
The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

Software License Management with Smart Cards

Tuomas Aura
Helsinki University of Technology

Dieter Gollmann
Microsoft Research

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Software license management with smart cards

Tuomas Aura
Helsinki University of Technology

Laboratory for Theoretical Computer Science
P.O.Box 5400, FIN-02015 HUT, Finland

Tuomas.Aura@hut.fi

Dieter Gollmann
Microsoft Research

St. George House, 1 Guildhall St.
Cambridge, CB2 3NH, UK

diego@microsoft.com

Abstract

This paper describes public-key protocols for binding
software licenses to tamper-resistant smart cards, for
transferring licenses between cards, and for purchasing
them on-line. The protocols support software distribu-
tion both through retail stores and over the Internet. The
user can transfer licenses from several cards onto a sin-
gle card to avoid juggling between several cards in the
reader. The protocols are based on signed delegation cer-
tificates that are mostly stored outside the smart card. A
smart card reader and cards capable of public-key signa-
tures are the only new hardware needed. The protocols
are easy for the user and simple to implement and ana-
lyze. We prove the security of the transfer protocol.

1 Introduction

Unlicensed use of computer software has always been
a major concern for the software industry. Lately, the
piracy problem has been highlighted by the introduction
of the Internet as a distribution channel [11], and the rise
of content industry whose products are often collectively
labeled as multimedia.

Most copy-protection and license management tech-
niques have either proven ineffective or too restrictive
for users to accept them. Thus, a majority of mass-
market software products today are sold without any
technological protection, which leaves marketing and le-
gal battles as the only means for the software industry
to defend itself. However, current advances in technol-
ogy are opening new possibilities whose impact on li-
cense management should be assessed. First, with the
popularity of smart cards, intelligent hardware tokens
are becoming much more affordable. Second, computer
networking makes two-way communication between the

customer and the software publisher more convenient.

This paper shows how these new technologies add a
great degree of flexibility and ease of use to software
license management and hardware-based copy protec-
tion. It is possible to use the new technique in combina-
tion both with conventional software sales through retail
stores and with Internet commerce. The protocols pro-
posed in this paper require public-key cryptography on
the smart cards but otherwise they are extremely sim-
ple. The license information is in the form of signed cer-
tificates and can be managed mostly outside the smart
cards.

The main threats that we address are multiple instal-
lations of software from a single-license distribution
medium and production of counterfeit copies by profes-
sional pirates. These types of copying appear to have the
greatest impact on the software publishers’ revenues.

Another recent development, robust copyright-marking
techniques such as watermarking [9], helps in resolving
legal disputes over the ownership of data. However, it
does not prevent copying of programs because the owner
and copyright status are normally obvious from software
products. A level of access control is needed to help
the users make the right choice. It should be easier to
buy than to copy. Also, copy-resistant physical tokens
are needed to slow down the professional pirates whose
aim is to mass-produce copies and market those as orig-
inals. We recognize that there are always ways to work
around the protection mechanisms. What can be done is
to increase the time to market for pirated copies and to
ensure that pirated products cannot be sold as authentic
to unsuspecting customers. If honest and security con-
scious users are alarmed about tampered products, they
are likely to buy authentic ones instead.

The rest of the paper is organized as follows. We be-
gin with a short introduction to copy protection with
tamper-resistant modules in Sec. 2. Sec. 3 gives an



overview of license transfer and Sec. 4 the protocol
details. Sec. 5 continues with a protocol for on-line
purchase of licenses. Techniques for strengthening the
copy-protection are discussed in Sec. 6 and prevention
of license theft in Sec. 7. Finally, we summarize the
assumptions and advantages of the suggested protocols
in Sec. 8 and list some possible extensions in Sec. 9.
Sec. 10 concludes the paper. The Appendix contains a
proof that the protocols cannot be subverted to copy li-
censes.

2 Copy protection with smart cards

The only theoretically secure copy-protection arrange-
ment is to deliver the code in encrypted form and to de-
crypt and execute it inside a tamper-resistant processor
[14, 15, 6]. In practice, such processors cannot be man-
dated and the code is exposed to insecure user equip-
ment. Therefore, copy-protection is always to some ex-
tent security by obscurity.

In practical protection mechanisms based on a hardware
token, a user license is embodied by a copy-resistant
piece of hardware. The software or the operating sys-
tem checks for the presence of the token and refuses to
run without it.

A common type of token is adonglethat is inserted in
a communications port on the workstation that is to run
the software. If smart card readers become more com-
mon, a smart card is the obvious choice for a token. This
is because the production cost of a single smart card is
negligible compared to the cost of a software license.
It would not be impossible to routinely distribute smart
cards with all shrink-wrap software.

Robust mechanisms for checking the authenticity of the
hardware token are based on a cryptographic key that is
never stored or used outside the tamper-resistant token.
The security of the mechanisms depends on two assump-
tions of technical intractability: it must be too expensive
or time-consuming to reverse engineer the smart card in
order to obtain the hidden secrets in it, and it must be
equally difficult to modify the software to run without
the card. Both of the assumptions present difficult prob-
lems of their own. This paper leaves them for others to
solve. Tamper-resistant smart card technology is an ac-
tive area of research [1, 8, 10], as is authenticated boot-
ing of software.

Unfortunately, dongles or smart cards are unpopular

with users. The main objection has been that the protec-
tion mechanisms for different software packages often
interfere with each other. Even if the protection mecha-
nism for each individual product is well designed, they
might become unusable together. This is a major prob-
lem for smart cards since a single card must not be al-
lowed to monopolize the card reader. In order to prove
presence of a token for different software packages, one
may have to repeatedly insert different cards into the
reader, an annoying practice sometimes referred to as
smart card juggling.

We will describe a solution for binding software licenses
to smart cards and for transferring them from card to
card in such a way that the juggling is eliminated.

3 License transfer with delegation certifi-
cates

In order to achieve flexibility and ease of use, our goal is
to allow a single smart card to act as a token for arbitrar-
ily many software packages. The licenses are distributed
on cards that the customers get bundled with each soft-
ware package. Normally each card holds only a single li-
cense. With a simple procedure, the licenses on one card
can be transferred onto another card. After the transfer,
the “empty” card may be discarded.

Every card has a unique public-private key pair. The
private key is stored on the card and never revealed to
the outside. At any time when the card is in the reader,
it will respond to a challenge to prove that it, indeed,
has the private key corresponding to the public key. This
way, the software can check that the card associated with
the license is present in the reader.

It is still necessary to bind a license to the public key. A
convenient way to do this is to issue a certificate to the
public key of the card. The certificate will be signed by
the software publisher’s master key and it will be verified
with a public key incorporated in the software or in the
operating system. The certificate can be stored outside
the card. In fact, the card never needs to know which
licenses it is certified to have.

It is crucial that the publisher’s master public key and
the procedure for checking the certificate and the pres-
ence of the card are embedded in the software in such a
way that the key cannot be changed and the check can-
not be disabled. In general, this is not an easy task. The
protection can always be removed by reverse engineer-



ing the code. In practice, however, obfuscation of the
checking procedure can significantly delay the reverse-
engineering process and the production of marketable
copies. Section 6 describes some measures that make
the marketing of the modified software less attractive af-
ter the protections have been removed.

We will now outline the mechanism for transferring li-
censes from one card to another. Once the license is
bound to a public key, it can be given to other keys by
delegation. The key having a license simply signs a cer-
tificate stating its willingness to give the same rights also
to the key of another card. This kind of certificate with
which one key delegates access rights to another one is
called adelegation certificate. The signing is done with
public-key cryptography. It is possible to use standard
certificate formats and techniques [5, 2].

Unfortunately, this simple procedure is not quite
enough; it would result in duplication of the license. Af-
ter handing over the license, the first card must cease
to function as a token. Furthermore, it must never sign
another delegation certificate (at least not to delegate the
same license). The simplest way to ensure this is to erase
the private key from the delegating card. Erasing the key
means that we must always transfer all licenses together
to the same card and then discard the original card.

Thus, license transfer comprises two steps:

1. delegating the license to another card

2. disabling the delegating card as a token.

In principle, a license can be transferred an unlimited
number of times. Every transfer adds a new delegation
certificate to a chain that passes a growing collection of
licenses from card key to card key. When the right to
use a certain software package is verified, there must be
a complete chain of certificates starting from a license
certificates signed by the publisher’s master key and end-
ing with the public key of the card that is currently in the
smart card reader. In practice, the number of transfers
for a single license will be very small (usually one). The
licenses cannot be transferred onto previously disabled
cards and every transfer accumulates all the licenses on
two cards onto a single one.

The cards need to have only two basic functions: proving
the possession of a private key by responding to a chal-
lenge and signing a delegation certificate after which the
card disables itself. Further management of the certifi-
cates is done outside the smart card. Sec. 4 details the
transfer protocol.

The idea of transferring licenses from one smart card
to another bears resemblance to the transferable digi-
tal cash of Pagnia and Jansen [12]. From the result of
Chaum and Pedersen [4], we can infer that the growth of
the license data with each transfer is inevitable. In our
scheme, another delegation certificate will be appended
to the license in each step. It is important, however, to
note that the growing collection of delegation certificates
is not stored in or processed on the smart cards. The
smart cards act as tamper-resistant observers that guard
against copying of licenses. This is equivalent to double
spending prevention for digital money [3].

4 Protocol for license verification and
transfer

Each card has a unique signature key pair. The public
part of the card key (CK) can be read from the card at
any time while the private key is never exported outside
the card. In addition to the keys, the card stores acard
certificatesigned by the software-publisher master key
(PMK). The card certificate states thatCK is the pub-
lic key of an authentic license card. The certificate can
be freely read from the card. Anyone knowing the pub-
lic PMK can verify the certificate on the card and con-
clude that this is an authentic license card approved by
the software publisher. ThePMK and the card certifi-
cate will be used to ensure that licenses are transferred
only to smart cards that reliably protect them from copy-
ing. Every card has to store the authentic publicPMK

for verifying card certificates. A card certificate is of the
form

SPMK(CK, “is a license card key with production
date”,date)

(The notationSK(M) means the messageM signed
with the keyK. Our view of the signature function
is ideal. Implementations should follow accepted stan-
dards such as PKCS [7].)

The certificate contains the production date or serial
number of the card. The licenses can only be transferred
from older to newer cards. This ensures that cryptanal-
ysis of old card keys or cracking the defenses of old
tamper-resistant cards cannot be used for copying new
software products. It should be noted that the card cer-
tificates and the dates on them originate from the soft-
ware publisher or trusted card manufacturers, the date



CK

License card

CK is a license card key,
production date ##.

Signed: PMK
for software A.

Signed: PMK

CK has a license

Card certificate License certificate

Public card key

Private card key

Figure 1: A basic license card has a key pair and two certificates.

stamps are compared against each other, and the com-
parison is done on the tamper-resistant license cards. No
clocks are needed on the smart cards and clocks in the
user equipment are not relied on. Therefore, the compar-
ison of dates is reliable. As a secondary protection, the
software checking the presence of the token should also
ensure that the date on the card certificate is not older
than the software itself.

Normal cards originally hold only one license as they are
sold in retail stores with software packages. The license
is a certificate signed by thePMK that binds the right
to use a certain software package to theCK. Thelicense
certificateis of the form

SPMK (CK, “has a license for”,software).

Although it is not necessary to store the license infor-
mation on the card, it is convenient to distribute licenses
on the cards that come bundled with the software distri-
bution media. This way, the software itself can be on
identical media, e.g. printed CD-ROMs. For efficiency,
it is best to read the card and license certificates from the
card into the workstation only once when the software is
installed and never refer to them on the card again. It is
possible to ship several license certificates with a single
card (e.g. stored on a floppy disk). This is practical when
the publisher ships products directly to the users or when
workstation manufacturers pre-install a standard set of
software.

In addition to carrying the certificates, the card can per-
form two main functions: proof of identity and license
transfer. The former means proving the possession of
the privateCK. The card does this simply by signing a
challenge.

Protocol 1 (proof of identity):

1. Workstation! Card :
“License card challenge”,N

2. Card!Workstation :
SCK(“License card response”,N )

The checking software first needs the public card key
CK and the card certificate. Then, it can send a chal-
lenge to the card and verify that the card is authentic.
To decide if the card has a certain license, the software
follows the delegation certificates to find a chain of dele-
gation fromPMK toCK. These certificates are stored
outside the card and can be written into a file or onto a
floppy disk for keeping with the card.

The delegation certificates are created in the second
main function of the card, the license transfer. All li-
censes on the card are always transferred at the same
time. After the transfer, the original card can be thrown
away.

The transfer protocol is very simple. Licenses on two
cards will be combined onto one of them. The source
card (the one to transfer from) must be the older card
and the destination card (the one to transfer to) the newer
one. Before the transfer, the workstation obtains the card
certificate of the destination card. After that, the proto-
col is between the workstation and the source card only.
The destination card is not involved in the communica-
tion. The delegation certificate produced in the transfer
will be stored in the workstation and it will later be used
together with the destination card. However, the desti-
nation card does not need to know anything about the
transfer and the certificate is never saved onto the card.



Protocol 2 (license transfer):

1. Workstation! Source card :
“Please transfer to”,CK 0,
SPMK (CK 0, “is a license card key
with production date”,date)

2. The source card signs a certificate and
erases its private keyCK.

3. Source card!Workstation :
SCK(“I give all my licenses to”,CK 0)

In the first step of the protocol, before delegating the li-
cense to the public keyCK 0, the source card checks that
the key belongs to an authentic license card. It therefore
needs the card certificate forCK 0. It also compares the
date on the card certificate to its own production date to
see that the destination card is the same age or newer.

In step 2, the card signs adelegation certificateforCK 0.
The certificate is of the formSCK(“I give all my licenses
to”, CK 0). After signing the certificate, the card perma-
nently erases its own private keyCK from its memory.
After erasing the key, the card is not anymore able to
perform Protocol 1, i.e. the proof of identity. This means
that it is disabled as a license token.

Having created the delegation certificate, the card re-
turns it to the requesting workstation in Step 3 of the
transfer protocol. After the transfer, the source card is
useless and it can be thrown away. In order to protect
against loss of certificates, the card certificate, the li-
cense certificate and the new delegation certificate are
still stored on the otherwise disabled card and can be
reread an unlimited number of times.

A crucial point for the smart card implementation is that
signing the delegation certificate and erasing key pri-
vate key must be an atomic operation. If the operation
is interrupted, for example, by cutting power from the
card, the card must either complete the signing and era-
sure immediately after power-up, or it must return to the
original state where the delegation certificate does not
exist. Moreover, the production and storage of the del-
egation certificate on the card must be reliable because
the signing cannot be repeated after the private key has
been erased.

In summary, the protocol performs the two steps that
make a complete transfer: delegation and disabling the
old card as a token. In the workstation, the new dele-
gation certificate will be combined with the ones both

cards previously had. All these certificates are needed
for use with the destination card (Fig. 4).

5 On-line software distribution

Although we cannot assume all customers or all work-
stations to have Internet connections, an increasing num-
ber of customers is willing to purchase software on-line.
Two-way communication between the user workstation
and the software publisher opens new possibilities for li-
cense management. It is necessary for the same license
management system to support both traditional shrink-
wrap software sales and on-line commerce.

When licenses are sold on-line, they can be personalized
for each customer. The key to controlling the distribu-
tion of the licenses is to bind each license to exactly one
user workstation at a time. There are plans for incor-
porating unique identifiers into the microprocessors in
personal computers for this purpose. Because of pri-
vacy concerns, it is not clear whether such identifiers
will ever be implemented be all vendors. Some copy
protection products compute a fingerprint of the hard-
ware and software configuration to identify the worksta-
tion [13]. Unfortunately, this may cause invalidation of
the license when parts of the system are updated.

In our system, the card key of a smart card is a unique
identifier to which the licenses are bound. The same
smart cards that are sold in retail stores can be used for
on-line purchases. Instead of getting the licenses with
the card, the customer buys license certificates for his
card from the on-line store. If the particular workstation
already has a license management card, the license cer-
tificate will be issued to the public card key of that card.
Most customers have recent cards e.g. from purchasing
the operating system and, since the price of the smart
card itself is low, empty cards without a license can be
distributed free of charge.

Protocol 3 (on-line purchase):

1. Customer! Publisher :
“I buy a license for”,CK,
SPMK (CK, “is a license card key
produced on ”,date)

2. Publisher! Customer :
SPMK (CK, “has a license for”,software)



CK has a license

Signed: PMK

CK’ has a license
for software B.

Signed: PMK

CK’ has a license
for software B.

CK

License card

Signed: PMK

CK is a license card key,
production date ##. for software A.

Signed: PMK

CK has a license

Signed: PMK

CK’ is a license card key,
production date ##.

Signed: PMK

CK is a license card key,
production date ##.

Signed: PMK

CK’ is a license card key,
production date ##.

licenses to CK’.
I give all my

Signed: CK

Delegation certificate

License transfer

License card

CK’

License card

CK’

CK

License card

for software A.
Signed: PMK

Figure 2: License transfer = signing a delegation certificate + disabling the source card. The certificates are stored
outside the cards.

The on-line store needs to see the card certificate to
check that the public keyCK belongs to an authentic
license card.

The only limitation for this type of on-line sales is that
licenses should not be sold to cards that are too old be-
cause their keys might have already been recovered by
pirates. (If the pirate knows the private key of an authen-
tic license card, he can purchase one license on-line and
delegate it to any number of cards.) If the card is older
than some threshold time, the customer needs to obtain
a new card and move licenses from his old card onto it
before buying new software on-line. The threshold time
for rejecting old cards can be adjusted for new products
according to the experiences from earlier releases.

Actually, it is not important how the software itself is
distributed: on-line or on a CD-ROM or on some other
medium. The distribution of licenses can be completely
independent of the software distribution.

On-line services open new possibilities for strengthening
the security of the system. If the product includes parts
or services, such as updates, that are delivered over the

Internet, the servers can check for the license before pro-
viding the service. The on-line server will send the user
workstation a challenge. The response from the smart
card is sent to the on-line service along with the public
key of the smart card, the license certificate or a chain of
certificates fromPMK toCK, and the card certificates
for all card keys in the delegation chain. The server can
store fingerprints of the keys in the chain and refuse to
repeatedly provide the same service for the same keys.
Similarly, the same license should not be sold twice to
the same card because it may indicate that the card is a
clone. This improves the strength of the copy protection
in case a pirate is able to recover the private key of a
single card. Users of the pirated licenses will be refused
on-line service.

It is for the purpose of bookkeeping at the on-line servers
that we retain all the card certificates in the license trans-
fer. If on-line services are not available or the on-line
server has a database of all valid card keys, it is not nec-
essary to store the card certificates of the disabled cards
after the transfer. It suffices to keep the one belonging to
the active card.



6 Enhancing the copy protection

Copy protection is never perfect. Therefore, we will
consider ways of strengthening the protection. The ef-
fectiveness of these techniques depends on the nature of
the product and the environment where it is mainly used.

The two most dangerous attacks against the copy protec-
tion in our license management scheme are recovering of
the private key from the smart card and modifying of the
software to bypass the checking for the token.

When on-line updates or other Internet services are an
essential part of the product, the problem of recovered
private keys is alleviated by having the servers remem-
ber the keys for which the service has already been pro-
vided (see Sec. 5). Professional pirates cannot produce
fully functional copies even if they are able to crack the
protections of a single card because users of the illegal
copies will not be able to access the on-line services.
This works because the cards have unique keys instead
of one shared secret. Continuing the analogy to digital
cash, the database of served card keys resembles double-
spending detection by banks that keep track of spent
coins.

Another way of discouraging the purchase of pirated
copies is to have the users authenticate the software.
The person installing or using a pirated software pack-
age should get a warning about potentially dangerous,
unauthentic code. The warning can be implemented by
signing the code with the publisher master keyPMK

or with another key held by the publisher. The public
verification keys can be distributed on-line or with the
operating system. If the pirates modify the software in
order to remove the check for the license, the pirated
copies inevitably fail the test for correct signatures. This
kind of integrity check is beneficial even if copy protec-
tion is not an issue: software distributed over the Internet
should be authenticated in any case.

Implementation of the integrity warning messages re-
quires co-operation with the operating system or with
a generic installation program. The warnings can nat-
urally be avoided by modifying also these support pro-
grams. However, most business users of software are
probably unwilling to tweak their operating system ac-
cording to the pirate’s instructions. Also, the embed-
ded operating systems in special-purpose devices such
as game consoles and multimedia terminals often can-
not be modified by the user.

Instead of completely disabling the check for the to-

ken, pirates may try to modify the smart card reader or
its driver software in such a way that several worksta-
tions can share one reader. The challenges and responses
could be transferred over the network between a single
reader and a large number of verifiers. To prevent such
modifications, the checking software should have direct
access to the smart card reader hardware so that it can
trust the responses to be from a local source. Sometimes,
especially if the operating system consists of replaceable
modules or layers, it may be impossible to prevent tap-
ping between the card and the verifier. Even then, the at-
tack is only possible if the modification to the operating
system is available and if the user organization is willing
to install the patches on all workstations. Other possi-
ble defenses include binding the licenses to workstation
identities and limiting the number and frequency of an-
swered challenges per license. Such measures, however,
imply unique processor identifiers, on-card timers, coun-
ters, and much more complex protocols that are beyond
the scope of this paper.

There is one effective technique for checking the pres-
ence of the token which requires some adjustment for
our public-key protocols. That is, the software on the
distribution media can be encrypted and the license to-
ken should contain the key for decrypting it. If the soft-
ware is never stored outside the computer memory in
decrypted form, it cannot be loaded without the token.
(Naturally, this is just a way of obscuring the check for
the tokens. The program in the insecure computer mem-
ory can be read and saved with special tools and skill-
ful reverse engineering.) Dongles sometimes carry a se-
cret key for decrypting the code [13]. If we want to use
this technique in our license transfer scheme, we have
to pass the decryption keys to the destination card and
erase them from the source card as a part of the license
transfer. The keys can be transferred by encrypting them
with the public key of the receiving card.

7 Preventing license theft

New technology often creates new types of vulnerabil-
ities that are beyond our prior experience. When the
software licenses are bound to small, tangible objects, a
new threat emerges: theft of licenses. And what is most
disconcerting, the transfer protocol could be misused to
steal licenses electronically over the network. Luckily,
theft can be prevented with simple password protection.

The physical theft of license cards may be a problem
anywhere where untrusted persons have physical access



to the workstations. The standard protection against the
theft of smart cards is that the card requires the user to
enter a password after it is inserted into the reader. The
card refuses to work unless activated with the correct
password. This effectively prevents the use of stolen li-
cense cards. The password can be distributed on paper
with the card. For convenience, the users should be able
to disable the password feature in environments where
theft is not a major threat.

Even with the password protection, there is still the dan-
ger that someone removes the card not for his own profit
but to cause damage to the owner. Vandalism is a prob-
lem for public-access computers in places like universi-
ties and libraries. The card could be protected by en-
closing the card reader inside the workstation casing or
by using lockable special-purpose readers.

A more interesting scenario is that the thief transfers the
license onto his own card. A hacker could even break
into the computer from the network and invoke the trans-
fer procedure without having physical access and with-
out exposing himself to much danger of being identi-
fied. Again, a separate one-time password should be re-
quired by the card before the transfer. Since the transfer
is activated only once for each card, passive sniffing for
the passwords does not benefit an attacker. In theory,
the hacker could take over the transfer process after the
user has entered the password and replace the destination
card certificate with his own. Therefore, license trans-
fers should be done on a trusted workstation, preferably
off-line. An alternative protection that prevents attacks
from the network is a physical write-protect switch on
the card that must be shifted to allow the transfer.

8 Evaluation

The main goal in the development of our license man-
agement scheme was to make the use of hardware tokens
user-friendly. In particular, we have solved the problem
of smart-card juggling. Although the user must insert
a smart card into the reader, it is not any more neces-
sary to periodically switch between cards. Licenses of
several software packages are transferred onto a single
card.

The license transfer is an extremely simple procedure
for the user. He inserts the two cards into the smart card
reader, the newer card first. (If the order is wrong, he
is asked to reinsert the first card.) He may be asked to
provide a floppy disk for backing up the certificates.

The system requires the user to have a smart card reader
on every workstation and the license card must be in the
reader for most of the time. Beyond the card reader,
no changes to existing hardware (e.g. Internet connec-
tion, secure processors or hardware identity numbers)
are needed. After the initial investment in the read-
ers, the marginal cost of protecting each new product
is small. Since the certificates are stored and handled
mostly outside the cards, the storage and computational
capacity needed in the smart cards is bounded.

We have seamlessly integrated shrink-wrap and on-line
sales of software licenses. The license management does
not require any changes to existing software distribu-
tion channels. In particular, incorporating a smart card
into shrink-wrap software packages does not increase
the workload at retail stores or require users to have net-
work connections.

The security of the system relies on two non-trivial as-
sumptions. First, the smart card must be tamper resistant
in the sense that the private key cannot be recovered from
the card. Recovering the key of even one card makes it
possible for a professional pirate to sell counterfeit li-
censes. With on-line distribution of licenses, the pirate
must crack a new card when the previously cracked card
becomes so old that the on-line store refuses to sell new
licenses to it. If software is not sold on-line, the pirate
must recover a new key for each new software product
or version. It depends on the state of the tamper-resistant
smart card technology how long it takes to analyze a
card. Service can be denied to those users of pirated
software who try to utilize on-line updates and services
associated with the products.

Second, the checking for the token in the software pack-
age must be obscured in such a way that the check can-
not be disabled. Since the public key of the software
publisher (PMK) is used for the checking, one should
not be able to change this key in the code. Like tamper-
resistant cards, obscured software can be analyzed with
time and resources. In this case, it is probably the eas-
ier line of attack. We suggest discouraging the use of
modified software by issuing warnings to the user.

When these basic assumptions are satisfied, the license
transfer protocol itself is fairly robust. The transfer pro-
cess cannot be interrupted to prevent erasure of the old
license because the private key is erased as soon as the
delegation certificate has been signed. We state formally
the claim that the protocols do not allow copying of li-
censes (see the Appendix for the proof):



Proposition 1: The number of keys with valid licenses
is at most equal to the number license certificates signed
byPMK.

Moreover, licenses are not easily lost because the del-
egation certificates can be reread from the card at any
later time and the certificates are backed up on the work-
station hard disks or on floppy disks.

In summary, the license management system prevents
multiple use of one license and it increases significantly
the work of professional pirates. Although the user must
keep the license card in the smart card reader, it is much
more convenient than having separate tokens for each
product.

9 Protocol extensions

Our license management protocol can be extended in
several ways to increase its flexibility for users.

Although the protocol is fairly robust against accidental
loss of licenses, there should be some off-line recovery
mechanisms in case the license card is damaged or the
delegation certificates are lost. The software producer
can be generous with replacing cards and lost licenses.
If a log is kept of the customers who receive a replace-
ment certificate or smart card, the number of customers
willing to cheat to get one extra copy of the product is
likely to be small.

Although we have designed the license transfer protocol
with local transfer in mind, the protocol itself has no re-
striction for remote transfer over a network. If this is im-
plemented, the customer can transfer licenses over large
distances without waiting to get the physical license card
in mail. The remote transfer cannot be abused so that
several remote users would pool to share a license (with
at most one user at a time) because a new smart card is
needed for each transfer.

In order to have only a single card per workstation, soft-
ware publishers must co-operate. All card must use the
same protocol and meet the same standard of tamper-
resistance. Fortunately, it is not necessary to have all
publishers share the master keyPMK. Instead, the
products of each publisher can check for a delegation
chain starting from its own master key. These publisher
keys, however, cannot be used for signing the card cer-
tificates because the safety of the cards affects all pub-

lishers. For this purpose, another layer of delegation can
be added: a trusted agency holding a master key that will
certify card manufacturers’ master keys. The manufac-
turer will include its certificate on the card and sign the
card keyCK with its own key. This allows accreditation
of new manufacturers at any time.

Naturally, the use of the delegation certificates for li-
cense management is not restricted to smart cards. The
same ideas could be used with any intelligent hardware
tokens as long as the tokens are capable of processing
public-key signatures and their cost is low enough so
that they can be discarded. Different physical imple-
mentations of the tokens can be mixed as long as they
follow the same protocols. Non-discardable physical to-
kens such as dongles and chips embedded in the com-
puter hardware work well but licenses should be only
transferred onto them, not from them. One possibility is
to have one embedded token per workstation and to use
smart cards only for license distribution.

Finally, an alternative to having a card for each worksta-
tion is to let each user carry a personal license card. That
naturally leads to using the card as a general-purpose
identifier for the user. Our protocols are equally well
suited for many other purposes such as maintaining per-
sonal key rings for smart-card locks. However, such ap-
plications are beyond the scope of this paper.

10 Conclusion

We have described protocols for binding software li-
censes to tamper-resistant smart cards, for transferring
them between cards and for buying licenses on-line.
There must be smart card readers at the workstations
but no network connection or other changes to existing
hardware are needed. The protocols support software
distribution both through retail stores and over the In-
ternet. The user can transfer licenses from several cards
onto a single card so that juggling between several card
in the reader is eliminated. The transfer protocol is easy
and intuitive for the user. The smart cards must be able
to process public-key signatures. In other respects, the
protocols are simple both to implement and to analyze.
Most of the data involved is stored outside the smart
card. The protocols may also have applications in other
system where smart cards are used for storing creden-
tials.



11 Acknowledgments

Tuomas Aura’s work was funded by Helsinki Graduate
School for Computer Science and Engineering (HeCSE)
and Academy of Finland and it was done mostly at UC
Davis Computer Security Laboratory.

References

[1] Ross Anderson and Markus Kuhn. Tamper re-
sistance — a cautionary note. InThe Sec-
ond USENIX Workshop on Electronic Commerce
Proceedings, pages 1–11. USENIX Association,
November 1996.

[2] Tuomas Aura. Distributed access-rights manage-
ment with delegation certificates. In J. Vitek and
C. Jensen, editors,Secure Internet Programming:
Security Issues for Distributed and Mobile Objects,
LNCS. Springer, 1999.

[3] Stefan Brands. Untraceable off-line cash in wallets
with observers. InAdvances in Cryptology - Pro-
ceedings of CRYPTO ’93, volume 773 ofLNCS,
pages 302–318, Santa Barbara, 1993. Springer-
Verlag.

[4] David Chaum and Torben Pryds Pedersen. Trans-
ferred cash grows in size. InAdvances in Cryp-
tology - Proceedings of EUROCRYPT ’92, volume
658 of LNCS, pages 390–407. Springer-Verlag,
May 1992.

[5] Carl M. Ellison, Bill Franz, Butler Lampson, Ron
Rivest, Brian M. Thomas, and Tatu Yl¨onen. Simple
public key certificate. Internet draft, IETF SPKI
Working Group, March 1998.

[6] Amir Herzberg and Shlomit S. Pinter. Public pro-
tection of software.ACM Transactions on Com-
puter Systems, 5(4):371–393, November 1987.

[7] Burt Kaliski and Jessica Staddon. PKCS #1: RSA
cryptography specifications, version 2.0. Internet
draft, IETF Network Working Group, September
1998.

[8] Davis P. Maher. Fault induction attacks, tamper
resistance, and hostile reverse engineering in per-
spective. InProc. 1st International Conference on
Financial Cryptography FC ’97, volume 1318 of
LNCS, pages 109–121, Anguilla, British West In-
dies, February 1997. Springer Verlag.

[9] Nasir Menon and Ping Wah Wong. Protecting
digital media contect. Communication of ACM,
41(7):35–43, July 1998.

[10] Mondex. Mondex home page, 1998.
URL:http://www.mondex.com.

[11] Information Technology Association of America.
Intellectual property protection in cyberspace: to-
wards a new consensus. ITAA discussion paper,
1998.

[12] Hans-Henning Pagnia and Ralph Jansen. Towards
multiple-payment schemes for digital money. In
Proc. 1st International Conference on Financial
Cryptography FC ’97, volume 1318 ofLNCS,
pages 203–215, Anguilla, British West Indies,
February 1997. Springer Verlag.

[13] John Phipps. Physical protection devices. In Der-
rick Grover, editor,The protection of Computer
Software - its technology and applications, British
Computer Society (BCS) Monographs in Informat-
ics, chapter 3. Cambridge University Press, 2nd
edition, 1992.

[14] George B. Purdy, Gustavus J. Simmons, and
James A. Studier. A software protection scheme.
In Proc. 1982 Symposium on Security and Privacy,
pages 99–103, Oakland, California, April 1982.
IEEE Computer Society Press.

[15] Steve R. White. ABYSS: A trusted architecture for
software protection. InProc. 1987 IEEE Sympo-
sium on Security and Privacy, pages 38–51, Oak-
land, California, April 1987. IEEE Computer Soci-
ety Press.

Appendix (proof of protocol security)

We consider the licenses for a single software product.

Definition 1: A key CK has a valid licenseif the
private part of the keyCK is unerased, and there is a
card certificate signed byPMK and issued to the public
part ofCK, and acertificate chain:

a license certificate signed byPMK toCK0,
a delegation certificate signed byCK0 toCK1,
a delegation certificate signed byCK1 toCK2,
...
a delegation certificate signed byCKk�1 toCKk



such thatCKk = CK. 2

This forms a valid license because the verifier checks for
these conditions before allowing the use of the software.
It is possible thatk = 0, i.e. there are no delegation cer-
tificates. We ignore the check for the other card certifi-
cates (ofCK0 : : : CKk�1) and for the production dates
because they have effect only if some other assumption
is broken.

Assumption 1: PMK only issues license and card
certificates to authentic card keys. An authentic card
key only issues delegation certificates to keys with a card
certificate. 2

Assumption 2: For every authentic card keyCK, ex-
actly one of the following holds:

1. CK has signed no delegation certificates.

2. CK has signed exactly one delegation certificate
and the private keyCK has been erased.2

The second assumption follows from the policy of eras-
ing the private key immediately after signing a delega-
tion certificate.

Proposition 1: The number of keys with valid licenses
is at most equal to the number license certificates signed
byPMK. 2

Proof: The subjects of license certificates (CK0) are
always authentic card keys. An authentic card key only
delegates to a key with card certificate and such keys are
authentic card keys (Ass. 1). Consequently, all keys in
the chains starting from license certificates are authentic
card keys. The authentic card keys delegate to at most
one other key and a key that has delegated is itself erased
(Ass. 2). Thus, the certificate chains starting from li-
cense certificates do not branch and only the last key in
a chain can be unerased.

If there would be more keys with valid licenses than
license certificates, there should be some two valid li-
censes whose corresponding certificate chains (Def. 1)
begin with the same license certificate but end in two dif-
ferent unerased keys. However, this is not possible since
the chains do not branch and only the maximal-length
chains end in unerased keys.


