IEEE Network,
7(4):44-52, July 1993.

H. Tezuka, A. Hori, and Y. Ishikawa. PM:
a High-Performance Communication Library for
Multi-user Parallel Environments. Submitted to
Usenix’97, 1996.

S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and
A. Gupta. Methodological Considerations and
Characterization of the SPLASH-2 Parallel Appli-
cation Suite. In Proceedings of the 22nd Annual
Symposium on Computer Architecture, May 1995.

Yuanyuan Zhou, Liviu Iftode, and Kai Li. Per-
formance Evaluation of Two Home-Based Lazy
Release Consistency Protocols for Shared Virtual
Memory Systems. In Proceedings of the Second
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 75-88, October
1996.

