Writing CGlI scripts in Tcl

Don Libes
National Institute of Standards and Technology
libes@nist.gov

Abstract CGl scripts hae mary advantages eer statically writ-
ten HTML. For example, CGI scripts can automatically

CGl scripts enable dynamic generation of HTML pagesadapt to changes in thevitonment, such as the date in

This paper describesWwdo write CGI scripts using Tcl. the preious example. CGI scripts can run programs,

Many people use Tcl for this purpose already im an include and process data, and just aboythamg that
ad hoc ey and without realizing m&mf the more non- can be done in traditional programs.

obvious benefits. This papeniews these benefits and

provides a frameork and &les. Canonical solu- CGI scripts are particularly worthwhile in handling Web
tions to HTML quoting problems are presented. Thiforms. Wéb forms allav users to enter data into a page
paper also discusses using Tcl for the generation of ditnd then send the results to a Web server for processing.
ferent formats from the same document. Asxame The Web form itself does not ke to be generated by a

ple, AQ generation in both x¢ and HTML are CGI script. Hovever data entered by a user may
described. require a customized response. Therefore, a dynami-

cally generated response via a CGl script is appropriate.
Keywords: CGI; RQ; HTML generation; Tcl; Wrd Since the response may produce another form, it is com-
Wide Web mon to generate forms dynamically as well as their
responses.
Introduction
CGI Scripts Are Just a Subset of Dynamic

CGl scripts enable dynamic generation of HTML pageﬁ_”_ML Generation

[BLee]. Specifically CGI scripts generate HTML in

response to requests foreW/ pages. & example, @ G| scripts are a special case of generated HTML.

static Web page containing the date might look like thiszanerated HTML means that another program produced
<p>ThedateisMonMar 412:50:10EST the HTML. There can be a payai programmatic gen-
1996. eration @en if it is not demanded by the CGlvaon-

)) ment. | will describe this idea further later in the paper.
This page was constructed by manually running the date

command and pasting its output in the page. The padggimply embedding HTML in Tcl scripts does not in

will show that same date each time it is requested, untitself provide ary payof. For instance, consider the

the file is manually rewritten with a different date. preparation of a page describingrious types of wid-
gets, such asutton widgets, dial widgets, etc. Ignoring

Using a CGlI script, it is possible to dynamically generne pogdy paragraphs, the headers could be generated as
ate the date. Each time the file is requested, it will showg|iows:

the current date. This script (and all others in this paper)

are written in Tcl [Ouster]. puts "<h3>Button Widgets</h3>"
puts "<h3>Dial Widgets</h3>"

puts "Content-type: text/htmhn" o
puts "<p>The date is [exec date]." Much of this is redundant and suggests the use of a pro-

' . . cedure such as this one:
The first puts command identifies vihcthe bravser

should treat the remainder of the data — in this case, asproc h3 {header} {

text to be interpreted as HTML. oF all kut esoteric puts "<h3>$header</h3>"
uses, this same first line will be required wery CGI
script. Now the script can be rewritten:

h3 "Button Widget"

Reprinted fromThe Proceedings of the Fourth Annual Tcl/Tk WorkshopNaghterey, CA, July 10-13, 1996.

h3 "Dial Widget" technique shon earlier suggests twprocedures: i
and username. e is the application-independent
{-|TML interface. username is the application-specific
interface. An gample definition for username is st
below Remember that this is specific to a particular
application. In this case, a literal prompt iswhdthe
Using a procedure name specifically tied to an HTMLHTML markup for this vould be defined in yet another
tag has drawbacks. For example, consider code that hRsocedure). Then the 10-character entry box containing
level 3 headings for both Miets and Bckages. No some default value.
suppose you decide to change just 'FheIng to leel proc username {name defvalue} {
2. You would hag to look at each h3 instance and man- " "

A ov ¢ prompt "Username
ually decide whether it is a Widget or a Package. text $name $defvalue 10

Notice that you no longer i@ to worry about adding
closing tags such as /h3 or putting them in the righ
place. Also, changing the headingdkis isolated to
one place in each line.

In order to change groups of headers that are related, it}

is helpful to use a logical name rather than one specifivhen the form is filled out, the useriew value will be
cally tied to an HTML tag. This can be done by defin-provided as the alue for the ariable named by the first
ing an application-specific procedure such as one faparameterstored here in “name”. Later in this paper

widget headers: I'll go into this in more detail.
proc widget_header {heading} { A good definition for tet is relatvely ugly because it
h2 "$header Widget" must do the hard evk of adding quotes around each

value at the same time as doing tladue substitutions.

} .
proc package_header {heading} { This is a good demonstration of something yantito

h3 "$heading Package"

} write as fev times as possible — once, ideallin con-
. . trast, you could ha hundreds of application-specific
The script can then be written: text boxes. Those procedures areviaif to write and
widget_header "Button” malke all forms consistent. In theample abwe, each
widget_header "Dial" call to username would always look identical.

package header "Object" .
proc text {name defvalue {size 50}} {

Now all the widget header formats are defined in one puts "<input name=\"$name\"\

place — the widget_header procedure. This includes not_ Vvalue=\"$defvalue\" size=$size>"

only the header i&l, but ary additional formatting.

Here, the word “Widget” is automatically appended, butonce all these proceduresst, the actual code to add a
you can imagine other formatting such as addygelr username entry to a form is trivial:

links, rules, and images.

username new_user $user
This style of scripting mads up for a deficierycof] o
HTML: HTML lacks the ability to define application- Many refinements can be made. For example, it is com-
specific tags. mon to use Tcl ariables to mirror the formaviables.

The revrite in Figure 1 tests whether the named form
variable is also a Tcl variable. If so, the value is used as

Form Generation the default for the entry.

The idea of logical tags is equally useful for generatio
of Web forms. Br example, consider generation of an
entry box. Naively rendered in Tcl, a 10-character entr
box might look this way:

"If username called this procedure, the secogdraent
could be omitted if theariable name s identical to
¥he first argument. For example:

. . " username User
puts "<input name=Username size=10>

This is fine if there is only one place in your code whichAn explicit value can be supplied in this way:

requires a username. If yowksseveral, it is more con- ysername User=don

venient to place this in a procedure. Dumping this all .

into a procedure simplifies things a littleytkenough And arbitrary tags can be added as follows:
additional attrilites on the input tag can quickly render ,carname User=don size=10 \

the nev procedure impenetrable. Applying the same maxlength=5

Many other procedures are required for a full implemenyou must gamine all of them. By using logical proce-
tation. Here are taw more which will be used in the dure names, that trap isaded. fr example, suppose
remainder of the papefThe procedure “p” starts awe that you vant hostnames tovahys appear the sameay
paragraph and prints out itsgament. The procedure But there is no hostname direeiin HTML. So you
“put” prints its agument with no terminating ndine. could arbitrarily choose bold and write:

And puts, of course, can be called directly.
proc hostname {s} {

proc p {s}{ return [bold $s]
puts "<p>$s" }
broc put {s} { An example using this is:

puts -nonewline "$s p "You may ftp the files from [host

$ftphost] or [host $ftpbackuphost].”

Inline Directives If you later decide to change the appearance of host-

names to, saytalics, it is nev very easy to do so. Sim-
Some HTML tags affect characters rather than complet5|y change the one-line definition of the hostname

elements. &r example, a wrd can be made bold by procedure.
surrounding it with and . As before, redun-
dancy can be eliminated by using a procedure: URLs

proc bold {s} {

buts "$s" URLs have a great deal of redundancy in them, so using

procedures can pvale dramatic benefits in readability

) i o . and maintainability Similarly to the préious section,
Unlike the earlier xamples, it is not desirable to v hyperlinks can be treated as inline direeti. By pre-

characteiased procedures call puts directipther- giqring all URLS, generation of a URL then just requires

wise, scripts end up looking like this: a reference to the appropriate one. While sepagate v
put "l often use " able_s can be _used for each URL,_ a sin_gle array
bold "Tcl" (_cgi_link) prosides all URL tags with their van
put "to program." namespace. This namespace is managed with a proce-

These charactdrased procedures can be made moredure called link. For example, suppose that you want to

readable by having them return their results like this: produce the following display in the browser:

proc bold {s} { | am married taDon Libeswho works in the
return "$s" Manufacturing _Collaboration _Technologies

} Group atNIST.
Using these inline directives, scripts become much mor¥/sing the link procedure, with appropriate link defini-
readable: tions, the scripting to produce this is simple:

p "l often use [bold Tcl] to p "l am married to [link Libes] who

program." works in the [link MCTG] at [link

NIST]."

Explicit use of a procedure such as bold shares the sam

e H H .
dravbacks aslicit use of procedures such as h2 and! NiS €xpands to a sizeable chunk of HTML:

h3. If you later decide to change a subset of some uses,

proc text {nameval args} {
regexp "(\[*=]*)(=?)(-*)" $nameval dummy name q value

put "<input name=\"$name\

if {$g !="="}{
set value [uplevel set $name]

puts " value=\"[quote_html $value]\" $args>"

Figure 1: Procedure to create a generic text entry

I am married to <A HREF="http:// The second argument, if @®, declare a name to be dis-

elib.cme.nist.gov/msid/staff/libes/ played by the browser. The third argument is the URL.
libes.don.html">Don Libes who
works in the <A HREF="http:/ Links can be defined by handcoding the complete abso-

elib.cme.nist.gov/imsid/groups/ lute URL. Hawever it is much simpler to create anfe
mctg.htm">Manufacturing

Collaboration Technologies Group helper variables to further minimize redundancy. Figure
at <A HREF="http:// 3 shavs to refer to seeral of my colleagues whose
www.nist.gov">NIST. home pages all exist in the same staff directory.

Needless to say, Working on such raw text is the bane Qf the location of ap one stafmembers page Changesy
HTML page maintainers. & HTML has no praisions only one line needs to be changed. More importaiftly
itself for reducing this complexity. the directory for the MSID stipages changes, only one
line needs to be changed. MSID AFF is dependent

on another ariable that defines the hostname. The host-
name is stored in a separat@iable because 1) it is
likely to change and 2) there are other links that depend

The link procedure is sha in Figure 2. It returns the
formatted link gven the tag name as its firsgament.

1. Itis tempting to think that relative URLs onit.
can simplify this, but relative URLs only _
apply to URLs that are, well, relative. In Figure 4 shows some examples of hosts.

this example, the URLSs point to a different
host than the one where the referring page
lives. Even if this isn’t the case, | avoid rel-
ative URLs because they prevent other peo-
ple from copying the raw HTML and

pasting it into their own page (again, on
another site) without substantial effort in
first making the URLs absolute.

There are no restrictions on tag names or display names.
For example, sometimes it is useful to display “Don”.
Sometimes, the more formal “Don Libes” is appropri-
ate. This is done by defining awinks with diferent
names bt pointing to the same URL. This is sioin
Figure 5.

proc link {args} {
global _cgi_link

set tag [lindex $args 0]
if {{llength $args] == 3} {
set _cgi_link($tag) \
"[lindex $args 1]"
}
return $_cgi_link($tag)
Figure 2 Procedure to access a database of URL links.

set MSID_STAFF $MSID_HOST/msid/staff

link Steve "Steve Ray" $MSID_STAFF/ray.steve.html
link Don "Don Libes" $MSID_STAFF/libes.don.html
link Josh "Josh Lubell" $MSID_STAFF/josh.lubell.html

Figure 3: Create links to several colleagues who home pages all exist in the same staff directory.

set MSID_HOST http://elib.cme.nist.gov
set NIST_HOST http://www.nist.gov
set ORA_HOST http://www.ora.com

Figure 4. Some examples of hosts.

link Don "Don" $MSID_STAFF/libes.don.html
link Libes "Don Libes" $MSID_STAFF/libes.don.html

Figure 5: Create links to the same URL but display them to the user differently.

Similarly, there are no restrictions on the tag namesng corversions are rather interestingtlunderstanding
themseles. Consider the link definitions in Figure 6.them is outside the point of this paper.

These are used in paragraphs such as this one:))
The cowerse procedure to unquote_input is w8ho

p "You can ftp Expect from below This transformation is usually done automati-
ftp.cme.nist.gov as [link Expect.Z] cally by Web bravsers. Hwever it can be useful if
or [link Expect.gz]" ;
your CGI script needs to send a URL through some
A browser shows this as: other means such as an advertisement on TV.

; proc quote_url {in} {
You can ftp Expect from ftp.cme.nist.gov as regsub -all * " $in "+" in

pub/expect/expect.tar.Z argz. regsub -all "%" $in "%25" in
Having link dependencies localized to one place greatly return $in

aids maintenance and testingor Example, if you hee

a set of pages that use the definitions (i.e., by sourcing theory this procedure should perform additional
them), editing that one file automatically updates all ofcharacter translations. kever you should @oid gen-

the other pages the xtdime they are regenerated. This erating such characters since recgj URLs outside of

is useful for testing groups of pages on dedént a bravser requires hand-treatment by users. In these sit-
server such as a test senvbefore muing them @erto uations, all bizarre character sequences should be
a production location. Ewn smaller mees can benefit. awided. ©r the purposes of testing (feeding input
For example, it is common to nve directories around back), additional translation is also unnecessary since

or create new directories and just move some of the filesny other unquoted characters will be passed untouched.
around.

Suppressing HTML Interpretation

Quoting

In most contets, strings which contain strings thabk
HTML values must be quoted atfdifent times and in like HTML will be interpreted as HTML. d¥ example,
different ways. Unfortunatelythe standards are hard to if you want to display the literal string “<A
read so most people guess insteadwéder, intuitively HREF=....>", it must be encoded so that the “<” is not
figuring out the quoting rules is trigkbecause simple turned into a perlink specification. Other special
cases doi’require quoting and mgrbrowsers handle characters must be similarly protected. This can be
various error cases differently. It can be very difficult todone using quote_html, shown below:
deduce what is correct when yowrobravser accepts

erroneous code. This section presents procedures forProc quote_html {s} { .
handling quoting. # ampersand must be done first!

regsub -all {&} $s {\&} s
regsub -all {"} $s {\"} s

CGI Arguments regsub -all {<} $s {\&It} s
regsub -all {>} $s {\>} s
CGI scripts can recee input from either forms or return $s

URLs. For example, in a URL specification such as }

http://www.nist.gov/expect?help=input+foo, anything to This can be used to simplify other procedures. Adding
the right of the question mark becomes input to the CGxplicit double quotes before returning the finalue
script (which cowmersely is to the left of the question zjjows simplification of may other procedures.
mark). Assuming this ne procedure is called dquote_html,

Various peculiar translations must be performed on th8OnSIder the earlier xe entry procedure which had the

raw input to restore it to the originahles supplied by code fragment

the user. For example, the usepplied string “foo bar” value=\"$defvalue\"
is changed to “foo+bar”. This is undone by the firgt re) _
sub in unquote_input (st in Figure 7). The remain- This could be rewritten:

value=[dquote_html $defvalue]

link Expect.Z "pub/expect/expect.tar.Z" $EXPECT_DIR/expect.tar.Z
link Expect.gz "...gz" $EXPECT_DIR/expect.tar.gz

Figure 6: Link tags and definitions can be very unusual. There are no restrictions.

Argument Cracking Import/Export

As described earlielinput strings to a CGI script are Variables are not automatically entered into separate
encoded by the bwser Besides the transformations global \ariables or the enarray because thatowld
described alreadthe bravser also packs allaviable open a security hole. Insteadyriables must bexglic-
values together in the form variablel=valuel&variable2itly requested. Seral procedures simplify this. The
=value2&variabl&l=valueN. procedure most commonly used is “import”.

The input procedure (Figure 8) splits the input back intamport is called for each aviable defined from the
its specific ariable/alue pairs leang them in a global invoking form. For example, if a form used an entry
array called _cgi_ar. Any variable ending with the with “name=foo”, the command “import foo” auld
string “List” causes its alue to be treated as a Tcl list. define foo as a Tclariable with the &lue contained in
This allovs, for ekample, multiple elements of a listbox the entry The command import_cookie is ariation

to be extractable as individual elements. that obtains the value from a cookie variable — a mecha-

))))) nism that allows client-side caching of variables.
If the procedure is run in the CGlv@monment (i.e., via

an HTTPD serer), input is automatically read from the proc import {name} {

environment. If not run from the CGI environment (i.e., upvar $name var

via the command line), thequment is used as input. upvar #0 _cgi_uservar($name) val
This is ery useful for testing. Anxglicit argument set var $val

obviates the need for using a real form page teedtie }

script and means it is easily run from the command line .)
or a debugger. Form variables are automaticallxgorted to the called

CGI script. It is sometimes necessary xpart other
If the global \ariable _cgi(delg) is set to 1, the proce- variables. This must be done explicitly. Figure 9 shows
dure prints the input string before doingytining else. the eport procedure whichx@orts the namedaviable.
This is useful because it may then be cut and pasted in&imilar to the tgt procedure, if the first gument is in
the procedure gument for debgging purposes, asas the form “\ar=value”, the wariable as xported with the
just mentioned. given \alue. Otherwise, theaviable is treated as a Tcl
variable and its value is used.

proc unquote_input {buf} {
rewrite "+" back to space
regsub -all {\+} $buf {\ } buf

protect $ so Tcl won't do variable expansion
regsub -all {\$} $buf {\$} buf

protect [so Tcl doesn’t do evaluation
regsub -all {\[} $buf {\[} buf

protect quotes so Tcl doesn’t terminate string early
regsub -all \" $buf \\" buf

replace line delimiters with newlines
regsub -all "%0D%0A" $buf "\n" buf
Mosaic sends just %0A. This is handled in the next command.

prepare to process all %-escapes
regsub -all {%([A-FO0-9][A-F0-9])} $buf {[format %c 0x\1]} buf
Mosaic sends just %0A. This is handled in the next command.

prepare to process all %-escapes
regsub -all {%([A-FO0-9][A-FO0-9])} $buf {[format %c Ox\1]} buf

process %-escapes and undo all protection
eval return \"$buf\"

Figure 7: Translate HTML-style input to original data.

Error Handling catch errors, and attempt to do something useful. The
two aguments, head and bqdyre blocks of Tcl com-
The CGI emironment maks no special puisions for mands which create the head and body of an HTML
errors. Thus, error processing requires explicit handlingorm. An example is shown later.
by the application programmerlf none is made, gn
error messages produced (e.g., by the Tcl interpretet§ the global \alue _cgi(debg) is 1, the script error is
are sent on to the client bveer These are rarely mean- formatted and printed to the screen so that it is readable.
ingful to the user Even worse, thg can be misinter- If debug is 0, a simple message is printed saying that an
preted as HTML in which case the result iserror occurred and that the “diagnostics are being
incomprehensible even to the script creator. emailed to the service system administrator”. At the
same time, mail is sent to the service administrator. The
The procedure in Figure 10 mides a frameork to mail includes eerything about the eironment that is
evaluate the body of the CGI script, to automaticallynecessary to reproduce the problem including the,error

proc input {{fakeinput {}}} {
global env _cgi _cgi_uservar

if {I[info exists env(REQUEST_METHOD)]} {
set input $fakeinput;# running by hand, so fake it
} elseif { $env(REQUEST_METHOD) == "GET" }{
set input $env(QUERY_STRING)
}else {
set input [read stdin $env(CONTENT_LENGTH)]

if script blows up later, enable access to the original input.
set _cgi(input) $input

good for debugging!

if {$_cgi(debug)} {
puts "<pre>$input</pre>"

set pairs [split Sinput &]

foreach pair $pairs {
regexp (.*)=(.*) $pair dummy varname val
set val [unquote_input $val]

handle lists of values correctly
if [regexp List$ $varname] {

lappend _cgi_uservar($varname) $val
}else {

set _cgi_uservar($varname) $val

}

repeat loop above but for cookies

Figure 8: Retrieve CGlI input

proc export {nameval} {
regexp "(\[*=]*)(=?)(.*)" $nameval dummy name q value

if {$q 1= "="}{
set value [uplevel set $name]

put "<input type=hidden name=$name \
value=[dquote_html $value]>"

Figure 9: Export a variable to the CGI script.

the script name, and the input. The implementatiortolors, etc., while the body is responsible for importing,
shown here is skeletal. In the actual definition, a varietgxporting, and generation of text and graphical elements
of other interesting problems are handledr iRstance, as has already been described. Alatal xample is
cookie definitions must appear in the output befose anshown in Figure 11

HTML. However cookies are more easily generated as)
one of the final results in a script. This and other probd N€ title procedure (not sh) produces all of the usual

lems are solved by the full implementation, however thdTML boilerplate including titles, backgrounds, etc. A
details are beyond the scope of this paper. form procedure simplifies the calling a@mtions for
establishing apforms. This is not diicult. However,

Using the procedures defined, CGI scripts becoamg v of critical importance is noting that a form is in
simple. Thg all start out by sourcing the CGI support progress. Because somewsers won't show anything
routines. Then cgi_eval is called with arguments to creif a form hasrt been ended (i.e., “/form”), the error han-
ate the head and badyThe head generates titles, link dler must prematurely close the form if an xpected

proc cgi_eval {head body} {
global env _cgi

set _cgi(body) "$head;cgi_body_start;app_body_start;$body;app_body end"
uplevel #0 {
cgi_body_start
if 1==[catch $_cgi(body)] { # errors occurred, handle them
set _cgi(errorinfo) $errorinfo

close possible open form because some

browsers won't show errors otherwise

if [info exists _cgi(form_in_progress)] {
puts "</form>"

h3 "An internal error was detected in the service software. \
The diagnostics are being emailed to the service\
system administrator.”

if {$_cgi(debug)} {
puts "Heck, since you're debugging, I'll show you the\
errors right here:"
suppress formatting
puts "<xmp>$_cgi(errorinfo)</xmp>"
} else {
mail_start $_cgi(email_admin)
mail_add "Subject: $_cgi(name) problem"”
mail_add
if {$env(REQUEST_METHOD) != "by hand"} {
mail_add "CGI environment:"
mail_add "REQUEST_METHOD: $env(REQUEST_METHOD)"
mail_add "SCRIPT_NAME: $env(SCRIPT_NAME)"
catch {mail_add "HTTP_USER_AGENT: $env(HTTP_USER_AGENT)"}
catch {mail_add "REMOTE_ADDR: $env(REMOTE_ADDR)"}
catch {mail_add "REMOTE_HOST: $env(REMOTE_HOST)"}

mail_add "input:"

mail_add "$_cgi(input)"
mail_add "errorinfo:"
mail_add "$_cgi(errorinfo)"
mail_end

}
cgi_body _end

Figure 10: Framework to catch errors and report them intelligently.

error occurs. Sang this information is done with a options. cgi_body_end is anal-
simple global ariable. The form procedure is sfoin ogous.

Figure 12. . .
All of the procedures described sar fcan be moked

Marny other utilities are necessary such as proceduresith “cgi_” prepended (if thg do not already lggn that
for each type of form element. Spaceverds inclusion way). In practice, CGI scripts are generally quite short
of them. Seeral other miscellaneous utilities complete so this isn often useful — and writing things &k
the basic implementation of the procedures that apped&cgi_h2” is particularly irritating. Hevewver conflicts
in this paper A few are mentioned here tovgia flaor ~ with other namespaces can occasionally ergich pre-

for what is necessary: fixes a necessary evil.
cqi Conwerts a form name to a Sewral procedures argected to be redefined by the
complete URL. user Here are tw examples that appear in the body
) . procedure earlier.
mail_start Generates headers and writes
them to a ne file representing app_body_start Application-supplied proce-
a mail message to be sent. dure, typically for writing ini-
))) tial images or headers common
mail_add Writes anew line to the tempo- to all pages.
rary mail file.
)) app_body end Application-supplied proce-
mail_end Appends a signature to the

dure, typically for writing sig-
nature lines, last-updatesby
etc.

temporary mail file, sends it,
and deletes the file.

cgi_body start Generates the <body> tag and
handles user requests such as
backgrounds andavious color

source cgi.tcl

cgi_eval {

title "Password Change Acknowledgment"”

input "name=libes&old=swordfish&newl=tgif23&new2=tgif23
H

import name

import old

... other stuff
form password {

spawn /bin/passwd
expect "Password:"

Figure 11: Skeletal example of the CGI procedures in use.

proc form {name cmd} {
global _cqgi

set _cgi(form_in_progress) 1

puts "<form method=POST action=[cgi $x]>"
uplevel $cmd

puts "</form>"

unset _cgi(form_in_progress)

Figure 12: The form procedure creates an HTML-style form.

FAQ generation tion N in ga(N,g) and the corresponding answer in

ga(N,a). At the same time, the question is printed out.
Earlier | mentioned that CGI scripts are just a subset ofhus, there is no need for the first loop in the earlier
HTML generation. As anxample, consider the task of pseudocode.

building an AQ in HTML. There is no benefit to
dynamically generating anAR — it rarely changes. Proc question {g a} {

However an AQ has some of the same problems as | global index ga
described earlier For example, it can include mgn

. . incr index
links which must be kept current.
)) set qa($index,q) $q
Another reason that it makes sense to think about gener- set ga($index,a) $a
ating HTML for an RQ is that an RQ is highly styl- _
ized. Fr ecample, an RQ always has a set of puts ""
questions. These questions are then repeatedith pﬂg :}ifq
answers. Written manuallyou would hae to literally } P

repeat the questions and create the links. Ifnaqees-

tion was added or an old one deleted, you would have to

carefully make sure that both entries were handled iderEach question automatically links to its corresponding
tically. answer, linked as #gN. When the question/answer pairs

are later printed, tlyewill have A HREF tags defining
Intuitively, this could be automated usingotvoops. the #gN targets.
First, the questions and answersuld be defined. Then
the first loop wuld print the questions. The secon s
loop would print the questions (aiy) interspersed with Snown in Figure 13.

the answers. In pseudocode: The question is ne only stated once and it isvays
paired with the answer. This simplifies maintenance.

d The source for anxample question/answer definition is

define QAs ;# pseudocode!

foreach ga $QAs { Notice that the answer is not simply a string. The
print_question $ga answer is Tcl code. This me it possible to use all of
the techniques mentioned earlieFor example, the
example abwe uses p to generatewi@aragraphs and

fore%(r:iutq?]fgﬁ(s)rf $qa link to generate hyperlinks.
) print_answer $qa The code is \luated by passing the answer tale

wheneer it is needed. An answer procedure does this
It suffices to store the questions and answers in an arragnd generates the hyperlink target at the same time.

The followving code numbers each pair and stores ques- i
proc answer {i} {

guestion {l keep hearing about Expect. So what is it?} {

p"Expectisatool primarily forautomatinginteractive applications
such as telnet, ftp, passwd, fsck, rlogin, tip, etc. Expect really
makes this stuff trivial. Expect is also useful for testing these
same applications. Expect is described in many books, articles,
papers, and FAQs. There is an entire [link book] on it available
from [link ORA]."

p "You can ftp Expect from ftp.cme.nist.gov as [link Expect.Z] or
[link Expect.gz]"

p "Expect requires Tcl. If you don't already have Tcl, you can get
it in the same directory (above) as [link Tcl.Z] or [link Tcl.gz]."

p "Expect is free and in the public domain."

}:# end question
Figure 13: Source to an example question/answer definition.

global qa

puts "<p>"
puts ""
puts "$ga($i,q)"
puts ""
puts "<p>"
eval $qa(%$i,a)

}

For example, “answer 0” wuld produce the lggnning
of the output from the earlier question. The full HTM
would begin like this:

<p>

| keep hearing about Expect.
So what is it?

<p>Expect is a tool primarily for
automating interactive . . .

The answer procedure itself is called from a loop
another procedure called answers (Figure 14).
answer_header procedure prints out a header if one
been associated with the current question. Thigiges

cation-specific procedures. For instance, suppose a hor-
izontal rule is produced using the hr command.
Obviously this can be defined as “puts <hr>". It is eas-
ily changed to producetusing the follaving proce-
dure:

proc hr {} {
puts

| Here are analogous definitions for h1 and h2. Others are
similar.

proc hl {s} {

in proc h2 {s}{
An pUtS kxk $S *kx

has}

For example, with this n& definition, “h1 Questions”

a way of breaking the &Q into sections. A matching reasonably simulates a level 1 header using only text as:

procedure (question_header) defines and prints
headers as they are encountered.

proc answer_header {i} {
global qa

h3 "$ga($i,h)"

proc question_header {h} {
global index ga

set ga($index,h) $h

puts ""
h3 $h

puts ""

}
Translation to Other Formats

Another benefit of using logical tags is thatfaliént

the
*

* Questions
*

The ability to generate theAR in different forms is
conwenient. Br example, it means that people can read
the FAQ without having an HTML browser.

The generation of dirent formats is simplified by
awiding use of eplicit HTML tags and instead using
logical procedure names. A particular output format can
be produced merely by priding an appropriate set of
procedure definitions. Although | ¥v¬ done so, it
should be possible to adapt the fravoek and ideas
shavn here to produce output in such formats as TEX,
MIF, and others. E&n without translation, vaiding
explicit HTML is a good idea for the reasons mentioned
earlier — maintenance and readability.

output formats can be generated by changing the appli-

proc answers {} {
uplevel #0 {
start_answers

for {set index 0} {$index < $maxindex} {incr index} {

catch {answer_header $index}
answer $index
hr

Figure 14: Generate all the answers in the FAQ.

A Translation Framework Readers interested in comparative strategies to CGI gen-
eration should consult thealoo database ghoo]

Translation is further simplified by separating the appli-which lists CGl libraries for dozens of languages, often
cation-specific definitions from the content of the partic-with multiple entries for each. Readers should also
ular document. & example, multiple FAQs could reuse explore alternatie stratgies to CGl, such as the Tcl-
the same set of AQ support definitions. EachAR pased seerside programming demonstrated by
would start by loading theA®) definitions by means of Audiencel [Sah] and NeoScript [Lehen] which ele-
a source command appropriate to the desired output: gantly sohe problems that CGI alone cannot address

source FAQdriver.$argv adequately.

A driver for each output format defines the procedured N other aspect of this papeynamic document gen-

to produce the FAQ in that particular format. For examration, is also an area rich invéopment. rious
ple, FAQdriver.html would begin: attempts are being made to solthis in other ays
including SGML and its xensions and alternaés.

driver.nhtml - Tcl to HTML procs Good discussion of these can be found in [Harman].
proc hr {} {puts "<hr>"}

FAQdriver.text would start similarly: Concluding Notes
driver.text - Tcl to text procs This paper has shm the benefits of generating HTML
prochr {}{puts 1 from Tcl scripts. CGI scripts are anvadus use of this.

However even static documents benefit by increasing

If short enough, all of the ddrent definitions can be Beadability and improving maintainability.

maintained as a single file which simply uses a switch t

define the appropriate definitions. Traditionally Perl has been the language of choice for
switch $argv { CGil scripting. Havever use of Tcl for CGI scripting
html { has increased significantlyrart of this is simply due to
proc emphasis {s} { the number of people who already ndcl. But Tcl
puts "$s" brings with it mag beneficial attribtes: Tcl is a simple

language to learn. Its portability ixaellent, it is
robust, and it has no significant startwedead. And
text { of course it is easily embeddable in other applications
proc emphasis {s}{puts "*$s*"} making it that much easier to leverage ongoing develop-
- ment in languages such as C and C++.

}

} These are all characteristics that malcl \ery attrac-

tive for CGI scripting. Haever Tcl does not hae a

Ibn (;nzsat;asfﬁeogfgutrgggf \r;ittlr? r:h|: t:ﬁgn?cdcgsrzﬁg?helqistory of use for CGI scripting and there is little docu-
y 9 oal entation to help lggnners get started. Hopefullhpis

ing the desired format. For example, assuming the FA
. : . aper will male it easier for more people to get starting
source is stored in Expe&®, HTML is generated Iy L
writing CGI scripts in Tcl.

from the command line as:
% ExpectFAQ html Availability

Text output is generated as: The CGI library described is vailable at http://

o www.cme.nist.gov/pub/expect/cgi.tcl.iar The RQ

/6 ExpectFAQ text library described can be retvied from the ExpectAQ
itself [Libes96]. This softare is in the public domain.
NIST and | vould appreciate credit if you use this soft-

The techniques described in this paperehbeen used Wware.

successfully in bilding several projects consisting of

large numbers of pages including the NIST ApplicationAcknowledgments

Protocol Information Base [Lubell] and the NIST Iden-

tifier Collaboration Service [Libes95]. In addition,yhe 1hanks to Josh Lubell, John Buckman, Markiidm-
hawe been used to construct and maintairess AQs SO Stee Ray an_d the Tcl _‘96 program committee for
including the Expect FAQ [Libes96]. valuable suggestions on this paper.

Experiences

References

[BLee] T. Berners-Lee, D. Connolly“Hypertext
Markup Language — 2.0, RFC 1866, HTML
Working Group, IETF Corporation for
National Research Initiaes, URL: http://
www.w3.org/pub/WWW/MarkUp/html-
spec/html-spec_toc.html, September 22,
1995.

[Harman] Harman, D., “Oerview of the Third Ext
REtrieval Conference (TREC-3), NIST Spe-
cial Publication 500-225, NISTGaithers-
burg, MD, April 1995.

[Lehen] LehenbauerK., “NeoScript”’, URL: http://
www.NeoSoft.com/neoscript/, 1996.

[Libes95] Libes, D., “NIST Identification Collabora-
tion Service”, URL: http://www-
i.cme.nist.gov/cgi-bin/ns/src/welcome.cgi,
National Institute of Standards andchnol-
ogy, 1995.

[Libes96] Libes, D., “Expect BQ", URL: http://
www.cme.nist.gov/pub/expect/FAQ.html",
National Institute of Standards andchnol-
ogy, 1996.

[Lubell] Lubell, J., “NIST Identification Collabora-
tion Service”, URL: http://www-
i.cme.nist.gov/proj/apde/www/apib.htm,
National Institute of Standards andchnol-
ogy, 1996.

[Ouster] Ousterhout, J., “Tcl and the Tkodlkit”,
Addison-Wesley Publishing Co., 1994.

[Sah] Sah, A., Bran, K., and Brever, E., “Pro-
gramming the Internet from the SenSide
with Tcl and Audiencel”, Tcl/Tk \Wkshop
96, Monterey, CA, July 10-13, 1996.

[Yahoo] “Yahoo!”, URL: http://wwwyahoo.com/
Computers_and_Internet/Internet/
World_Wide_ Web/
CGIl__Common_Gateway _Interface/,
April, 1996.

