
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Jacl: A Tcl Implementation in Java

Ioi K. Lam, Brian Smith
Department of Computer Science

Cornell University
Ithaca, NY

Jacl: A Tcl Implementation in Java

Ioi K. Lam, Brian Smith
Department of Computer Science

 4130 Upson Hall
 Cornell University

 Ithaca, NY 14853-7501

{ioi, bsmith}@cs.cornell.edu

Abstract

Jacl, Java Command Language, is a version of the
Tcl [1] scripting language for the Java [2] environ-
ment. Jacl is designed to be a universal scripting
language for Java: the Jacl interpreter is written
completely in Java and can run on any Java Virtual
Machine. Jacl can be used to create Web content or
to control Java applications.

This paper explains the need for Jacl as a scripting
language for Java and discusses the implications of
Jacl for both the Java and Tcl programming com-
munities. It then describes how to use Jacl. It also
explains the implementation of the Jacl interpreter
and how to write Tcl extensions in Java.

1. Motivation

One on-going question in the Tcl community is, how
can Tcl exploit the popularity of Java and the World
Wide Web. There are two projects that try to bring
Tcl into the world of Java and WWW. The Tcl
Plugin [3] allows the execution of Tcl scripts inside
Web browsers. However, the Tcl Plugin runs only
inside certain browsers (Navigator and Explorer),
requires the user to install software on local ma-
chines and does not communicate well with Java.
Tcl-Java [4] allows the evaluation of Tcl code in
Java applications, but it requires native methods and
thus cannot run inside most browsers.

A Tcl implementation in Java will facilitate the
creation of portable Tcl extensions [4]. Tcl is a port-
able scripting language. However, although Tcl pro-
vides some support for writing portable extensions,
maintaining Tcl extensions written in C for multiple
platforms is still a difficult task, especially if net-
work or graphics programming is involved. Cur-
rently Tcl runs on more platforms than Java. How-
ever, due to the large number of commercial Java
developers, Java will probably catch up in the near

future and run on more platforms. If Tcl implemen-
tations can be written in Java, the Tcl community
can leave the portability issues to JavaSoft and other
Java implementers and concentrate on developing
the Tcl core interpreter and extensions.

On the other hand, Java needs a scripting language
as powerful as Tcl. Java is a structured programming
language and is not a good scripting or command
language [7]. Currently, scripting languages that can
be used on Java platforms, such as Javascript and
VBScript, are proprietary, non-portable and restric-
tive. Javascript and VBScript run only on the brows-
ers that support them. Their scripting engines are
system-dependent and cannot run on arbitrary Java
Virtual Machines. These languages are good for
scripting HTML pages, but they lack the features
that would allow their deployment at any larger
scale. For example, Javascript cannot define new
classes; Java applets cannot directly pass events to
VBScript [5, pp. 843]. Moreover, these scripting
languages are not embeddable and thus cannot be
used to control Java applications.

Jacl is a comprehensive solution to the problem of
Tcl and Java integration. Since the Jacl interpreter
and extensions are written completely in Java, they
can run inside any JVM, making Tcl an embeddable,
universal scripting language for Java. By using the
Jacl interpreter, Java programmers can use Tcl to
control simple Web pages, complex networked Java
applications, and anything in between.

2. Using Jacl to Script Java Applications
and Applets

Java applications and applets and very similar to
each other. The following section concentrates on
applets only but the discussion holds true for Java
applications as well.

2.1 Using Jacl in an Applet

The Java classes that implement Jacl are in the
cornell.* hierarchy. The conell.applet.Shell class can
be used to execute Jacl scripts inside applets. The
following HTML code shows how to embed an Jacl-
enabled applet inside an HTML page:

 <applet width=300 height=100>
 code=cornell.applet.Shell.class>
 <param NAME="jacl.script"
 VALUE="buttons.tcl">
 </applet>

When the cornell.applet.Shell class starts up, it will
create a Jacl interpreter to execute the script file
specified by the jacl.script parameter.

2.2 Using Tcl and Tk Commands

Jacl supports all the basic Tcl commands (e.g.,
string and puts, as well as the control constructs
such as if and for.) It also supports a subset of the
Tk commands for building graphical interfaces. Ex-
ample 2.1 shows a script that performs a simple
animation by scrolling text across three buttons at
different speed. This script should look familiar to
experienced Tcl/Tk programmers because its syntax
is exactly the same as traditional Tcl/Tk programs.
Figure 2.2 shows how the applet appears inside
Netscape.

2.3 Accessing Java Classes with Raw Scripting

There are two ways for Jacl scripts to access Java
classes: Raw Scripting and Custom Scripting. Raw
scripting uses the Java Reflection API [8] to directly
create Java classes and invoke their methods and
fields. The following example shows how an applet
can use raw scripting to manipulate a java.lang.Date
object:

set date [new java.lang.Date]
button .day -text [$date getDay]

The new command is used to create an instance of a
Java class with the given name (in this case,
java.lang.Date.) The new command returns an ob-
ject command, which can be used to invoke the
methods of the object. In the above example, the
getDay method of the object is called to query the
current day of the week on the system.

The object command supports two special options,
get and set, to query and modify the fields of the
Java object. In the following example, we create an
object of the java.util.Vector class, add several ele-
ments and the query the elementCount field to
determine the number of elements in the vector ob-
ject:

set vector [new java.lang.Vector]
$vector addElement “string1”
$vector addElement “string2”
set num [$vector get elementCount]

button .b1
button .b2
button .b3

.b1 config -text " fastest............. "

.b2 config -text " faster.............. "

.b3 config -text " not so fast............ "

pack .b1 .b2 .b3

proc scroll {btn time} {
 set str [$btn cget -text]
 set str [string range $str 1 end][string index $str 0]
 $btn config -text $str
 after $time scroll $btn $time
}

scroll .b1 100
scroll .b2 200
scroll .b3 500

Example (2.1)

When the methods and fields of the Java objects are
invoked, Jacl will coerce the parameters when nec-
essary. For example, in the following code segment,
the parameters passed to the setSize method of
the frame object may be represented as strings in the
script. Jacl will convert them into integers before
invoking the setSize method:

set frame [new java.awt.Frame]
$frame setSize 100 200

Jacl uses a set of heuristics to disambiguate the in-
vocation of overloaded methods. For example, if we
have a Java class with an overloaded method foo
that can take either an integer or a string parameter:

class A {
 void foo(int i);
 void foo(String s);
}

and we manipulate this class with the following
script:

set obj [new A]
$obj foo 1
$obj foo abcd

The first call to foo will invoke the integer version
because the parameter looks like an integer. In con-
trast, the second call will invoke the string version
because it is not possible to convert abcd to an in-
teger.

In the cases where the disambiguation heuristics are
insufficient, one can use method signatures to
choose which version of an overloaded method
should be called. A method signature specifies the
name and argument types of a method. For example,
the following code forces the string version of the
foo method to be called even though the argument
looks like an integer:

set obj [new A]
$obj {foo String} 1

Figure (2.2)

2.4 Custom Scripting

In custom scripting, Jacl scripts access Java objects
through a scripting API provided by a Jacl extension
(see section 4 for a discussion on writing Jacl exten-
sions.) The button command in section 2.2 is an
example of a custom scripting API for accessing
java.awt.Button objects. One can access Java objects
through raw scripting or custom scripting. Figure 2.3
shows the differences between raw- and custom
scripting and compares the scripting code with Java
code.

As shown in figure 2.3, both raw- and custom
scripting provides interactive access to Java classes.
Custom scripting has the advantage of supporting a
more convenient syntax but it requires the writing of
Jacl extensions. Therefore, raw scripting is generally
used to gain “quick and dirty” access to Java ob-
jects. When it is necessary to have better scripting
support for Java objects, Jacl extensions can be
written to provide a custom scripting API.

3. Implementation of the Jacl Interpreter

The Jacl interpreter is based on the Tcl 7.6 inter-
preter. Most of the parsing routines for Tcl scripts
and expressions are translations of the Tcl 7.6 C
source code into Java code. Therefore, the Jacl in-
terpreter is compatible with the Tcl 7.6 interpreter.
In fact, the Tcl 7.6 test suite is used to ensure that
Jacl parses and executes scripts in exactly the same
manner as Tcl 7.6.

There are two major enhancements in Jacl with re-
spect to Tcl 7.6: object support and exception han-

dling. These enhancements improve efficiency and
simplify the implementation of the Jacl interpreter
and extensions.

3.1 Object Support

In Tcl 7.6, all objects are represented by strings. In
Jacl, however, an object can be represented by any
Java object. For example, in the following code:

set a 1234
incr a

After the first line, the variable a will contain a
string “1234”. At the second line, the incr com-
mand will coerce the string into an integer and then
increment its value by one. After this operation, the
variable a will contain a integer with the value 1235.

Moreover, lists in Jacl are implemented as copy-on-
write Vector objects to improve both access time
and storage efficiency. In the following code

set list1 [list 1 2 ... n]
set c [lindex $list 3]
set list2 $list1
...
...
lappend list2 abc

the lindex operation takes constant time, com-
pared to the O(n) time in Tcl 7.6. Also, after the
set list2 $list1 command, the two variables
list1 and list2 will refer to the same object.
The contents of the list will be copied into the
list2 variable only when a destructive operation,

Coding Method Program Listing Interactivity Simple
Syntax

Extension
Required

Java Code Button b = new Button(“Hello”);

Color c = new Color(255, 255, 0);

b.setForeground(c)

add(b);

No No --

Raw Scripting set b [new Button Hello]

set c [new Color 255 255 0]

$b setForeground $c

$applet add $b

Yes No No

Custom Scripting button .b -text Hello -fg #ffff00

pack .b

Yes Yes Yes

Figure (2.3)

such as lappend, is applied to that variable.

3.2. Exception Handling

Another difference between Tcl 7.6 and Jacl is how
they handle error conditions. Tcl 7.6 uses return
code such as TCL_OK and TCL_ERROR to indicate
the success or failure of script execution. The Tcl
7.6 C source code spends considerable efforts in
checking the return code of functions. In contrast,
Jacl uses the Java exception mechanism to handle
runtime errors. Thus, the Jacl source code is less
cumbersome than the Tcl 7.6 C source code. For
example, inside the Tcl parser, where errors can
happen in many sections of the code, the Jacl im-
plementation uses about 30% fewer lines of code
than the Tcl 7.6 implementation written in C. Figure
3.1 compares the coding style between Jacl and Tcl
7.6

4. Writing Jacl Extensions

A Jacl extension is generally a collection of new Tcl
commands. A Tcl command is a class that imple-
ments the Command interface. The command can be
added to a Jacl interpreter by passing an instance of
its class to the CreateCommand method. Example
4.1 shows how a print command can be defined

One interesting feature of Example 4.1 is the way
arguments are passed to CmdProc, the command
procedure. Because the arguments passed to a com-
mand may be Java objects of any type, it is no
longer sufficient to pass the arguments as (int
argc, char ** argv) in Tcl 7.6. Instead, Jacl
passes the arguments in a CmdArgs object. The
following code shows the interface of the CmdArgs
class:

public class CmdArgs {
 public int argc;
 public String argv(int index);
 public int intArg(int index);
 public double doubleArg(int index);

 public Object object(int index);
}

A command can use the converter methods, such as
argv, intArg and doubleArg, to convert the
arguments into the required types. The command
can also use the Java instanceof operator to di-
rectly infer type information of the arguments. In
example 4.2, the index1 command verifies that it
receives an non-empty Vector object as its first ar-
gument before returning the first element of this
Vector.

5. Status and Future Directions

As of this writing, the Tcl parser, expression
evaluator and most basic Tcl commands have been
implemented in Jacl. It also supports a subset of the
Tk commands for creating graphical interfaces. Jacl
is already being used to create simple applets to run
inside browsers. It can also be used to control Java
applications and applets with raw- and custom
scripting. A beta release is expected to be available
in the third or fourth quarter of this year.

Many more features have been planned for Jacl, in-
cluding built-in debugging, supports for multi-
threading, and a byte-code compiler. To find out
more about the new developments of Jacl, please
visit the Jacl home page at
http://www.cs.cornell.edu/ home/ioi/Jacl.

Acknowledgment

I would like to thank Thomas Breuel and Anil Nair
for providing valuable inputs during the early design
stage of Jacl. Thomas sent me the basic design of
the cornell.Tcl.Command interface, which I
put into Jacl without much change. Scott Stanton
and Jacob Levy were instrumental in the design of
the raw scripting API.

Java code C equivalent
...
int i = interp.GetInt(string);
 // exception is thrown if string
 // doesn’t contain a valid integer
...

...
int i;
if (Tcl_GetInt(interp, string, &i) != TCL_OK) {

return TCL_ERROR;
}
...

Figure (3.1)

Bibliography

[1] John Ousterhout, Tcl and the Tk Toolkit,
Addison-Wesley, Massachusetts, 1994

[2] Ken Arnold, James Gosling, The Java Pro-
gramming Language, Addison-Wesley,
Massachusetts, 1996

[3] Jacob Levy , A Tcl/Tk Netscape Plugin,
Proc. of the 1996 USENIX Tcl Workshop,
Monterey, 1996.

[4] Scott Stanton and Ken Corey, TclJava: To-
ward Portable Extensions, Proc. of the
USENIX 1996 Tcl/Tk Workshop, Mon-
terey, 1996.

[5] Michael Morrison, et al., Java Unleashed,
Sams.net Publishing, Indianapolis, 1997

[6] Brian Lewis, An On-the-fly Bytecode Com-
piler for Tcl. Proc. of the USENIX 1996
Tcl/Tk Workshop, Monterey, 1996.

[7] John Ousterhout, Scripting: Higher Level
Programming for the 21st Century,
http://www.sunlabs.com/people/john.ouster
hout/scripting.html, 1997.

[8] Sun Microsystems, Inc., JavaTM Core Re-
flection, API and Specification,
http://java.sun.com/products/jdk/1.1/docs/g
uide/reflection/, 1997.

import cornell.Tcl.*

class PrintCmd implements Command {
 Object CmdProc(Interp interp, CmdArgs ca) throws EvalException {
 if (ca.argc != 2) {
 throw new EvalException("wrong # args: should be \"" + ca.argv(0)

 + " string\"");
 }
 System.out.println(ca.argv(1));
 return "";
 }
}

....
 // Create a new "print" command.
 interp.CreateCommand("print", new PrintCmd());
....

Example (4.1)

class Index1Cmd implements Command {
 Object CmdProc(Interp interp, CmdArgs ca) throws EvalException {
 if (ca.argc != 2) {
 throw new EvalException("wrong # args: should be \"" + ca.argv(0)

 + " vector\"");
 }
 if (!ca.object(1) instanceof Vector) {
 throw new EvalException("expected Vector but got \"" + ca.argv(1)

 + "\"");
 }
 Vector vector = (Vector)(ca.object(1));
 if (vector.elementCount < 1) {
 throw new EvalException("Vector must not be empty");
 }
 return vector.elementAt(0);
 }
}

....
 // Create a new "index1" command.
 interp.CreateCommand("index1", new Index1Cmd());
....

Example (4.2)

