USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the
USENIX Workshop on Smartcard Technology

Chicago, lllinois, USA, May 10-11, 1999

Providing Authentication to Messages
Signed with a Smart Card in Hostile Environments

Tage Stabell-Kulg, Ronny Arild, and Per Harald Myrvang

University of Tromsg

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Providing authentication to messages signed with
a smart card in hostile environments

Tage Stabell-Kulg, Ronny Arild, and Per Harald Myrvang
Department of Computer Science
University of Tromsg
Tromsg, Norway
{tage,ronnya,pery@pasta.cs.uit.no

24. March 1999

Abstract well known [4, 14]. Authenticated channels can be ob-
tained by means of, for example, more powerful hard-
ware, such as contemporary PDAs. With this type of

This paper presents a solution to how a smart card can Q"Pardware, integrity is obtained since the PDAs have a

used to sign data in a hostile environment. In particular(sma”) display on whichX can be shown. However,

how to use a smart card to make a signature on data Whedinart cards are prevalent and we seek a solution using
the machine to which the smart-card reader is attacheghis technology.

can not be trusted. The problem is solved by means of a

verification server together with a substitution table andln general, data integrity relies on either secret informa-
aone-time pad; it is argued that lacking a trusted channdion or authentic channels [7]. In other words, when us-
from the card, our solution is minimal. ing smart cards without any authentic channels, some

S _) sort of secret information is needed.
An invalid signature (a signature on data not intended

to be signed) can only be made if the online server col-There are many settings where one might desire to sign
ludes with the machine the user is using. In all otherdata with a smart card, where the environment might be
circumstances, only a denial-of-service attack is possihostile. For example a point-of-sale terminal, or during a
ble. The realization is applicable in practice, but slightly Visit to an “Internet cad”. Using a computer laboratory
awkward. at a university is another example. In general, any en-
vironment where one does not want to includein the
trusted computing base (TCB), for whatever reason [13].

The paper is outlined as follows. Section 2 is concerned
with describing the system and our solution. Then, in
Section 3, our protocols are shown and analyzed. Sec-
It is difficult to digitally sign data in a hostile environ- tion 4 discusses related work. In Section 5 we present
ment, even armed with a smart card that can create digtonclusions and give directions for future work.

ital signatures by means of some public-key technol-

ogy [3]. Assume a useP sitting in front of a machine

M with the smart card residing in a smart-card reader)

connected td/. If P wants to sign¥, he has nomeans 2 Overview

to verify that M actually givesX to his card; thusp
can not use the card without trustifg just as much as
he trusts the integrity of the card, in which case he coul
useM to sign rather than involving a smart card in the
first place.

1 Introduction

dThis paper examines a particular—albeit common—
setting where smart cards are employed. The general
idea is that the useP has some data, an email perhaps,
that he wants to sign, using the secret key stored in his
The problem is that there is no authenticated “channel’tard. He would instruct the software running fhto

from the card to the user. The card is unable to “tell” send the data to the smart-card reader, insert his card,
P what it is about to sign, and can not verify that and having the signature returned in order to be attached
X has been received for signing [1]. The problem isto the email. The problem is thaf might give any data

to the card, and the card will sign. UnleSscan ver-
ify public-key signature in his head, he has no means to
judge whethed is trustworthy or not.

In fact, what seems to be a single problem really poses
three distinct challenges:

1. How canP ensure that the correct data has been 2.
signed?

2. How canP verify that the signature is valid?

3. Isit possible for a third party to conclude ttfahas
verified that the correct data has been signed?

The last is required if the signatuf@ makes with his 3.
card is to have a non-trivial value.

Concerning the first question, only knows the answer

to this, since only he knows what he intended to have
signed; the fact thad/ also happens to know is of no
relevance to us becaudé is not trusted. The user must
thus be involved in providing an answer to the first ques-
tion. Or, in other words, no solution to this problem can
be envisioned without involving the user in some way,
after the signature has been made.

In a realistic scenario, we can rule out the possibility of
P verifying the signature himself. This implies that a
third party must verify the signature itself. Such a third
party should take the form of an online service, in or-
der to better enable the user to timely obtain an answer
the second question. This, however, raises a new obsta-
cle: How can this online service, call€d, communi-
cate with P over a channel that provides integrity? Our
contribution is a working method to solve this particular
problem.

Turning now to the third challenge, it will become evi-
dent thatP can sign a certificate that, together with the
credentials our solution creates as it progresses, enables
others to conclude that the data indeed was signed by
P’s card, with P's consent. It might be worth noting
that we are only interested in signing? is unable to
encrypt anything on his smart card without trustihg

That is, secrecy can not be obtained at all in the setting
we describe.

Our solution consists of three parts, an on-line service, a
small one-time pad (an OTP) and a shared secret. In the
following we will describe how some data is signed by
means of a smart card in a hostile environment (details
are given in Section 3). We use the notation from the
BAN logic [2],

1. The machiné/ is not trusted. Thus)/ is not the
logical sender or recipient of any message (even

though the actual hardware will be used to send
messages). From a logical point of vieW, is part

of the communication infrastructure. In this light,
the only principals of interest are the us@r his
smart cardC' and the on-line servic® (to be de-
scribed below).

The user has some da#, which typically is a
string of characters (i.e., a text} inserts his card
(into the smart-card reader attached\g and in-
structsM to transfer the data to the card. The card
is then instructed to sign the data it received.

1. P—>C: X

The card accepts the message and signzreating
{X}Kgl. Notice thatC' has no means to verify that
X actually originates fron¥. As mentioned above,
two questions must be answered:

(a) Isthe signature valid?

(b) Has the correct data been signed?

The online service can be used to verify the signa-
ture’s validity; the signed data is sent@o

2. C—-0: {X}KEI

. The crux of our solution is thad can send back

to P a transformatiory of the data it has verified.
Assume tha® andO share smallsecret one-time
pad and a secret number. After verifying the signa-
ture onX, O will create two new message as fol-
lows.

Using the one-time pad, a new message f(X)
is constructed, and sent f&

3 O—->P: Z

Z is thus the messagg transformed for integrity
under a one-time pad. We will discuss this transfor-
mation below.

If the signature is validQ) constructs a certificate
asserting this fact. The certificate is sent to a public
server of some sort. We call this senfrits exis-
tence is only for convenience and might very well
beO itself.

A random numbetl” is associated with each one-
time pad. Y is known only toP, but H(Y) is
known also byO. If O finds that the signature is
valid, O will sign a certificate stating this fact; the
certificate will includeH (Y). By releasingY’, P
proves that he accepts the signature.

4 0 8: {CX,H(X,H(Y))}

5. WhenZ is received byP, he can without much ef- 3.1 The one-time pad
fort (and without usingV/ to anything but display

Z) verify thatZ = f(X). SinceZ is a transfor- We assume thaP does not have any significant compu-

mation of X', P can conclude that the content was tational resources at handl/(can not be trusted). Since
what he intended to sign, and that his trusted server . :

O has verified the signaturd? now releases” by !t is u_nreasonablg to assume that any user can verify dig-
sending it toS. ital signatures without the help of a computer, we must

thus construct a secure channel fréhto P, on which a
message can be sent. Thatisneeds to receive fro®
some information that convinces him that the correct text
was signed. This information must be a function of the
messageX in order for P to know that the correct text
has been signed. In additioR, must be convinced that
the message he receives comes fl@niraken together,

Up to this point we have used logical messages. If wethe channel we are about to construct must provide au-
look at the actual implementation we find eight mes-thentication (since authentication implies integrity [7]).
sages being sent over various channels; see Figure Clear-text attacks are indeed a threat sinténows X

The messages can be described as follows:

5 P—->S5: Y

To sum up,0 verifies the signature made ldy, and P
acknowledges the actual text by releasing

If, on the other handX was unknown taV/ thenP and
O could share a list. of random numbers, each number
) L; of L being as long aX. O would verify the signature
%Zﬁggg ; g[__;]\(/’; fo;om P onX, calculateZ = X + L; and send the result 8. P

ge .) Kot would be able to calculaté — L; and verify that the card
Message4: M — O : {X} i fromC had signedy . This cipher would be perfectly secure [9].
Message5: 0O - S : {C, X,H(X,H(Y))}Kal
Message 6: O - M : (X)orp
Message 7: M — P : (X)orp fromO
Message8: P —-S : Y

Message1: P - M : X

In our system, each OTP contains two small tables. The
first contains random numbers, as one would use to cre-
ate a one-time pad. However, in our caseas known,

and this procedure alone offers no integrity at all. This
is so because if 'A' and a random number yiel@shen
Message$ and7 contains the string of digit® has con- 'B"must have yielded 3. We overcome this problem by
structed based on its copy of the OTP. Since the OTP ighcorporating an additional table. It is a permutation of
secret, the string i& combined with a secret. In BAN the characters; we denote thisibstitution table

such a constructionis denoted{@)or - We now describe the OTP used ByandO. In the
Section 3 gives a detailed description of the small onecurrent implementation, the alphabet availablé’tare
time pad that is required, a closer look at the messagedll the upper-case characters, space (denotedpslot

that are sent and, most important, a careful analysis of "), the digits and the two symbols $ and @; 40 char-
the logical meaning of each message and of the certifiacters in all. These characters are matched with a table
cates that are required to conclude thaivas signed by of random numbers, assigning a random number to each
C with the consent of°. character. Appendix 1 shows two examples of tables;

each has six rows:

Letter: The alphabet available to users

3 Signing

Subst: The substitution table; each character from the
alphabet is replaced by the corresponding number

This section starts out by presenting the details of the ~ T0M the substitution table.

one-f[ime pad_. Being small it i; suiteq for practical USE;X: |n this row the user writes his message

Section 3.1 discusses it. Section 3.2 is concerned with a _ _
theoretical analysis of the certificates and credentials reOTP: The number representing each character is added
quired to assert that a signed statement froma smartcard ~ (modulo 40) to the corresponding element in the
logically originates from the user that control the card. ~ One Time Pad.

In Sectloh 3.3we ghscuss the trysted computlng basg 02: The result.

our solution. Section 3.4 describes the implementation

status, and gives a preliminary performance analysis. Y: A secret number, see below.

Figure 1: The protocol run

WhenP receivesZ from O, he would want to verify the | Message | Meaning |
result. In order to do so, he proceeds as follows. X X
{X} K2 C saysX
1. Countthe number of characters in the message, and O|C saysX
. . X, HX,HY - ’
prepend this number (as a string) to the message. {6, H(X, H))}Kol O|Y saysX
Y Y
2. Write the string in the table (in the row markéag
above the random numbers. Table 1: Messages and their interpretation

3. For each character, add the ordinality of the charac-
ter (taken from the substitution table) with the ran-
dom number. The addition must be done moduloincrease the task of verification is to increase the alpha-
40 (the number of characters). bet length (now being 40). If this length is increased,
the OTPs and corresponding substitution tables must be

An example of a table which is filled in is shown in increased accordingly.
the Appendix. The string "GIVE TAGE@ACM.ORG e have described how a usErcan sign a message;
$500." is encrypted for authentication. we now describe how a receiver verifies that a signed

If P sees thatZ indeed is the correct transformation of Message is valid. Assume a uggreceives a message
X, he will releaseY’. The certificate generated iy (Y5 {X},_1) from P. Assume furthermore th&f be-
containsH(Y'), but Y is only known toP. In other lieves thaiC’ belongs taP. Upon receiving the message,

words, by releasing”, P makes it known that he sup- contactsS and asks for the certificate thét should
ports the certificate issued Igy. have generated. Obtaining €, has all he needs to con-

clude thatX was signed by, thatO has verified that

the signature was in order, and thiathas verified that
3.2 Theory the correct data was signed. The four datums that are

available to() is shown in the left column of Table 1.

The security of our system hinges on three propertiesmforma”y’. Fhe fact t_hatP has releas_ebf IS pr.OOf that
has verified the signature. We will now give a more

The first is that one component in each sum is a rando) .

number. Randomness ensures the resulting list of num—Ormal view of the system, using the theory from [6].
bers are random. No amount of calculation or numbeif () is to act uponX he would need a certificate, signed
of previous messages can give information necessary tey P (or a principal believes speaks faP), assert-
alter the text. Second, each OTP and substitution tablmg that possessing the four items together vouches for
can only be used once. Third, text can not be appendeghe conclusion tha originates fromP. SinceM is

to the string. not trusted,P does not controC, and the assumption

C = P is unwarranted. The intention @? is that no-
one will hold him responsible for any messafjaunless

tshe following conditions are met:

Obviously, the length of the string that can be trans-
mitted (and verified) in this manner is restricted by the
length of the pad. However, the pad can be made a
long as one desires and the amount of work to verify a

message increases linearly with length. Another way to e X is signed byC.

e The signature made Iy is verified byO. O must
say thatC' have saidX .

e O must tie (the secref)y” to the signed message.
This enabled” to accept the signature by releasing
Y.

e Y is available.

All this is captured in the following certificate

Psays(C AO|CAOJY)= P Q)
SinceY is secret,() is unable to satisfy the certificate
(1) unlessP released’. In practice,S could in addition
act as an on-line verification for the validity 6fin that
P would makeC issueC says(S|C A C) = C, see [6]
for details.

3.4 Performance

The system described is not yet fully implemented, al-

though the infrastructure is; this includes a verification

server, certificate and signature handling, and a cryp-
tographic strong random number generator. We have,
however, done preliminary performance tests using pre-
defined OTPs and substitution tables.

Experiments show that verification is initially done at a
speed of approximately 7—8 seconds per character. How-
ever, speed increases as one gets accustomed to the cal-
culation. Experienced users spend approximately 3—4
seconds per character. Slightly slower than typing, but
in our opinion worthwhile.

With these credentials, the axioms and interference rulea Related work

set forth in [6], it follows thatP saysX. Note that the
use ofY” give the message the properties afansac-
tion authenticatioras defined in [7]; message authenti-

cation and the use of time-variant parameters (timelines®ur solution is basically a Message Authentication Code

or uniqueness).

3.3 Trusted Computing Base

As can be seen from (1) it is a prerequisite for certifi-
cate verification thaD says thalt” saysX. However,P
does not want to includ® in his TCB. O has not been
givenY by P, but ratherH (Y). WhenO quotesY” as
sayingX it might turn out thatD is mistaken; this is in
fact correct, in the cases wheké, for example, mounts
some attack. In other words, whéh collects creden-
tials he might or might not be able to locdte In such

a situation there are two possibilities: Eithrhas not
released it (he has detected an attack) dras been de-
layed or deleted as part of a traditional denial-of-servic
attack. SinceP is at the mercy of\f, there are no means
to defendP against denial of service.

O is atrusted third partyin that P trustsO to act accord-
ing to the protocol (not to certify that a signature is good
if it is not). On the other hand) is not able to deceive
P without colluding withAZ. WhenO and M colludes,
M can feed a false message to the card andlsend
an erroneous message backtoThe important issue is
that alone O can not conceivé’. In the same manner
asQ is notin the TCB, neither i§, norC. No principal

is in a situation to make” releasey’, which will erro-
neously make (1) is true, without colluding with some
other principal.

(S)

(MAC). MACs are well covered in the literature, see for
example [10, 7, 11]. However, most MACs are com-
putationally intensive. Most types of MACs, such as
MDS5 [8], are surjective, and require some computation
to be secure (mapping one language onto a smaller while
being a one-way function).

The use of unconditionally secure MACs are described
in [11, Chapter 10] with the use of orthogonal arrays
(OAs). These OAs seems, however, to be infeasible to
work with for human beings compared to substitution
tables and OTPs that only require the use of elementary
arithmetics.

Authentication by means of a secret one-time pad is an
old invention [5]. In this article, we have combined the
one-time pad with the release of a secret to authenticate
that the verification of the signature.

5 Conclusion

We have shown that users can achieve secure authenti-
cation to messages signed with a smart card in hostile
environments, using a partial trusted verification server
together with a substitution table and a one-time pad.
The applicability lies in that short messages with small
character sets.

5.1 Future work

We are working on implementing the system described [2]
in this paper, using Cyberflex Openl16K smart cards
that run a Java VM, based on the Java Card 2.0 speci-
fication [12]. Since these cards come without a copro-
cessor (for efficiently doing computations on large in- [3]
tegers), signatures made with public key schemes such
as RSA or ElGamal would be hard to implement effi-
ciently. We are looking into this issue. In addition, we

are also working on eliminating@ from the protocol by

storing OTPs and substitution tables on the smart card
itself (this would require about 100-150 bytes of storage
capacity for each OTP/substitution set). Making the ver-
ification process easier for end-users is also prioritized;

using arrow keys to decrypt the message fl@may be

a workable solution. This is not a new idea; the use of
arrow keys for decrypting OTPs was suggested in [14]

and was based on the insertion af' ‘and ‘nextdigit’
operations described in [1].

A way to eliminate the awkwardness of using OTPs and
substitution tables would be to insert a channel between
O and P for Message 6 in the protocol run. A mo-
bile telephone could be used for this purpose, wiigre
sendsX andY to P through, for example, the GSM
network. P would then see that the message received on
the phone’s display corresponds with the message tha
was originally written byP. A drawback here is that

P and O must share the secr#t, sinceM could oth-

erwise sendX to P (through GSM). This implies that

P must trust thatD does not releas¥F until P does it.
This drawback, combined with thét can no longer be

eliminated from the protocol, would probably not detract
from the fact thatP no longer needs to do substitutions [10]

and arithmetics in his head (or use arrow keys).

Acknowledgements

We would like to express out gratitute towards the othef{12]
members of the &TA project. Funding has been re-
ceived from the Royal Norwegian Research Council

through the GDD project (project no. 112577/431).

References

[1] M. Abadi, M. Burrows, C. Kaufman, and B. Lamp-
son. Authentication and delegation with smart-

linformation about these smart cards is available at

URL:http://www.cyberflex.slb.com/.

cards. Science of Computer Programming
21(2):93-113, October 1993.

M. Burrows, M. Abadi, and R. Needham. A Logic
of Authentication. ACM Transactions on Com-
puter Systems(1):18-36, February 1990.

Henry Dreifus and Thomas MonkSmart Cards

- A Guide to Building and Managing Smart Card
Applications IEEE Computer Press, 1997. ISBN
0-471-15748-1.

H. Gobioff, S. Smith, J. D. Tygar, and B. Yee.
Smart Cards in Hostile Environments. Pnoceed-
ings of the Second USENIX Workshop on Elec-
tronic CommercegOakland, CA, November 1996.

David. Kahn. The Codebreakers: The story of se-
cret writing. Macmillan Publishing Company, New
York, USA, 1967.

B. Lampson, M. Abadi, M. Burrows, and E. Wob-
ber. Authentication in Distributed Systems: The-
ory and PracticeACM Transactions on Computer
Systemsl0(4):265-310, November 1992.

[7] A. J. Menezes, P. C. van Oorschot, and S. A. Van-

stone. Handbook of Applied CryptographyCRC
Press, Inc., 1997. ISBN 0-8493-8523-7.

R. L. Rivest. RFC 1321: The MD5 Message-
Digest Algorithm, April 1992.

[9] C. E. Shannon. Communication theory of secrecy

systems. Bell System Technical Journé8:656—
715, October 1949.

G. J. Simmons, editolContemporary Cryptology:
The Science of Information IntegrityEEE Press,
1992. ISBN 0-87942-277-7.

Douglas R. Stinson.Cryptography: Theory and
Practice CRC Press, Inc., 1995. ISBN 0-8493-
8521-0.

Sun Microsystems, Inc. Java Card 2.0 Language
Subset and Virtual Machine Specification. Revi-
sion 1.0 Final, October 1997.

3] US Department of Defence.Trusted Computer

System Evaluation Criterjal985. DOD 5200.28-
STD.

B. Yee and D. Tygar. Secure Coprocessors in Elec-
tronic Commerce Applications. IRroceedings of
The First USENIX Workshop on Electronic Com-
merce New York, New York, July 1995.

Appendix

Example OTP and substitution table

Letter 0123456789 ABCDETFGHIJIJKLMNOP QRS STUVWXYZ.S$ @
Subst 05 27 13 32 03 21 16 22 00 08 26 06 04 07 18 39 30 15 19 09 37 23 24 38 17 25 14 20 10 02 31 33 34 35 12 01 36 28 11 29

X 23GIVE_TAGEG®@@ACM.ORG, $500

orp 31 25 08 32 02 16 38 18 19 13 17 01 37 38 20 24 00 33 10 01 24 34 37 11 01 05 08 14 15 29 03 03 18 39 30 05 10 22 24 14

z 04 17 38 11 35 34 34 20 05 03 35 30 23 02 04 12 17 13 00 37 35 15 02 16 29

Y 0x8bde94b630f1504b

Letter 0123456789 ABCDETFGHIJIKLMNOP QRS STUVWXYZ.S$ @
Subst 05 27 13 32 03 21 16 22 00 08 26 06 04 07 18 39 30 15 19 09 37 23 24 38 17 25 14 20 10 02 31 33 34 35 12 01 36 28 11 29

X

orp 31 25 08 32 02 16 38 18 19 13 17 01 37 38 20 24 00 33 10 01 24 34 37 11 01 05 08 14 15 29 03 03 18 39 30 05 10 22 24 14

z

Y 0x8bde94b630f1504b

