i

The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop
Boston, Massachusetts, July 1997

Caubweb: Detaching the Web with Tcl

John R. LoVerso and Murray S. Mazer
The Open Group Research Institute
Cambridge, MA

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Caubweb: Detaching the Web with Tcl

John R. Lo Verso and Murray S. Mazer

The Open Group Research Institute
Eleven Cambridge Center, Cambridge MA 02142 USA
{j.loverso,m.mazer}@opengroup.org

Abstract

CaubweBM is a research system that allows a user to create local collections of Web documents
on the user's computer, for access to those collections when disconnected. The system is part of a
project investigating ways to provide adaptive, ongoing read and update interaction with Web-based
information, even under conditions of variable or intermittent network connectivity. Caubweb is
architecturally an HTTP proxy augmented with value-adding capabilities. To accommodate our
design principles of platform-portability and extensibility, we used Tcl as our implementation
language. This paper reports on our experience in using Tcl/Tk to build Caubweb. We discuss the
structure of our implementation, identify strengths and weaknesses of the language and its tools,
contrast Tcl/Tk with alternatives, and present a “call to arms” for the Tcl/Tk community, to promote
increased reuse and cooperation.

Keywords: World Wide Web, Detachable Webs, HTTP proxy servers, Tcl, Tk, Disconnected
operation, Mobility.

1. Introduction neutrality meaning that the functionality is not restricted
M . .. for use with one vendor’s browser or server. This is

CaubweB s a rese_arch syst_em for InVesug"’mngincreasingly important as Microsoft, Netscape, and
ways t(.) proylde adaptive, ongoing _read and ldeat(t:jthers work on increasingly incompatible technology. As
mtera_u_:tlon with Wep-based mf_ormatl_on, even underidentified by Brooks et al. [2], vendor neutrality can be
condltlo_ns_ of vanab_le or intermittent _net_work achieved in many cases by adding application-specific
co_nnectlwty_. Caubweb is part of our group’s DIStrIbUt(adcapabilities to HTTP proxies, which can transparently
Clients project [17], which has the broad goal Offilter, transform, and otherwise process the stream of

increasing the availability and customization of Web'HTTP requests and responses generated by the user's
based information services for mobile computing usersy o\vser and the Web's origin servers[22]

The expected benefits include increasing the availability . o
of information, reducing the latency of servicing To accommodate our design principlesptdtform-

requests, and adapting information to the specific useportability and extensibility we chose Tcl[19] as our
and context. implementation language. This paper reports on our

Caubweb Vot ; experience in using Tcl/Tk to build Caubweb. We discuss
_aubwe curren_ty focuses on support %the structure of our implementation, identify strengths
dlscqqnected operation, implementing cac_hlng of US€Tand weaknesses of the language and its tools, contrast

specified “weblets” for access when dISCOI’]necdecI/Tk with alternatives, and present a “call to arms” for

Caubweb also demonstrates the staging of user chan % Tcl/Tk community, to promote increased reuse and
to stored documents when disconnected and integratioéboperation '

of those changes into origin servers upon reconnection.

These features are analogous to support for disconnectedSection 2 motivates the need for information access
Operation in file systems. In addition, a prototypeunder variable Connectivity conditions. Section 3
visualizer named CaubView (which uses library discusses the decision to use Tcl. Section 4 discusses the
components from Caubweb) provides views of thestructure of the Caubweb application and its substantial

relationships among elements in a Caubweb cache. use of library components. Section 5 presents an
evaluation of Tcl and its toolset as we experienced it in

building Caubweb. Section 6 revisits the decision to use
Tcl. Section 7 summarizes our findings and urges greater

Caubweb is architecturally an HTTP proxy
augmented with appropriate value-adding capabilities
This accommodates our design principle \andor

cooperation and interaction within the Tcl community, intoward its origin server, maintain the new and previous
order to promote increased use of Tcl as “programmingersions while disconnected; upon reconnection,
for the Internet” takes on greater urgency. integrate the new versions back to supportive origin

servers.
2. The Detachable Web _
) o)) The system described here does not depend upon

The World Wide Web has revolutionized information changes in or specializations to Web browsers or
access, dramatically broadening the set of users and tasksryers. tCaubweb, as a proxy, is placed in the middle
for which network-based publishing and information petween the browser and the server. Therefore it can
access has become commonplace. We now think nothingstch and divert user requests appropriately, acting for
of clicking on a hyperlink that points halfway around thethe most part transparently to the user, browser, and
world to retrieve even trivial bits of information. servers. Our specialized proxy provides caching, change

Traditionally, users have been constrained toStaging and integration, weblet specification and
accessing information resources while in designatedetrieval, presentation, proxy configuration, and control.
workspaces, such as offices or homes. They are The proxy approach has independently been pursued
increasingly able to access these resources elsewhe§; commercial “off-line browsing” software vendors
wireless and remote communication systems[13]\windows-based platforms. Browser vendors are
Nonetheless, there will be many times when the useptegrating off-line browsing support more tightly with

machine (in a mode calledecoupled computinghe racking activity and request display (e.g.,
ability to compute when detached from the existingwebwhacker[6])

computing and communications infrastructure[11]). In)

this narrower context, the goal of the work reported here Detachable Web support is analogous to support for
is to provide the user of a portable computer withdisconnected file access. The primary target platform is
ongoing interaction with Web-based resources whefportable client machines which experience alternating
disconnected from the network infrastructure. We calfntérvals of connectivity and disconnectivity, both

this a Detachable WebOur approach applies equally voluntary and in\{oluntary. The minimal goal of the
well to portable and “non-portable” user machines: theSystem is to permit read-only access to a detached web.

key technical challenge is to cope with periods ofA next step is to support modifications to the detached
disconnection. web and to integrate those changes into the appropriate

) .) Web servers upon reconnection. As in some
The intersection of these two trends (hyperlinkedgisconnected file systems[14], we assume we cannot

mulimedia documents and portable computers) offergnake changes to the implementation of servers (but can
new problems not found in either setting. For exampleyse existing interfaces).

work in disconnected file systems did not consider
support “above” the file system level and did not
consider embedded object references and access
associated services (e.g., an annotation servicez. A - :
Likewise, the Web community has only partially P& cached, coherence requirements, underlying object

examined issues such as variable bandwidth fetching afi®del. and the semantics of object collections. For
presentation, providing Web-based services whil€xample, systems providing disconnected file access do
disconnected, and merging documents created dpot make caching decisions based on references to other

modified off-line with available on-line servers. files contained in already cached files or external
services. A key notion in a Detachable Web system is
2.1 The Approach Taken following embedded hyperlinks, images or objects in a

The essence of the approach described here is: allo\\llvveb page being cached or viewed. Other relevant object

the user to specifyeblets(connected subsets of Web references may come from external services (such as
content) of interest; cache those weblets locally; and',DICS servers)[16].
when disconnected, impersonate the servers on which
the cached information resides. (This last aspect is
achieved by trapping the requests for those URLs an

serving them out of the cache.) In addition, if the user t.Hence the acrony@aubweb: CaubwebAugmentdJser

changes a locally stored document and publishes it BehaviorWith Every Browser

The primary differences between a system for
Retachable Webs and a system for disconnected file
ccess relate to ways of discovering object references to

2.2 Moativation for a Proxy-based Approach different operating systems and machine architectures

o | build h Id K wi hWithout any changes. Machine dependencies are hidden
ne goal was to build a system that could work Withy e ot the interpreter, yielding a high degree of

alrlly existing off-thefzhe: browsbelr or HThTP Server. fTh'SportabiIity. Interpreted languages typically provide
allows us to avoid the problems that anse r_ompowerful string processing capabilities, appropriate for
modifying a browser, even if we could do so. Modifying dealing with HTML, and thereby avoiding issues of

a browser limits the new functionality to be available indynamic string allocation, growth, and reference
a specific browser yersion or forces the_ developers t anagement. Interpreted languages often promote rapid
race _to keep up with the ever-burgeonlng _number 0 evelopment (typically trading off application
proprietary browsers and servers. Further,_ itis no long erformance) [25]. The end-user need not compile the
reasonable to assume that one can modify the browsgp, ;e or download a platform-specialized distribution

the user Waf‘ts to use. For similar reasons, we d'd_ %% order to use an application. Finally, interpreted
want to modify any features of the underlying Operat'nglanguages often have graphical user interface modules

system or network framework. that are portable across platforms, relieving the
The kind of support Caubweb needs to provide is begtrogrammer of the details of different windowing
represented as middleware. Consequently, we chose $ystems.

base our sys(;em on t:e hotion axﬁph(;atlon-spefcmc The primary candidates were Java[7], Tcl, and
stream transducefg]. stream transducer performs Perl[29]. At the time of our evaluation, Java was a

some specific value-added function for the user, usua”¥reshly released language with rapidly evolving language
transparently. As a stream transducer between _thgeﬁnition, program development support, runtime
browsers and the SEIVErs, Caubwgb can catch.and d'Vesrﬁpport, and portability. That instability recommended
user requg;ts appropriately, allowing us tq retain the usfgainst Java. Perl has been used successfully by many
of unmodified HTTP for a communication medium projects, including some of our own [18]. Perl supports a
between our component and other components. reasonable object-oriented programming style, has an
If the world were not full of huge, monolithic clients interpreter augmented with a byte-code compiler
with many features hardcoded into the application, thefimproving performance), has a well-organized,
there would be more ideal ways to add Detachable Webohesive, user-contributed library, and is easy to embed
support. In particular, if the user-side caching model of an other programs. Nonetheless, Perl was not generally
browser were implemented against a simple API in suclavailable at that time on Windows and Macintosh
a way that it was replacable when the browser waslatforms and lacked strong visual interface support.
deployed, then the.caching engine for our system COUIF’ These factors and our own strong experiences led us
be used to replace it. Such a modular approach does exj t

for some browsers (such as Internet Explorer). but not forg select Tcl, which was an excellent choice for an initial
A Implementation of the system. The primary reasons were
the bulk of the off-the-shelf browsers with which we P y P Y

:) its ease of use, its interpreted nature, its relative maturity,
wish 10 interoperate. and, finally, its promised portability to all the major
3. The Decision to Use Tcl computing systems we targeted. Because of our previous

experience with Tcl, we believed that the language is

Three principles guided our choice of implementationeasy to learn and understand (permitting new team
language: platform-portability, extensibility, and ease ofnembers to become productive quickly), generally
distribution. Platform-portability means that the systemg|iows for the creation of highly readable code
should be usable on multiple platforms with as muchpromoting reuse and transfer of code responsibility),
code re-use across platforms as possible (Ofng isimmensely fun to use. Section 5 discusses in detall

equivalently, as litle platform-specialized code asgyr perception of the strengths and weaknesses of Tcl,
possible). Extensibility means that one can extend thgased on the implementation of Caubweb.

capabilities and functionality of the software easily,
through modular software interfaces, without appealingd. The Structure of Caubweb

to vendors, and without being forced to work within the This section describes both the Caubweb application

constraints of restrictive licensing. Ease of distributionand the library components that provide much of the core
implies preparing as few executables as possible tﬂmctionality. The library,Cobwelf, is intended to be
accommodate the set of target platiorms. general purpose and can support applications other than
These criteria pointed toward an interpreted languagezaubweb We first describe Caubweb’s major pieces,
eliminating languages such as C, C++, and Visual Basic
An interpreted language allows the same code to work on +. Acronym available upon request.

followed by descriptions of modules in Cobweb used tarequests. Some incoming user requests may be to

implement interesting features of Caubweb. Caubweb’s control panel, which is original content in a
portion of the URL space for which Caubweb acts purely
4.1 Caubweb as an HTTP server.

Caubweb is an implementation of a Detachable Web Amost every resource that Caubweb receives is saved
proxy. It typically runs as a stand-alone Tcl program,in an extended HTTP cache. This cache will be the sole
started separately from (and usually before) the user'soyrce of documents when Caubweb is disconnected
browser. It listens and responds to HTTP proxy requestgom the network. The cache nominally follows the
at a given port (usually 8088 with connections reStriCteqequirements for an HTTP cache as defined in the HTTP
to the local hostt). protocol, RFC 2068 [4]. To provide better off-line
4.1.1 Usage Model browsing abili';y, _Caub_/veb cachedl documents that_

pass through it, including those that a normal caching

The intended usage model of the system is simplegroxy would not be allowed to cache. The external
The user first starts a personal copy of Caubweb on Behavior apparent by observing Caubweb when
laptop (or other computer); the user then configures g@onnected to the network will always be that of a
web browser to proxy through Caubweb. When thecompliant HTTP caching proxy, meaning that it will
system is well-connected to the rest of the world (whileappropriately discard cached documents while
at work, for instance), the user browses the web asonnected. This behavior allows Caubweb to serve
normal. Caubweb, as a transparent “middleman” in th@ossibly stale documents when disconnected. This is
browsing activity, follows the user’s actions and cachesikely to be exactly what the user wants, since stale data
the results of the user’s interactions. The user can direg$ better than no data (as long as the user is provided with
Caubweb to apply aweblet retrieval to pre-fetch appropriate cues about the data’s freshness).
resources asynchronously, so that (to some depth
resources connected by embedded or related hyperlinés 1.3 User Interface
will also be available to the user later. Weblet retrieval caubweb’s normal interface to allow the user to
can be explicit (the user provides both the starting URLnteract with and control the system isantrol panel
and the retrieval criteria) or implicit (the user sets defaulproyided by a set of dynamically created HTML pages.
retrieval criteria, which are applied to each URL the usefrpege pages allow the user to view the overall status of
requests). At some point, the user will shut the systenhe system, change various preferences and settings, and
down. get listings of (and control over) the cache contents. The

Later on, when the system is no longer connected tgarious changeable controls are implemented via HTML
the Internet at large (on the airplane, for instance), théorms, with a hyperlinked help system for cues on use of
user can turn on the |apt0p and start Caubweb, |nd|Cat|rf@d|V|dua| controls. The control panel is accessed at a
not to use the network. Caubweb will serve HTTPspecial URL, http://caubweb/ , Wwhich uses a
requests with resources available in its cache. It can aldistitious host served internally by Caubweb.
note when the user browses outside the range of the caupweb provides an additional, optional user

resources in the cache; these cache misses can thenifarface component that is implemented using Tk. This
used to start a new weblet retrieval the next timenterface provides a hierarchical status display showing

Caubweb is told the network is available. the state of events occurring inside the system. The user
The fo||owing subsections list Caubweb’s major can gain, ata QUiCk glance, information about Caubweb’s
functional components. activity at any time. The status display also includes
some simple controls that complement those available on

4.1.2 Caching HTTP Proxy the control panel. More sophisticated user interfaces are

Almost everything that Caubweb does (or can do) jcertainly possible, but this was not the focus of our work.

enacted by HTTP flowing into or out of the system. Asa The HTML control panel is the primary interface, and
caching HTTP proxy, Caubweb listens for incoming usetthe Tk display is optional for two reasons. First, Tk is not
requests and directs outgoing HTTP requests. Howeverequired for the core functionality. Caubweb works as
there is not a one-to-one correspondence between thgell using tclsh as it does using wish. Requiring the use
incoming and outgoing requests. Weblet pre-fetchinggf Tk to invoke control features would mean that
results in Caubweb initiating its own outgoing HTTP Caubweb could not act transparently in the background,
without taking up valuable screen real estate (as is
usually the problem with many Windows programs). If

T. Except on systems lacking the ability (MacOS).

Tk is not required, then Caubweb can even operatallows finer control, while an expert form allows
without access to a display. arbitrary weblet templates to be specified in the weblet

Second, while the overhead of the status display is nd@mguage.
large when using Tk with the X Window System, it is The user can apply a template to a start URL to start a
about twice as compute intensive under Windows and oweblet retrieval This causes Caubweb to start a
MacOS. Because of this, the status display can bbackground task fetching the documents that comprise
disabled by an option or user preference, and the systethe weblet. This allows Caubweb to cache documents
simply ignores all the status panel code when Tk is nathat the user may never have visited.

available. Weblet retrievals may also be started automatically

4.1.4 Weblets via a default weblet template. When this is enabled,
) _ _ ~ Caubweb will apply the template to every URL the user’s

A weblet is a logical collection of documents that fit hrowser requests. When the user utilizes this mechanism
user-defined criteria. Individual documents may be partor normal browsing, the result is a cache that is “rich

of many weblets at the same time, and weblets mayound the edges” with content (possibly) related to
overlap in content. Weblet members are identifiedsomething the user was interested in.

dynamically as needed. As a result, at any instant in time,
it may be impossible to answer “what resources are id.2 The Cobweb Library
this weblet” because all the possible members are not
known. Weblet membership is ephemeral -
does not currently keep persistent
information.

Caub As mentioned earlier, our library is intended to be
iu V‘;]e_l?lighly reusable and serve multiple purposes. Cobweb
MemBersiR ontains several major subsystems, including:

» an asynchronous execution model based upon events

A weblet is normally identified by some starting point and callbacks

(typically a URL) from which all other documents in the

weblet are related. The relationship to the starting point an object-oriented execution environment, based on
is established by weblet templatevhich is a collection obTcl [3]

of qualification predicates document needs to meet. A . several Web-centric modules (URL, HTML, HTTP,
weblet template is applied first to the starting point of the caching, weblet, etc.)

weblet, and then, recursively, to any additional

documents matched by the template. Each qualified In addition, there is a collection of other useful
document is parsed into a list of its internal hyperlinkmodules (€.g., host name resolver, splash screen, and

references, such as anchors, images, frames, etc. gemm facility for implementing Tk send(n) over
document is added to the cache by virtue of this weblet fpockets).

it is (1) referenced in a document already in the weblet Cobweb is intended to be architecture-neutral.
and (2) matches the qualification predicate. However, there are several places where it needed to be

Thequalification predicatds one of several forms of C€0gnizant of the host system, usually to work around
test that may be applied to a document or its propertiedMmitations or bugs on the Mac or Windows ports (see
such as the URL. These tests include: Section 5.1).

Highlights of the library are described below, with

e a pattern match on the URL (e.g., http://)
examples of use in Caubweb.

www.opengroup.org/RI/*)

« a pattern match on the anchor associated with th.2.1 Asynchronous Execution

hyperlink (e.g., “Research Institute*”) Most of the library follows an asynchronous, non-

« adepth limit (e.g., no more than three links away fromblocking model of execution. This model follows from
the start URL) the event-driven nature of Tk and Tcl’s fileevent (see also
Section 6.1). Applications such as Caubweb will have
many partial operations in progress at any one time. This
Predicates are conjoined and disjoined to form thenodel means that each ongoing operation will get a
expression in the weblet template chance to accomplish some work when it is able.

The Caubweb control panel has several convenierddowever, each operation must gracefully relinquish
ways for the user to create new weblets. The simplest &ontrol after doing some small amount of work.

a small form that handles most of the typical cases via a Cobweb requires any method that is not short-lived
set of pre-defined templates. A more complicated formand non-blocking to use either aallback or a

 tests against other properties (e.g., size, type, etc.)

continuationto guarantee liveliness of the application. Aan HTML file with embedded Tcl code that is expanded
callback is a small script that a caller passes to a methodia subst.htcl is used to create the Caubweb control
after which the caller is expected to relinquish controlpanel pages, which include dynamically updated data
Upon completion of the request, the callback has a returfiom Caubweb’s state.

value appended and is then evaluated. This results
control being returned to the caller. The callback will
occur in the context of the facility to which the caller
made the request, meaning that the caller cannot assu
anything about its own state. An example use of callbac
in Cobweb is to initiate an asynchronous request to ahlTML Parser: This is a variant of the HTML parser
HTTP server and later receive a handle for thefom sntl [23] combined with changes from Surfit [1],
connection. which are based upon Steve Uhler’s html_library.tcl[30].
It has been heavily modified so that it is re-entrant and

| . tion. A tinuation is similar t can parse incrementally. Additional work went into
own, long running operation. A continuation IS similar ocleanly splitting the main logic apart so that it is no

a callback but adds some state that the caller passesiiii]ger driven to render the HTML it parses. Finally, it

and then later receives as part of the upcall. An examplgan be told to parse against tagsets, so that a document
use of continuations is to maintain the state of a weble an have particular information Iocaied in it. Caubweb
retrieval while other operations gain and relinquishuses a tagset to find rendering elements (e.g.,)
control. hyperlinks (e.g., <A HREF>) and other assorted

4.2.2 Web-centric Modules references.

URL: this is an obTcl class that can manipulate URL'eblet: This module implements the “weblet walker,”
syntax. It can parse a URL string into component parté’,"h'Ch is responsible for identifying and fetching into the

|IQttpCache: This is an obTcl class that configures itself

aboveHttp in order to transparently trap requests from

the higher levels and take appropriate action based on the
fate of the cache.

A continuationis used by a component to schedule its

as well as reconstruct it with tastring operation cache all members of each weblet. It makes substantial
that allows the use oflaaseURL object. This is used to US€ Of work list and queue management abilities.
resolve relative URLs. 5. Tcl's Strengths and Weaknesses

HTTP Protocol: this is an obTcl class with a simple

interface anij several StaCkabIE _m;plzmelntatmns. _Ht?roject usually focus on several key concepts, such as the
uses several structures to track individual connectlon_ nterpreted nature, the “everything is a string” model, its

These structures include the message (msg), connectiong 45 5 glue language, and the ease of constructing user
(conn) and HTTP header (header). Built into the mOdUI&interfaces with Tk. These aspects derive directly from

is the logic for making outgoing requests directly or VIaTers roots but do not necessarily reflect the use of the

a proxy. language to implement complete stand-alone
The basic interface includes methods such as MakeRepplications such as ours. We used Tcl to construct an
(which uses a callback) and Close. Implementors of thentire application, which allowed us to focus on some
interface are modules that an application will invoke,different key aspects of the language. We present some of
causing the modules to initialize themselves into aur observations here.

protocol graph. For instance, if an application just -

initializes the Http and HttpProxy modules along with a5':L Portability

server |00p, the result will be an HTTP tunnel (that is, a Tcl, being a Scripting |anguage, affords a natural
cacheless proxy). If it also initializes the HttpCacheportability of code. This concept, along with the (at that
module, then it becomes a caching proxy. time) forthcoming Windows and Mac ports of Tcl 7.5,

HTTP Server: This includes a server loop and a simple,meant that an implementation of our system in Tcl could
mock HTTP server. The server loop enables a sockegasily allow us to “buy into” a truly portable system. This

listening on a port or ports to process incoming request§nostly came true. To date, we have run Caubweb
Each request is broken apart into command and targ&f@pshots on Windows95 and Windows NT, most flavors
and then dispatched to the handler for server using th& UNIX, and the Macintosh (System 7.0 and higher). In
socket The HTTP server reads disk files and returnsdddition, the InfoPad project at the University of

their contents to the remote side. It understands severg@lifornia, Berkeley, has used Caubweb on its base
special CGl-like file types. One is callécl, which is station running Unix to provide disconnected access to
Tcl code to be evaluated in a slave interpreter, the outpyffeb pages via the InfoPad. However, support on multiple
of which is sent to the remote. Anothettigml, which is ~ Platforms required more effort than we originally

Arguments about the suitability of Tcl for any given

expected. the Mac).

Creating pure Tcl is a useful approach to avoiding Even with Tcl's high degree of portability, we still had
machine dependencies. It means that end users caignificant problems. Our first concern was (at that time)
utilize scripts without work such as compiling new code.the ongoing development of Tcl 7.5. The Mac and
Prior to Tcl 7.5, the general rule was that a new extensioWindows ports contained many bugs that prevented the
had to compile its modules and then statically link withsystem from being directly used. For much of 1996, we
the Tcl libraries itself. This process resulted in largehad to provide our users with bug fixes for Tcl 7.5 and
binaries with limited mixtures of extensions. The newlater Tcl 7.6. To avoid causing our end users to acquire
load command resolves this problem. the tools to compile under Windows and MacOS, we also
I'provided binaries of the fixed Tcl/Tk distribution on

However, not everything can be made with pure Tc
those platforms.

Caubweb depends upon two key mechanissopychan
andhos) that are implemented in C as a minor extensiong 2 Extensibility for Performance

This requires us to provide source code and force end-

users to compile it. We take the middle approach of also For Tcl, the extensibility mechanism is a direct trade-
providing the pre-compiled loadable modules for some?ff against portability. But, when performance really

number ofsupportedplatforms. This still requires work Matters, it is time for a compiled C extension. In the end,
to compile the module on all the platforms we supportWe took a cautious approach of only utilizing loadable

but that happens infrequently, when we make a change fRodules that were either absolutely required for
the source of the loadable module. Caubweb to work or for which we could easily provide a

))) workaround that was written in plain Tcl (at a
This work is often well worth doing. We have long performance penalty).

believed that some Tcl/Tk applications win users over)) o

installing and using the application. When the system i§f unsupported0which has becoméopy in Tcl 8.0.
portable with little or no effort, a user will be inclined to However, it has two important characteristics. First, it
use it. The Tcl community is littered with systems thatProperly returns the number of bytes copied and, thus,

[27] andtknews26]. On the other hand, systems such asdata from a web server into a cache file and know that the
exmh[31] match this model. cache file is correct (fcopy also has this characteristic).

))) . . Second, it allows us to “multicast” the data to multiple
The negative side effect of using a compiled extensiofe channels. This allows us to utilize the same data
is that it becomes an additional portability constraint.giream from a web server to create the cache file and to
Requiring a mechanism that is only available as eym the data to the user’s browser. The result is that we
compiled extension (or some other compiled C code)gye significant compute time doing a read/write/write
adds an obstacle for the casually interested party to thy, 1\ 4 Tcl loop. In addition, prior to Tcl 8.0, it was

out the system on an unsupported platform. This mayy,,,ssible to program that loop in Tcl at all, since there
well reduce the set of people who choose to evaluate 3,5 no reliable way of storing the file data in a Tcl

new system. variable (since the data could contain arbitrary binary
This trade-off was constantly evaluated during thedata).t
project to decide when and what components were 0 be gpe grea in which additional performance would have
used in the system. In the end, we ended up with thregaen yseful was in parsing and manipulating HTML.
loadable modules, only one of which was required by ou(nti| the ability was added to parse HTML files
system (copychan). The o.ther twioogtand the obTel iecemeal (using a trick from Surfit! [1]), this was a
accelerator) are optional; pure Tcl code exists Gnaior cause of perceived sluggishness in Caubweb.
|mp!ement th.e functionality of each module if it is not owever, when weblet retrievals are in progress, the
available. This allows us to get the performance gain of, arhead of parsing HTML consumes the vast majority
the loadable module when we have done the compilatiogs caubweb'’s compute time. Caching the hyperlink

work, allowing us to speed up the system when we arfsferences derived from the HTML parsing may alleviate
committed to it on a particular platform. this problem.

This trade-off was also partially responsible for us not
using other extensions, like MTtcl [10] or Incr Tcl [15],
although other reasons played a role for these extensiol

(i.e., they were not initially available for Windows and T. Several extensions would have helped in this regard, the
most interesting being the memchextiension [12].

6. Reuvisiting the Decision to Use Tcl threads from continuing execution. This naturally limits
he use of the application to those systems that support

Many of the basic reasons for choosing Tcl have pal(ﬁhis collection of abilities. Further, the model of separate

off hands_omely. The language has pro‘_’_ed suitable fol'hterpreters causes other problems, as state (variables)
constructing our system. The ease of writing has PrOV€Han not be shared across interpreters and thus must be

itself over and over, as new capabilities are easily addeguplicated with the cost being paid in the memory
to the system. The learning curve for producing usablefootprint Of’ the system

good code for project engineers has been short.
To contrast, even a language like Java designed with

A significant advantage has been achieved in the Iachwreads in mind only partially escapes this problem.

of problems related to fixed size string buffers, data(ijjhreads are supported even on systems where there is no

s:ructure_s,t mer[]rcr)]ry allocation, garbbaltge C(;]Ilecnorlw, an derlying operating system support. Java forces all /0
stray pointers. These common problems have plaguef 1,q asynchronous but does not force the event-driven

numerous systems, including other web systems (ServeFﬁodel on the programmer. Java actually goes the other

and browsers). way; whereas I/O is asynchronous, the 1/O interfaces are

In addition, Tcl mechanisms sometimes lead tonot. Thus, to read on a stream, a thread is forced to block.
articularly elegant implementation techniques. The bes

Example o); thisgis the vF\)/ebIet template Iangquage, which ié'z Tcl Changes

internalized into a form that can be directly evaluated by Our work began when Tcl 7.5 was sitill in alpha

the Tcl interpreter. As a result, for very little cost we haveiesting. Our initial framework used TclX 7.4 as a stopgap

created a powerful and expressive syntax for describingntil 7.5 was stable enough. The process of working

web page relationships without being burdened withagainst a moving target has occasionally been painful.

building the expression evaluation engine. Not having a Windows port of Incr Tcl meant that any
Nonetheless, some aspects of Tcl were problemati¢iSeful object-oriented extension needed to be pure Tcl so

we discuss these below. that we could use it on all our platforms. Along the way
we have helped to debug several serious problems in the

6.1 Issues in Event Handling socket code for the Windows and Mac ports. It was not

Tcl has an inherent event-driven nature. This isuntil Tcl 7.6p2 that we finally were able to stop shipping

derived partially from the historic implementation of Tk our own Tcl binaries.

and windowing systems, and due to bias on the part of This is not a complaint about the work that the Sun Tcl
the language designer [19]. This forces any complexGroup produces, but rather an observation about
system such as Caubweb to use an architecture differing priorities. Their priorities have been different
asynchronous execution with callbacks. This is ahan what we would have liked. Completeness and
workable solution, but it does have drawbacks. Anycorrectness in the socket code is more interestings
operation that blocks the return to the event loop causdban completeness in native look and feel.

the application to appear to hang momentarily. There ar

some ways to avoid this, such as the work to make thg'3 The Impact of Tcl 8.0

HTML parser compute in smaller quanta. However, The worst shortcoming we have come across in our
there are situations in which one cannot avoid blockingrcl work can be summed up in two quick points: the need
and for which Tcl provides no help. Hostname (DNS)for extensions to support basic language operations (OO
lookups in the socket channel code is one example. Thignd megawidget paradigms, binary 1/0) and the overall
causes the application to become entirely unresponsiv@erformance of an interpreted system. These have been
and the user to complain. This is true for Caubweb angjentified by many people in the past [21]; as of this

for other Tcl-based systems (this is a common useyiriting, Tcl 8.0 has been released in beta form, and a new
complaint about exmh, which even has a secondarjge is upon us.

helper process to avoid this problem). .
Perp P) To be sure, it does not solve all the problems.

An alternative to this approach might be to use a{owever, performance measurements show some
threaded operating system with a threads extension t@arked improvements in some areas, new /O
Tcl and then partition the application so that significanimechanisms will allow arbitrary data to be manipulated
work is done in separate interpreters, each in their owiithout the potential loss of information, and a common

thread. This is the approach take with Audiencel [21]core mechanism for namespaces opens the door to a
By having operating system support for threads, a singlgnified OO mechanism.

thread can block in an operation and not prevent other
These potential benefits come with a price. Our

system will need substantial changes to work with the Additionally, the core needs to embrace other sorely
new incompatibilities introduced with these new missing operations as Tcl language constructs. We
mechanisms. For instance, obTcl uses the faniiliar believe there is a need for lower level bindings to a
separator between class and instance, but this is nowomplete set of POSIX C library functions. This
usurped by the namespace facility. Consequently, nonemechanism would suppomscripts in accomplishing

of our existing obTcl-based code can work with Tclwork that currently requires a loadable module written in
8.0b1. With obTcl now no longer being maintained, weC.
must revisit the decision to use obTcl. Will Incr Tcl be

: : When considering such a community library, one also
adapted to the new namespace mechanism quickly? 9 y Y

needs to consider what might be expected from the Tcl
In addition, while fcopy replaces some of the core to empower reusable code. With the support of

mechanism ofcopychan it does not handle multiple namespaces, an encapsulation mechanism for the

destinations. Hence, there will still be a need for our owrbenefits of data hiding can become standard. A full

modified versions. object-oriented environment is not necessary, but a
. mechanism like Incr Tcl'gnsembler themajor/minor
6.4 Call to Arms for the Tcl Community extension alone might be sufficient. Other noteworthy

When reviewing features that different languagedtems include the framework changes for megawidget
have to offer, one notices that Tcl is missing a richsupport and the core hooks to provide useful debugger
cohesive, organized, standard library. The communitysupport (such as single stepping).
while building many flng components and libraries, doesal5 Contributed Core Changes
not have a mechanism in place to collect those
components in a single library structure. Tcl code is too The evolution of the Tcl core has progressed too
often reinvented, ignoring the advantages that comeslowly, in contrast to Java where change happens too
from reusing existing software [24]. quickly. This forces the Tcl developer community to
The Tcl contributed archive is a start at constructingCreate negded mfrastruc_ture them_selvgs. If the core
such a library. However, much of the code in the archivgventually incorporates this mechanism, it typically uses

is out of date and little of it can be expected to work?" incompatible implementation. By taking the slow

together. The archive is exactly that, a static collection Oﬁpproach to incorporate these changes, the effect of

what has been done rather than a unifying repositorg]aklng t_he developer's code out of date is thgt the
against which applications can be built ommunity always has new hurdles to overcome just to

keep current with Tcl.
In contrast, other language environments come with

these components. Java has the JDK (and more). Perl héds Conclusion
a rich set of p_r_imitives plus CPAN [3], a well organized \we have developed a substantial server-based
I|prary _of addltlonal_ code. CPAN is so successful that &pplication, targeted to multiple platforms, using Tcl. We
single implementation of a module tends to be adoptedg|ected Tcl for platform-portability, extensibility, and
by the community; further, changes by the communitygage of distribution, and it satisfied those criteria
are often actively merged back into the library. relatively well. The extensibility turned out to be
We believe that Tcl needs an archive like CPAN. Theparticularly important because of deficiencies in
existing contributed Tcl archive includes reusable codegvolving versions of Tcl that were either platform-
but the cost of reuse is almost always too much work. /specific or related to core functionality. We identified
single, cohesive library would mean there would not bestrengths and weaknesses of Tcl that stood out during our
five different HTML parsers or four different HTTP work, and we challenged the Tcl community to work
implementations, and that Tcl developers could creatéogether to create a rich, cohesive, standard library.

new anql interesting things .rather than spending time The caubweb application uses a set of components
reinventing these same old pieces. (Cobweb) which we have already re-used in an ancillary
Tcl, to date, has avoided providing much in the way ofapplication called CaubView. It is based upon
auxiliary library code. Tcl 8.0 breaks from that tradition HistoryGraph