i

The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop
Boston, Massachusetts, July 1997

PtTcl: Using Tcl with Pthreads

D. Richard Hipp
Hwaci, Charlotte, NC
Mike Cruse
CTI, Ltd., Prescott, AZ

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

PtTcl: Using Tcl with Pthreads

D. Richard Hipp

Huwaci
6200 Maple Cove Lane
Charlotte, NC' 28269

Abstract

Tcl is not thread-safe. If two or more threads at-
tempt to use Tcl at the same time, internal data
structures can be corrupted and the program can
crash. This is true even if the threads are using
separate Tcl interpreters.

PtTcl is a modification to the Tcl core that makes
Tel safe to use with POSIX threads. With PtTel,
each thread can create and use its own Tcl inter-
preters that will not interfere with interpreters used
in other threads. A message-passing mechanism al-
lows Tcl interpreters running in different treads to
communicate. However, even with PtTcl, the same
interpreter still cannot be accessed by more than one
thread.

This paper describes the design, implementation and
use of PtTecl.

1 Introduction

Tcl was originally designed for use in single-
threaded programs only. But recently, there has
been an increasing need to use the power of Tcl in
applications that contain multiple threads of con-
trol. Unfortunately, the core Tcl library uses several
static data structures that can become corrupted if
accessed simultaneously by two or more threads. A
program crash is the usual result.

There is a least one prior effort to make Tcl thread-
safe. Steve Jankowski created a modified version of
the Tcl sources called MTtcl [MtTcl] which allows
the use of Tcl in a multi-threaded environment. But
Jankowski’s implementation only works with Solaris
threads and on Tcl versions 7.4 and earlier.

Mike Cruse

CTI, Ltd.
1040 Whapple St. #225
Prescott, AZ 86301

This article describes a new implementation of
multi-threaded Tcl that is based on POSIX threads
[Pthreads] and works with Tcl version 7.6. (An
upgrade to Tcl version 8.0 is planned.) We call
the package “PtTcl”. PtTcl borrows some of
Jankowski’s ideas but is a completely new imple-
mentation.

2 Threading Model

The usual model for a multi-threaded program is
that each thread has its own stack used to store
subroutine return addresses and local variables.
In a compiled program, the hardware in coopera-
tion with the operating system and thread library
take care of providing and managing these separate
stacks. But in an interpreted language like Tcl,
the interpreter must create and manage the sepa-
rate stacks itself. The standard Tcl interpreter only
makes provisions for a single stack. In order to make
Tcl truly multi-threaded, it is necessary to change
the Tcl core to allow multiple stacks per interpreter.

Unfortunately, the concept of one stack per inter-
preter is a fundamental assumption in the design of
Tcl, and to change this assumption would require
a major rewrite of many key routines. In order to
avoid excessive rework of the Tcl core, we chose to
use a more restrictive thread model for PtTcl.

PtTcl allows an application to have multiple Tcl in-
terpreters running in independent threads, and each
thread in a PtTcl program can contain any number
of interpreters (including zero). But PtTcl only al-
lows an interpreter to be run from a single thread. If
another thread tries to use an interpreter, an error
message is returned.

In ordinary Tcl, there is a single event queue used
to process all timer and file events. In PtTcl, this

concept is extended to one event queue per thread.
The fact that each thread has its own event queue is
a necessary consequence of the restriction that Tcl
interpreters must always be run in the same thread.
Recall that the usual action taken when an event ar-
rives is for a Tcl script to run in response. Suppose
an interpreter in thread A registers to receive an
event, but the event arrives while executing thread
B. There is no way for the receiving interpreter, run-
ning in thread B, to execute the desired script be-
cause that script can only be run from thread A.
Hence, if we want to be able to invoke scripts in
response to events, each thread must have its own
event queue.

Each thread has the concept of a main interpreter.
The main interpreter is different from other inter-
preters in the same thread in only one way: you can
send messages to the main interpreter.

Messages are a new kind of Tcl event, so a Tcl in-
terpreter running in a given thread will not process
any messages until it visits its event loop. A Tcl in-
terpreter visits its event loop whenever it executes
one of the standard Tcl commands vwait or update
or one of two commands added by PtTcl: thread
eventloop and thread send.

Messages can be either synchronous (meaning they
will wait for a response) or asynchronous (fire and
forget). The result returned to the sending thread
from a synchronous message is the result of the Tcl
script in the receiving thread or an error message if
the message could not be sent for some reason. An
asynchronous message has no result usually, but it
still might return an error if the message could not
be sent. Asynchronous messages can be broadcast
to all main interpreters or to all main interpreters
except the interpreter that is doing the sending.

A message can be sent from any interpreter, not just
the main interpreter, or directly from C code. There
does not have to be a Tcl interpreter running in a
thread in order for that thread to send a message,
but a main interpreter is necessary for the message
to be received.

Most, variables used by a Tcl interpreter are private
to that interpreter. But PtTcl implements a mech-
anism for sharing selected variables between two or
more interpreters, even interpreters running in dif-
ferent threads. However, it is not possible to put
trace events on shared variables, which limits their
usefulness.

Here is a quick summary of the execution model

used by PtTcl:

e A single thread can contain any number of Tcl
interpreters.

e A particular Tcl interpreter may only be used
from within a single thread.

e Each thread has its own event queue.

e A message (in the form of a Tcl script) can be
sent to the main Tcl interpreter in any thread.

e Tcl variables may be shared between two or
more Tcl interpreters, even interpreters run-
ning in separate threads.

3 New Tcl Commands

The PtTcl package implements two new Tcl com-
mands. The “shared” command is used to desig-
nate variables that are to be shared with other in-
terpreters, and the “thread” command is used to
create and control threads.

3.1 The “shared” command

The shared is similar to the standard global com-
mand. Shared takes one or more arguments which
are names of variables that are to be shared by
all Tecl interpreters, including interpreters in other
threads. Note that both interpreters must execute
the shared command independently before they will
really be using the same variable.

Unfortunately, the trace command will not work on
shared variables. This is another consequence of the
fact that an interpreter can only be used in a single
thread. When a trace is set on a variable, a Tcl
script is run whenever that variable is read, written
or deleted. But, if the trace was set by thread A
and the variable is changed by thread B, there is no
way for thread B to invoke the trace script in thread
A.

3.2 The “thread” command

The thread command is more complex than
shared. Thread contains nine separate subcom-
mands used to create new threads, send and receive

messages, query the thread database, and so forth.
Each is described separately below.

thread self

Every thread in PtTcl that contains an interpreter is
assigned a unique positive integer Id. This Id is used
by other thread commands to designate a message
recipient or the target of a join. The thread self
command returns the Id of the thread that executes
the command.

thread create
boolean)

[command] [-detach

New threads can be created using the thread
create command. The optional argument to this
command is a Tcl script that is executed by the new
thread. After the specified script is completed, the
new thread exits. If no script is specified, the com-
mand “thread eventloop” is used instead. As-
suming the new thread is created successfully, the
thread create command returns the thread Id of
the new thread.

After a thread finishes executing its Tcl script, it
normally waits for another thread to join with it
and takes its return value. (See the thread join
command below.) But if the ~detach option evalu-
ates to true, then the thread will terminate imme-
diately upon finishing its script. A detached thread
can never be joined.

Note that the joining and detaching of threads is an
abstraction implemented by the PtTcl library. From
the point of view of the Pthreads library, all threads
created by the thread create command run de-
tached.

thread send
boolean]

whom message [-async

Use the thread send command to send a message
from one thread to another. The arguments to this
command specify the target thread and the message
to be sent. The message is simply a Tcl script that is
executed on the remote thread. The thread send
command normally waits for the message to com-
plete on the remote thread, then returns the result
of the script. But, if the —async option is true, the
thread send will return immediately, not waiting
on a reply.

thread broadcast message
[-sendtoself boolean)

The thread broadcast works like thread send ex-
cept that it sends the message to all threads and it
always operates asynchronously. Normally, it will
not send the message to itself, unless you also spec-
ify the -sendtoself flag.

thread update

This command causes the current thread to process
all pending messages, that is, messages that other
threads have sent and are waiting for this thread
to process. Only thread messages are processed by
this command — other kinds of pending events are ig-
nored. If you want to process all pending events in-
cluding thread messages, use the update command
from regular Tcl.

thread eventloop

This command causes the current thread to go into
an infinite loop processing events including incom-
ing messages. This command will not return until
the interpreter is destroyed by either an exit com-
mand or a interp destroy {} command.

thread join [-id Id] [-timeout millisec-
onds|

The thread join command causes the current
thread to join with another thread that has com-
pleted processing. The return value of this com-
mand is the result of the last command executed
by the thread that was joined. By default, the first
available thread is joined. But you can wait on a
particular thread by using the -id option.

The calling thread will wait indefinitely for another
thread to join unless you specify a timeout value.
When a timeout is specified, the thread join will
return after that timeout regardless of whether or
not it has found another thread to join. A timeout
of zero (0) can be used if you want to quickly see if
any threads are waiting to be joined.

thread list

This command returns a list of Tcl thread Id num-
bers for each existing thread.

thread yield

Finally, the thread yield command causes the cur-
rent thread to yield its timeslice to some other
thread that is ready to run, if any.

4 New C Functions

In addition to the new Tcl commands, PtTcl also
provides several new C functions that can be used
by C or C++ programs to create and control Tcl
interpreters in a multi-threaded environment.

int Tcl_ThreadCreate(
char *cmdText,
void (*initProc) (Tcl_Interp*,voidx*),
void *argPtr

)

The Tcl ThreadCreate() function creates a new
thread and starts a Tcl interpreter running in that
thread. The first argument is the text of a Tcl script
that the Tcl interpreter running in the new thread
will execute. You can specify NULL for this first argu-
ment and the Tcl interpreter will execute the com-
mand thread eventloop. The second argument to
Tcl_ThreadCreate() is a pointer to a function that
can be used to initialize the new Tcl interpreter be-
fore it tries to execute its script. The third argu-
ment is the second parameter to this initialization
function. Either or both of these arguments can be
NULL. All threads created by Tcl_ThreadCreate()
are detached.

The Tcl_ThreadCreate() returns an integer which
is the Tcl thread Id of the new thread it creates.
This is exactly the same integer that would have
been returned if the thread had been created using
the thread create Tcl command.

The Tcl_ThreadCreate() may be called from a
thread that does not itself have a Tcl interpreter.
This function allows threads that do not use T¢cl to
create subthreads that do.

Note that the (¥initProc) () function might not
have executed in the new thread by the time
Tcl ThreadCreate() returns, so the calling func-
tion should not delete the argPtr right away. It is
safer to let the (*initProc) () take responsibility
for cleaning up argPtr.

int Tcl_ThreadSend(
int toWhom,
char **replyPtr,
char *format,

The Tcl_ThreadSend() function allows C or C++
code to send a message to the main Tcl interpreter
in another thread. The first argument is the Tcl
thread Id number (not the pthread_t identifier) of
the destination thread. You can specify a destina-
tion of zero (0) in order to broadcast a message.

The second parameter is used for the reply. The
message response is written into memory obtained
from ckalloc() and **replyPtr is made to point
to this memory. If the value of the second parameter
is NULL, then the message is sent asynchronously. If
the first parameter is 0, then the second parameter
must be NULL or else an error will be returned and
no messages will be sent.

The third parameter is a format string in the style
of printf () that specifies the message that is to be
sent. Subsequent arguments are added as needed,
exactly as with printf ().

The return value from Tcl ThreadSend () is the re-
turn value of the call to Tcl Eval() in the des-
tination thread, if this is a synchronous message.
For an asynchronous message, the return value is
TCL_OK unless an error prevents the message from
being sent.

Tcl_Interp *Tcl_GetThreadInterp(
Tcl_Interp *interp

)

The Tcl GetThreadInterp routine will return a
pointer to the main interpreter for the calling
thread. If the calling thread does not have a main
interpreter, then the interpreter specified as its ar-
gument is made the main interpreter. If the argu-
ment is NULL, then Tcl _CreateInterp() is called
to create a new Tcl interpreter which becomes the
main interpreter. At the conclusion of this function,
the calling thread is guaranteed to have a main in-
terpreter and a pointer to that interpreter will be
returned.

5 Changes Made To The Tcl Core

The biggest change in PtTcl is the implementation
of separate event queues for each thread. In the
standard Tcl distribution, the event queue is con-
structed as a linked list of structures with a static
pointer to the head of the list. In PtTcl, we sim-
ply converted this static pointer into thread-specific
data. Actually, once you get into the details, you
find that more than this one static pointer can cause
problems. Dozens of static variables in Tcl had to be
converted into thread-specific data variables. And,
of course, mutexes had to be added to the few static
variables that were not converted to thread-specific
data.

PtTcl changes the semantics of the exit command
slightly. In ordinary Tcl, exit terminates the whole
application, and so it does not worry too much
about releasing file descriptors or freeing memory
obtained from ckalloc(). In PtTcl, exit will only
terminate the current thread. This necessitated
some additional clean-up actions in the Tcl core
in order to avoid file-descriptor and memory leaks.
Corresponding changes were made to the code that
implements the interp command in order to get the
command

interp delete {}

to do the right thing.

The 1sort command was rewritten to use a merge-
sort algorithm [Knuth] instead of the qsort () func-
tion. This change had the side-effect of making the
lsort command both recursive and stable. It turns
out that it is also a little faster. This change has
been folded into the Tcl core as of version 8.0.

In standard Tcl, the env array variable contains the
values of all environment variables. Changes made
to env are applied to all interpreters. This behavior
is not implemented in PtTcl, however. Each inter-
preter in PtTecl still has the env array containing
the environment, but changes to this array are not
copied into other interpreters.

During early testing, we discovered that the
printf () function supplied with MIT Pthreads was
not thread-safe. Rather than fix MIT Pthreads, we
found it easier to supply our own thread-safe version
of the printf () function, which we placed in the
source file “generic/tclPrintf.c”. We later used
some enhanced features of this alternative printf ()

in the implementation of Tcl_ThreadSend(), so
even though MIT Pthreads has now been fixed the
new printf () implementation must remain.

New code was added to implement the shared
and thread commands. The code for shared was
added to “generic/tclVar.c” since it needed ac-
cess to information local to that file. The thread
command and the new Tcl_ThreadCreate() and
Tcl_ThreadSend () functions are all found in a new
source file named “generic/tclThread.c”.

And, of course, an occasional mutex had to be added
here and there, and some functions of the stan-
dard C library were changed to their thread-safe
equivalents. (Example: gmtime() was changed to
gmtime r().) Overall, the implementation of PtTcl
was reasonably simple thanks to the extraordinarily
clean implementation of the original Tcl core.

6 Obtaining And Building PtTcl

The latest sources to PtTcl can be found at
http://users.vnet.net/drh/pttcl.tar.gz

To build PtTcl, first obtain and unpack the source
tree, then cd into the directory pttcl7.6al/unix
and enter one of the commands

./configure --enable-pthreads
or
./configure --enable-mit-pthreads

Use the first form at installations where POSIX
threads programs can be built by linking in the spe-
cial -1pthreads library. The second form is for in-
stallations that use MIT Pthreads [Provenzano] and
require the special pgcc C compiler.

After configuring the distribution, type
make

to build a tclsh executable. Note that if you omit
the

--enable-pthreads or --enable-mit-pthreads
option from the ./configure command, then the
tclsh you build will not contain support for
Pthreads.

7 Status Of PtTcl Development

We developed and tested PtTcl under the Linux ver-
sion 2.0. For the Pthreads library, we have used
both Chris Provenzano’s user-level implementation
[Provenzano] (also known as MIT Pthreads) and
a kernel-level Pthreads implementation by Xavier
Leroy [Xavier] built on the clone() system call
of Linux. Neither of these Pthreads implementa-
tions is without flaw. Under some versions of MIT
Pthreads, the exec Tcl command did not work reli-
ably. (Later versions of MIT Pthreads work better.)
The exec command works fine using Linux kernel
Pthreads, but under heavy load, the kernel’s process
table has been known to become corrupt, resulting
in a system crash. We suspect that both of these
problems are bugs in the underlying Pthreads im-
plementation (or the Linux kernel), not in PtTcl.

PtTcl was written for and has been heavily used
in a multi-processor industrial controller that im-
plements its control algorithms using a data-flow
model. Each node of the data-flow graph is a PtTcl
script running in its own thread. PtTcl has sur-
vived extensive abuse testing of the controller soft-
ware with no errors or memory leaks. But these
tests have only exercised those parts of PtTcl which
are actually used in the controller application. The
shared or exec commands have not be heavily
tested nor have there been many attempts to run
more than one interpreter in a thread at a time.
We suspect that bugs remain in these areas.

While PtTcl has so far only been tested under Unix,
there is nothing in the implementation of PtTcl that
would preclude its use under Windows or Macln-
tosh. All that is needed is a library for the target
platform that implements basic Pthreads function-
ality. We are not aware of any such library but
suspect that they do exist. It should not be much
trouble to implement Pthreads as a wrapper around
the native Windows or MacIntosh thread capability.
PtTcl only uses a few of the more basic Pthreads
routines, so most of the Pthreads library could re-
main unimplemented.

8 Acknowledgements

PtTcl was developed for and released by Conserva-
tion Through Innovation, Ltd., a manufacturer of
environmental and industrial control systems based
in Prescott, Arizona.

9 Availability

An online manual and complete source code for
PtTcl is available from

http://users.vnet.net/drh/pttcl.html

References

[MtTcl] “MT-Tcl” To appear in Tcl/Tk Tools
by Mark Harrison. O’Reilly & Associates, Se-
bastopol, CA. Estimated publication date: June
1997.

[Pthreads] Portable Operating System Interface
(POSIX) — ANSI/IEEE Std 1003.1. Institute of
Electrical and Electronics Engineers, New York,
NY. 1996.

[Knuth] Algorithm L on page 165 of The Art Of
Computer Programming Vol. 3. By Donald E.
Knuth. Addison Wesley Publishing Company,
Reading, MA. 1973.

[Provenzano| Pthreads: General Information. A
web page by Christopher Angelo Provenzano.
http://www.mit.edu:8001/people/proven/p-
threads.html

[Xavier] The Linux Threads Library. A web page by
Xavier Leroy.
http://pauillac.inria.fr/ xleroy/linux-
threads/

