
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

Providing Authentication to Messages
Signed with a Smart Card in Hostile Environments

Tage Stabell-Kulø, Ronny Arild, and Per Harald Myrvang
University of Tromsø

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Providing authentication to messages signed with
a smart card in hostile environments

Tage Stabell-Kulø, Ronny Arild, and Per Harald Myrvang
Department of Computer Science

University of Tromsø
Tromsø, Norway

ftage,ronnya,permg@pasta.cs.uit.no

24. March 1999

Abstract

This paper presents a solution to how a smart card can be
used to sign data in a hostile environment. In particular,
how to use a smart card to make a signature on data when
the machine to which the smart-card reader is attached
can not be trusted. The problem is solved by means of a
verification server together with a substitution table and
a one-time pad; it is argued that lacking a trusted channel
from the card, our solution is minimal.

An invalid signature (a signature on data not intended
to be signed) can only be made if the online server col-
ludes with the machine the user is using. In all other
circumstances, only a denial-of-service attack is possi-
ble. The realization is applicable in practice, but slightly
awkward.

1 Introduction

It is difficult to digitally sign data in a hostile environ-
ment, even armed with a smart card that can create dig-
ital signatures by means of some public-key technol-
ogy [3]. Assume a userP sitting in front of a machine
M with the smart card residing in a smart-card reader
connected toM . If P wants to signX , he has no means
to verify thatM actually givesX to his card; thus,P
can not use the card without trustingM just as much as
he trusts the integrity of the card, in which case he could
useM to sign rather than involving a smart card in the
first place.

The problem is that there is no authenticated “channel”
from the card to the user. The card is unable to “tell”
P what it is about to sign, andP can not verify that
X has been received for signing [1]. The problem is

well known [4, 14]. Authenticated channels can be ob-
tained by means of, for example, more powerful hard-
ware, such as contemporary PDAs. With this type of
hardware, integrity is obtained since the PDAs have a
(small) display on whichX can be shown. However,
smart cards are prevalent and we seek a solution using
this technology.

In general, data integrity relies on either secret informa-
tion or authentic channels [7]. In other words, when us-
ing smart cards without any authentic channels, some
sort of secret information is needed.

There are many settings where one might desire to sign
data with a smart card, where the environment might be
hostile. For example a point-of-sale terminal, or during a
visit to an “Internet caf´e”. Using a computer laboratory
at a university is another example. In general, any en-
vironment where one does not want to includeM in the
trusted computing base (TCB), for whatever reason [13].

The paper is outlined as follows. Section 2 is concerned
with describing the system and our solution. Then, in
Section 3, our protocols are shown and analyzed. Sec-
tion 4 discusses related work. In Section 5 we present
conclusions and give directions for future work.

2 Overview

This paper examines a particular—albeit common—
setting where smart cards are employed. The general
idea is that the userP has some data, an email perhaps,
that he wants to sign, using the secret key stored in his
card. He would instruct the software running onM to
send the data to the smart-card reader, insert his card,
and having the signature returned in order to be attached
to the email. The problem is thatM might give any data

to the card, and the card will sign. UnlessP can ver-
ify public-key signature in his head, he has no means to
judge whetherM is trustworthy or not.

In fact, what seems to be a single problem really poses
three distinct challenges:

1. How canP ensure that the correct data has been
signed?

2. How canP verify that the signature is valid?

3. Is it possible for a third party to conclude thatP has
verified that the correct data has been signed?

The last is required if the signatureP makes with his
card is to have a non-trivial value.

Concerning the first question, onlyP knows the answer
to this, since only he knows what he intended to have
signed; the fact thatM also happens to know is of no
relevance to us becauseM is not trusted. The user must
thus be involved in providing an answer to the first ques-
tion. Or, in other words, no solution to this problem can
be envisioned without involving the user in some way,
after the signature has been made.

In a realistic scenario, we can rule out the possibility of
P verifying the signature himself. This implies that a
third party must verify the signature itself. Such a third
party should take the form of an online service, in or-
der to better enable the user to timely obtain an answer
the second question. This, however, raises a new obsta-
cle: How can this online service, calledO, communi-
cate withP over a channel that provides integrity? Our
contribution is a working method to solve this particular
problem.

Turning now to the third challenge, it will become evi-
dent thatP can sign a certificate that, together with the
credentials our solution creates as it progresses, enables
others to conclude that the data indeed was signed by
P ’s card, withP ’s consent. It might be worth noting
that we are only interested in signing.P is unable to
encrypt anything on his smart card without trustingM .
That is, secrecy can not be obtained at all in the setting
we describe.

Our solution consists of three parts, an on-line service, a
small one-time pad (an OTP) and a shared secret. In the
following we will describe how some data is signed by
means of a smart card in a hostile environment (details
are given in Section 3). We use the notation from the
BAN logic [2],

1. The machineM is not trusted. Thus,M is not the
logical sender or recipient of any message (even

though the actual hardware will be used to send
messages). From a logical point of view,M is part
of the communication infrastructure. In this light,
the only principals of interest are the userP , his
smart cardC and the on-line serviceO (to be de-
scribed below).

2. The user has some dataX , which typically is a
string of characters (i.e., a text).P inserts his card
(into the smart-card reader attached toM) and in-
structsM to transfer the data to the card. The card
is then instructed to sign the data it received.

1: P ! C : X

3. The card accepts the message and signsX , creating
fXg

K
�1

C

. Notice thatC has no means to verify that
X actually originates fromP . As mentioned above,
two questions must be answered:

(a) Is the signature valid?

(b) Has the correct data been signed?

The online service can be used to verify the signa-
ture’s validity; the signed data is sent toO.

2: C ! O : fXg
K
�1

C

4. The crux of our solution is thatO can send back
to P a transformationf of the data it has verified.
Assume thatP andO share asmallsecret one-time
pad and a secret number. After verifying the signa-
ture onX , O will create two new message as fol-
lows.

Using the one-time pad, a new messageZ = f(X)
is constructed, and sent toP .

3: O ! P : Z

Z is thus the messageX transformed for integrity
under a one-time pad. We will discuss this transfor-
mation below.

If the signature is valid,O constructs a certificate
asserting this fact. The certificate is sent to a public
server of some sort. We call this serverS, its exis-
tence is only for convenience and might very well
beO itself.

A random numberY is associated with each one-
time pad. Y is known only toP , but H(Y) is
known also byO. If O finds that the signature is
valid,O will sign a certificate stating this fact; the
certificate will includeH(Y). By releasingY , P
proves that he accepts the signature.

4: O ! S : fC;X;H(X;H(Y))g
K
�1

O

5. WhenZ is received byP , he can without much ef-
fort (and without usingM to anything but display
Z) verify thatZ = f(X). SinceZ is a transfor-
mation ofX , P can conclude that the content was
what he intended to sign, and that his trusted server
O has verified the signature.P now releasesY by
sending it toS.

5: P ! S : Y

To sum up,O verifies the signature made byC, andP
acknowledges the actual text by releasingY .

Up to this point we have used logical messages. If we
look at the actual implementation we find eight mes-
sages being sent over various channels; see Figure 1.
The messages can be described as follows:

Message 1: P !M : X

Message 2: M ! C : X fromP

Message 3: C !M : fXg
K
�1

C

Message 4: M ! O : fXg
K
�1

C

fromC

Message 5: O ! S : fC;X;H(X;H(Y))g
K
�1

O

Message 6: O !M : hXiOTP
Message 7: M ! P : hXiOTP fromO

Message 8: P ! S : Y

Messages6 and7 contains the string of digitsO has con-
structed based on its copy of the OTP. Since the OTP is
secret, the string isX combined with a secret. In BAN
such a construction is denoted ashXiOTP .

Section 3 gives a detailed description of the small one-
time pad that is required, a closer look at the messages
that are sent and, most important, a careful analysis of
the logical meaning of each message and of the certifi-
cates that are required to conclude thatX was signed by
C with the consent ofP .

3 Signing

This section starts out by presenting the details of the
one-time pad. Being small it is suited for practical use;
Section 3.1 discusses it. Section 3.2 is concerned with a
theoretical analysis of the certificates and credentials re-
quired to assert that a signed statement from a smart card
logically originates from the user that control the card.
In Section 3.3 we discuss the trusted computing base of
our solution. Section 3.4 describes the implementation
status, and gives a preliminary performance analysis.

3.1 The one-time pad

We assume thatP does not have any significant compu-
tational resources at hand (M can not be trusted). Since
it is unreasonable to assume that any user can verify dig-
ital signatures without the help of a computer, we must
thus construct a secure channel fromO toP , on which a
message can be sent. That is,P needs to receive fromO
some information that convinces him that the correct text
was signed. This information must be a function of the
messageX in order forP to know that the correct text
has been signed. In addition,P must be convinced that
the message he receives comes fromO. Taken together,
the channel we are about to construct must provide au-
thentication (since authentication implies integrity [7]).
Clear-text attacks are indeed a threat sinceM knowsX .

If, on the other hand,X was unknown toM thenP and
O could share a listL of random numbers, each number
Li ofL being as long asX . O would verify the signature
onX , calculateZ = X+Li and send the result toP . P
would be able to calculateZ�Li and verify that the card
had signedX . This cipher would be perfectly secure [9].

In our system, each OTP contains two small tables. The
first contains random numbers, as one would use to cre-
ate a one-time pad. However, in our caseX is known,
and this procedure alone offers no integrity at all. This
is so because if ’A’ and a random number yields12 then
’B’ must have yielded13. We overcome this problem by
incorporating an additional table. It is a permutation of
the characters; we denote this asubstitution table.

We now describe the OTP used byP andO. In the
current implementation, the alphabet available toP are
all the upper-case characters, space (denoted as ‘’), dot
(‘.’), the digits and the two symbols $ and @; 40 char-
acters in all. These characters are matched with a table
of random numbers, assigning a random number to each
character. Appendix 1 shows two examples of tables;
each has six rows:

Letter: The alphabet available to users

Subst: The substitution table; each character from the
alphabet is replaced by the corresponding number
from the substitution table.

X: In this row the user writes his message

OTP: The number representing each character is added
(modulo 40) to the corresponding element in the
One Time Pad.

Z: The result.

Y: A secret number, see below.

M O1

2 3

4
6

8

7
5

P S

C

Figure 1: The protocol run

WhenP receivesZ fromO, he would want to verify the
result. In order to do so, he proceeds as follows.

1. Count the number of characters in the message, and
prepend this number (as a string) to the message.

2. Write the string in the table (in the row markedX)
above the random numbers.

3. For each character, add the ordinality of the charac-
ter (taken from the substitution table) with the ran-
dom number. The addition must be done modulo
40 (the number of characters).

An example of a table which is filled in is shown in
the Appendix. The string “GIVE TAGE@ACM.ORG
$500.” is encrypted for authentication.

If P sees thatZ indeed is the correct transformation of
X , he will releaseY . The certificate generated byO
containsH(Y), but Y is only known toP . In other
words, by releasingY , P makes it known that he sup-
ports the certificate issued byO.

3.2 Theory

The security of our system hinges on three properties.
The first is that one component in each sum is a random
number. Randomness ensures the resulting list of num-
bers are random. No amount of calculation or number
of previous messages can give information necessary to
alter the text. Second, each OTP and substitution table
can only be used once. Third, text can not be appended
to the string.

Obviously, the length of the string that can be trans-
mitted (and verified) in this manner is restricted by the
length of the pad. However, the pad can be made as
long as one desires and the amount of work to verify a
message increases linearly with length. Another way to

Message Meaning

X X

fXg
K
�1

C

C saysX
OjC saysX;

fC;X;H(X;H(Y))g
K
�1

O OjY saysX
Y Y

Table 1: Messages and their interpretation

increase the task of verification is to increase the alpha-
bet length (now being 40). If this length is increased,
the OTPs and corresponding substitution tables must be
increased accordingly.

We have described how a userP can sign a message;
we now describe how a receiver verifies that a signed
message is valid. Assume a userQ receives a message
hY; fXg

K
�1

C

i from P . Assume furthermore thatQ be-
lieves thatC belongs toP . Upon receiving the message,
Q contactsS and asks for the certificate thatO should
have generated. Obtaining it,Q has all he needs to con-
clude thatX was signed byC, thatO has verified that
the signature was in order, and thatP has verified that
the correct data was signed. The four datums that are
available toQ is shown in the left column of Table 1.
Informally, the fact thatP has releasedY is proof that
P has verified the signature. We will now give a more
formal view of the system, using the theory from [6].

If Q is to act uponX he would need a certificate, signed
by P (or a principalQ believes speaks forP), assert-
ing that possessing the four items together vouches for
the conclusion thatX originates fromP . SinceM is
not trusted,P does not controlC, and the assumption
C) P is unwarranted. The intention ofP is that no-
one will hold him responsible for any messageX unless
the following conditions are met:

� X is signed byC.

� The signature made byC is verified byO. O must
say thatC have saidX .

� O must tie (the secret)Y to the signed message.
This enablesP to accept the signature by releasing
Y .

� Y is available.

All this is captured in the following certificate

P says(C ^ OjC ^ OjY)) P (1)

SinceY is secret,Q is unable to satisfy the certificate
(1) unlessP releasesY . In practice,S could in addition
act as an on-line verification for the validity ofC in that
P would makeC issueC says(SjC ^ C)) C, see [6]
for details.

With these credentials, the axioms and interference rules
set forth in [6], it follows thatP saysX . Note that the
use ofY give the message the properties of atransac-
tion authenticationas defined in [7]; message authenti-
cation and the use of time-variant parameters (timeliness
or uniqueness).

3.3 Trusted Computing Base

As can be seen from (1) it is a prerequisite for certifi-
cate verification thatO says thatY saysX . However,P
does not want to includeO in his TCB.O has not been
givenY by P , but ratherH(Y). WhenO quotesY as
sayingX it might turn out thatO is mistaken; this is in
fact correct, in the cases whereM , for example, mounts
some attack. In other words, whenQ collects creden-
tials he might or might not be able to locateY . In such
a situation there are two possibilities: EitherP has not
released it (he has detected an attack) orY has been de-
layed or deleted as part of a traditional denial-of-service
attack. SinceP is at the mercy ofM , there are no means
to defendP against denial of service.

O is atrusted third partyin thatP trustsO to act accord-
ing to the protocol (not to certify that a signature is good
if it is not). On the other hand,O is not able to deceive
P without colluding withM . WhenO andM colludes,
M can feed a false message to the card and letO send
an erroneous message back toP . The important issue is
that alone,O can not conceiveP . In the same manner
asO is not in the TCB, neither isS, norC. No principal
is in a situation to makeP releaseY , which will erro-
neously make (1) is true, without colluding with some
other principal.

3.4 Performance

The system described is not yet fully implemented, al-
though the infrastructure is; this includes a verification
server, certificate and signature handling, and a cryp-
tographic strong random number generator. We have,
however, done preliminary performance tests using pre-
defined OTPs and substitution tables.

Experiments show that verification is initially done at a
speed of approximately 7–8 seconds per character. How-
ever, speed increases as one gets accustomed to the cal-
culation. Experienced users spend approximately 3–4
seconds per character. Slightly slower than typing, but
in our opinion worthwhile.

4 Related work

Our solution is basically a Message Authentication Code
(MAC). MACs are well covered in the literature, see for
example [10, 7, 11]. However, most MACs are com-
putationally intensive. Most types of MACs, such as
MD5 [8], are surjective, and require some computation
to be secure (mapping one language onto a smaller while
being a one-way function).

The use of unconditionally secure MACs are described
in [11, Chapter 10] with the use of orthogonal arrays
(OAs). These OAs seems, however, to be infeasible to
work with for human beings compared to substitution
tables and OTPs that only require the use of elementary
arithmetics.

Authentication by means of a secret one-time pad is an
old invention [5]. In this article, we have combined the
one-time pad with the release of a secret to authenticate
that the verification of the signature.

5 Conclusion

We have shown that users can achieve secure authenti-
cation to messages signed with a smart card in hostile
environments, using a partial trusted verification server
together with a substitution table and a one-time pad.
The applicability lies in that short messages with small
character sets.

5.1 Future work

We are working on implementing the system described
in this paper, using Cyberflex Open16K smart cards1

that run a Java VM, based on the Java Card 2.0 speci-
fication [12]. Since these cards come without a copro-
cessor (for efficiently doing computations on large in-
tegers), signatures made with public key schemes such
as RSA or ElGamal would be hard to implement effi-
ciently. We are looking into this issue. In addition, we
are also working on eliminatingO from the protocol by
storing OTPs and substitution tables on the smart card
itself (this would require about 100-150 bytes of storage
capacity for each OTP/substitution set). Making the ver-
ification process easier for end-users is also prioritized;
using arrow keys to decrypt the message fromO may be
a workable solution. This is not a new idea; the use of
arrow keys for decrypting OTPs was suggested in [14]
and was based on the insertion of ‘+’ and ‘nextdigit’
operations described in [1].

A way to eliminate the awkwardness of using OTPs and
substitution tables would be to insert a channel between
O andP for Message 6 in the protocol run. A mo-
bile telephone could be used for this purpose, whereO

sendsX andY to P through, for example, the GSM
network.P would then see that the message received on
the phone’s display corresponds with the message that
was originally written byP . A drawback here is that
P andO must share the secretY , sinceM could oth-
erwise sendX to P (through GSM). This implies that
P must trust thatO does not releaseY until P does it.
This drawback, combined with thatO can no longer be
eliminated from the protocol, would probably not detract
from the fact thatP no longer needs to do substitutions
and arithmetics in his head (or use arrow keys).

Acknowledgements

We would like to express out gratitute towards the other
members of the PASTA project. Funding has been re-
ceived from the Royal Norwegian Research Council
through the GDD project (project no. 112577/431).

References

[1] M. Abadi, M. Burrows, C. Kaufman, and B. Lamp-
son. Authentication and delegation with smart-

1Information about these smart cards is available at
URL:http://www.cyberflex.slb.com/.

cards. Science of Computer Programming,
21(2):93–113, October 1993.

[2] M. Burrows, M. Abadi, and R. Needham. A Logic
of Authentication. ACM Transactions on Com-
puter Systems, 8(1):18–36, February 1990.

[3] Henry Dreifus and Thomas Monk.Smart Cards
- A Guide to Building and Managing Smart Card
Applications. IEEE Computer Press, 1997. ISBN
0-471-15748-1.

[4] H. Gobioff, S. Smith, J. D. Tygar, and B. Yee.
Smart Cards in Hostile Environments. InProceed-
ings of the Second USENIX Workshop on Elec-
tronic Commerce, Oakland, CA, November 1996.

[5] David. Kahn. The Codebreakers: The story of se-
cret writing. Macmillan Publishing Company, New
York, USA, 1967.

[6] B. Lampson, M. Abadi, M. Burrows, and E. Wob-
ber. Authentication in Distributed Systems: The-
ory and Practice.ACM Transactions on Computer
Systems, 10(4):265–310, November 1992.

[7] A. J. Menezes, P. C. van Oorschot, and S. A. Van-
stone. Handbook of Applied Cryptography. CRC
Press, Inc., 1997. ISBN 0-8493-8523-7.

[8] R. L. Rivest. RFC 1321: The MD5 Message-
Digest Algorithm, April 1992.

[9] C. E. Shannon. Communication theory of secrecy
systems.Bell System Technical Journal, 28:656–
715, October 1949.

[10] G. J. Simmons, editor.Contemporary Cryptology:
The Science of Information Integrity. IEEE Press,
1992. ISBN 0-87942-277-7.

[11] Douglas R. Stinson.Cryptography: Theory and
Practice. CRC Press, Inc., 1995. ISBN 0-8493-
8521-0.

[12] Sun Microsystems, Inc. Java Card 2.0 Language
Subset and Virtual Machine Specification. Revi-
sion 1.0 Final, October 1997.

[13] US Department of Defence.Trusted Computer
System Evaluation Criteria, 1985. DOD 5200.28-
STD.

[14] B. Yee and D. Tygar. Secure Coprocessors in Elec-
tronic Commerce Applications. InProceedings of
The First USENIX Workshop on Electronic Com-
merce, New York, New York, July 1995.

Appendix

Example OTP and substitution table

Letter
0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z
.

$
@

S
ubst

0
5

2
7

1
3

3
2

0
3

2
1

1
6

2
2

0
0

0
8

2
6

0
6

0
4

0
7

1
8

3
9

3
0

1
5

1
9

0
9

3
7

2
3

2
4

3
8

1
7

2
5

1
4

2
0

1
0

0
2

3
1

3
3

3
4

3
5

1
2

0
1

3
6

2
8

1
1

2
9

XO
T

P
3

1
2

5
0

8
3

2
0

2
1

6
3

8
1

8
1

9
1

3
1

7
0

1
3

7
3

8
2

0
2

4
0

0
3

3
1

0
0

1
2

4
3

4
3

7
1

1
0

1
0

5
0

8
1

4
1

5
2

9
0

3
0

3
1

8
3

9
3

0
0

5
1

0
2

2
2

4
1

4

ZY
0

x8
b

d
e

9
4

b
6

3
0

f1
5

0
4

b

Letter
0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z
.

$
@

S
ubst

0
5

2
7

1
3

3
2

0
3

2
1

1
6

2
2

0
0

0
8

2
6

0
6

0
4

0
7

1
8

3
9

3
0

1
5

1
9

0
9

3
7

2
3

2
4

3
8

1
7

2
5

1
4

2
0

1
0

0
2

3
1

3
3

3
4

3
5

1
2

0
1

3
6

2
8

1
1

2
9

X

2
3

G
I

V
E

T
A

G
E

@
A

C
M

.
O

R
G

$
5

0
0

.

O
T

P
3

1
2

5
0

8
3

2
0

2
1

6
3

8
1

8
1

9
1

3
1

7
0

1
3

7
3

8
2

0
2

4
0

0
3

3
1

0
0

1
2

4
3

4
3

7
1

1
0

1
0

5
0

8
1

4
1

5
2

9
0

3
0

3
1

8
3

9
3

0
0

5
1

0
2

2
2

4
1

4

Z

0
4

1
7

3
8

1
1

3
5

3
4

3
4

2
0

0
5

0
3

3
5

3
0

2
3

0
2

0
4

1
2

1
7

1
3

0
0

3
7

3
5

1
5

0
2

1
6

2
9

Y
0

x8
b

d
e

9
4

b
6

3
0

f1
5

0
4

b

