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Abstract

With the advent and subsequent popularity of portable computers, power management of
system components has become an important issue. Current portable computers implement
a number of power reduction techniques to achieve a longer battery life. Included among
these is spinning down a disk during long periods of inactivity. In this paper, we perform a
quantitative analysis of the potential costs and benefits of spinning down the disk drive as
a power reduction technique. Our conclusion is that almost all the energy consumed by a
disk drive can be eliminated with little loss in performance. Although on current hardware,
reliability can be impacted by our policies, the next generation of disk drives will use technology
(such as dynamic head loading) which is virtually unaffected by repeated spinups. We found
that the optimal spindown delay time, the amount of time the disk idles before it 1s spun down,
is 2 seconds. This differs significantly from the 3-5 minutes in current practice by industry. We
will show in this paper the effect of varying the spindown delay on power consumption; one
conclusion is that a 3-b minute delay results in only half of the potential benefit of spinning
down a disk.

1 Introduction

Power management has become an important consideration in the design of new hardware and software.
Portable computers today can only function for several hours before draining their battery source. Industry
has taken the approach of course-grained shutdown of system components as the major power management
technique. This approach works well when there are clear periods of system inactivity, but fails under more
typical scattered activity patterns. We believe that opportunities exist for fine-grained power management
in the portable computer environment.

Tackling the question of power management begins with an analysis of where the energy 1s being
consumed. Table 1 gives a listing of the major system components and their power consumption in a
typical portable computer. At 68%, the display clearly dominates the system power consumption. However,
we did not target the display in this study because the hardware technology in that area is still rapidly
evolving (it is not clear that the display will continue to be the dominant power cost). Moreover, proposed
techniques to better manage the power consumption of the display (for instance, back lighting only the
portion of the screen containing the cursor) would require extensive hardware changes to be practical.
Instead, we focused on managing the disk drive which represents 20% of the power consumption. The
disk i1s a promising candidate for power management because 1t is a device with which the user does not
interact with directly. With proper management by the operating system, the disk may be spun up and
down without the user noticing much difference in performance or reliability. From anecdotal observations
of disk activity on personal computers, we believed that almost all the power consumed by a disk drive
could be eliminated.



Component Manufacturer & Model Power (watts) | Percent of Total
Display Compaq monochrome lite25¢ | 3.5 68%
Disk Drive (105 Mbytes) | Maxtor MXL-105 ITT 1.0 20%
CPU 3.3V Intel486 0.6 12%
Memory (16 Mbytes) Micron MT4C4M4A1/B1 0.024 0.5%

Table 1: Breakdown of power consumption by components.

To investigate these issues, we collected traces of file system activity from both personal computers
and Unix workstations. We then simulated the effect on power consumption of different disk management
strategies for our traces. Among the questions we examined were:

e How long should the disk remain idle after servicing a request before spinning down?
e Can a small, fixed spindown delay approach the optimal energy savings?

e What is the effect of spinning down the disk on the system performance observed by the user?

What is the effect on power consumption of adding memory as a disk cache?
e Does delaying disk writes to occur in the background save power?

e Are name-attribute caches helpful for reducing power consumption?

The remainder of the paper discusses these issues in more detail. Section 2 gives background on disk
power consumption and the assumptions we made in building our simulator. Section 3 outlines how we
collected our file traces. Section 4 presents the results of our simulation study, and Section 5 summarizes
our conclusions.

2 Background/Simulator Components

2.1 Disk

The recent explosion in the portable computer market has enticed disk drive manufacturers to develop
a special breed of drives especially designed for the portable environment. In addition to high shock
tolerances, reduced physical volume, and smaller weights, these drives consume less energy and more
importantly have a new mode of operation called SLEEP mode. A very significant portion of the energy
consumed by a disk drive is spent in preserving the angular momentum of the physical disk platter. A
much smaller fraction is spent in powering the electrical components of the drive. By sleeping, a drive can
reduce its energy consumption to near zero by allowing the disk platter to spin down to a resting state.
This substantial energy reduction is not without its costs. An access to the disk while it is sleeping incurs
a delay measured in seconds as opposed to the tens of milliseconds required for an access to a spinning
disk.

The disk we simulated is a prototypical next generation low power drive heavily optimized for the
portable environment. It has four major modes of operation. OFF mode is when the disk consumes no
energy and is incapable of performing any functions except powerup. SLEEP mode is when the disk is
powered up but the physical disk platter is not spinning. IDLE mode is characterized by a spinning disk,
but the absence of disk activity. A drive attached to a personal computer typically resides in this mode.
The last mode of operation 1s ACTIVE, when the disk platter is spinning and either the disk head is seeking
or the disk head is actively reading or writing the disk. This mode consumes the most power, but occurs
only for short periods of time in a typical single-user system. Figure 1 shows a state transition diagram
for our simulated drive.
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Mode Power (watts)
OFF 0.0

SLEEP 0.025

IDLE 1.0

ACTIVE | 1.95

Table 2: Power consumption of the major disk modes for the Maxtor MXL-105 IIT.

Transition Time (seconds) | Power (watts)
POWERUP 0.5 0.025
SPINUP 2.0 3.0

SEEK 0.009 1.95
SPINDOWN 1.0 0.025
POWERDOWN | 0.5 N/A

Table 3: Average transition times between major disk modes and their power consumptions for the Maxtor

MXL-105 III.

The diagram shows each of the states and the relationships between them. The disk mode transitions
which require a non-zero time delay have been labeled for reference. Tables 2 and 3 quantify the power
consumption of each mode and the transition times between modes. These numbers are taken from the
Maxtor MXL-105 IIT disk drive [Maxtor].

2.2 Disk Cache

Traditionally, disk caches have been used to increase the performance of file systems. Due to the
principle of locality and the large speed differences between DRAM’s and disks, the operating system can
use a disk cache to give the illusion of a faster disk drive. This performance boost takes on even more
importance in the portable computer environment where disks sleep and the speed separation between
DRAM’s and disks grows even larger.

Performance, however, is not the only reason for including a disk cache in a low power operating system.
From a power management viewpoint, disk operations are not only measured in terms of access times, but
also in terms of energy costs. Disk operations which are requested while the disk is sleeping will incur a high
energy cost to spinup the disk. If the disk cache can satisfy most of these requests, the result will be much
smaller energy costs than in a system with no cache. Thus disk caches can reduce energy consumption by
filtering read traffic.



The write policy of the disk cache also has impact on the design of low power operating systems. We in-
vestigate the impact of a write-back policy for our disk cache because it can make writes asynchronous with
user activity, and because disk caches on portables are battery-backed non-volatile RAM. Asynchronous
writes yield a measurable speed advantage in distributed and timeshared systems by overlapping compu-
tation and I/0O. In addition, this policy allows writes to files that are quickly overwritten to be eliminated.
More generally, asynchronous writes make sense whenever there 1s a high probability of long latency disk
access as would occur if a disk is sleeping in a low power system. By making writes asynchronous, we can
continue processing while the disk spins up for handling the write request. We thereby reduce the overall
performance impact of spinning down a disk. In addition, caching writes in memory for short periods of
time aids in reducing the number of spinups necessary to service writes.

Our disk cache is a typical LRU block cache with a block size of 4 kilobytes. The cache is parameterized
over both the number of blocks and the write delay. A larger cache can be specified by increasing the number
of blocks allocated. Greater reliability can be achieved by decreasing the write delay of the cache. The
write delay specifies the maximum amount of time a dirty block may spend in the cache. A write delay of
zero instantiates a write-through cache.

2.3 Name-Attribute Cache

Studying prior measurements of file system behavior, we noticed that a significant portion of file system
activity 1s involved with reading, translating, and listing the names and attributes of files in the file system.
With the goal of minimizing both energy consumption and user delay, we investigate the quantitative
impact of incorporating both a name and an attribute cache in a low power system. A recent study into
the effectiveness of name and attribute caches was done in [SO92]. They concluded that a twenty-directory
name cache had a 97% hit rate with 2% capacity and 1% compulsory misses and that a twenty-entry
attribute cache had an 88% hit rate with 5% capacity and 7% compulsory misses. Although these numbers
are very good for distributed and timesharing systems, a low power system differs in that it has a much
higher miss latency penalty. If a significant percent of the misses occur while the disk is sleeping, then a
low power system would pay a large user delay penalty in addition to increased energy consumption. With
such high costs, it seems reasonable to investigate how to further reduce the attribute cache miss rate to
something near the name cache miss rate. We propose that all files in directories cached in the name cache
should also have their attributes cached in memory.

Since we are caching all attributes of files in the name cache, there is no longer any need to distinguish
between name and attribute caches. In our system, they have been combined into one cache which we will
call the name-attribute cache. In the [SO92] study, 93% of directories had 25 or fewer files. A quick “back
of the envelope” calculation shows that with 25 files per directory and 100 bytes of name, attribute, and
structure overhead per file, a 20-directory cache consumes less than fifty kilobytes, which is a tiny amount
of memory by today’s standards.

A rudimentary study of the number of directories referenced in the DOS traces over a four hour period
indicates that the number of active directories is well below twenty. With almost all cache misses due to
compulsory misses, we assume in this study that the name-attribute cache pays an initial warmup penalty
to read in the active directories and then performs perfectly thereafter.

3 Traces

We examine file system traces from two separate platforms. Our measurements of Microsoft DOS file
system activity represent most of the applications run on portable computers today. However, in the
near future, we expect to see a growing number of Unix-like applications running on increasingly powerful
portables. Thus, for completeness, we also examine file system access patterns on a Unix-like platform
and compare the results with the DOS traces. To be representative of portable usage with limited battery
lifetimes, we used 1 hour and 4 hour long traces.



3.1 DOS Traces

A large portion of the DOS traces were taken from a student and faculty computing facility at City
College of San Francisco (CCSF). All of the CCSF traces were running one of five programs: Word Perfect,
Lotus 123, Quattro Pro, Paradox, and Question & Answer. These traces were taken over a period of
a month and include trace lengths spanning the spectrum from thirty minutes to six hours. To further
increase the representativeness of our DOS traces, we had several other trace sources running Windows
3.1, Microsoft Word, Microsoft Excel, Equation Editor, Quicken, and various text editors. These traces
were taken over a period of three months. We used 61 one hour DOS traces and 15 four hour DOS traces.

3.2 Sprite Traces

For Unix-like file activity, we extracted segments from trace data collected on the Sprite distributed file
system [BHK91]. These traces primarily capture the file activity of Unix programs. The only perceptible
difference in the file activity of the programs running on Sprite rather than a Unix file system is that Sprite
performs additional name lookups before accessing files. The traces were taken from two different weeks,
one in January of 1991 and one in May of 1991. We extracted traces from three different times of the day
and from twelve distinct host machines. Each trace was filtered for file system activity due solely to that
machine. We used 8 one hour Sprite traces and 7 four hour Sprite traces.

The Sprite traces we used contain information about all open, lseek, and close operations, but no read
or write operations except those to concurrently write-shared files. Thus, 1t was usually necessary to infer
read and write operations from changes in the file pointer value reported for Iseek and close operations. All
file pointer differences in files opened for write or read/write access were attributed to unrecorded write
operations. Likewise, file pointer differences in files opened for read access were attributed to unrecorded
read operations. This policy resulted in approximately two thirds as many write operations as reads in
our traces. We believe that inferring these read and write operations had minimal impact on the integrity
of the traces, since files are generally open for very short periods of time. Measurements of the Sprite file
system [BHK91] showed that over 90% of the files were open for less than 1/2 second. The traces gave
us enough information to infer the number of bytes read or written, the offset of those bytes in the file,
and when the operations occurred to within a tolerance of about 1/4 second. It should be noted that
the remaining 10% of the files have open-close times which are distributed roughly exponentially. In this
paper, we assume that the disk operations for these files occur at close time.

A complete analysis of disk activity would rightfully include the paging activity of the system. Unfortu-
nately for our study, the Sprite traces we examined did not contain paging data and we could not account
for these disk references. However, for performance reasons, we expect that the amount of disk activity
due to paging is small compared to file system activity.

4 Evaluation

We split the DOS and Sprite traces into one hour and four hour lengths to analyze any differences in
reference patterns. Our one hour results were consistent with the four hour results so we present only the
latter set in the following sections. The DOS traces were grouped according to applications and analyzed
using the same criteria. There were some minor differences in energy consumption characteristics between
software vendors, but no notable differences along application domains such as databases or spreadsheets.
This result is somewhat surprising and is most likely due to differences in run-time memory management
systems. As the differences were minor, we again decided to surpress this distinction by averaging the
results.

4.1 Spindown Delay
4.1.1 Spindown Delay Curve

Figures 2 and 3 show the energy consumption of the disk as a function of spindown delay — that is, the
length of time we wait for further disk activity before allowing the disk to stop rotating. Figure 3 shows
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Figure 2: Spindown Delay vs. Energy Consumption. This figure shows the effect of varying spindown
delay on energy consumption. The simulations were run with a one megabyte disk cache, 30 second write
delay, name-attribute caching enabled and 4 hour traces.
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Figure 3: Spindown Delay vs. Energy Consumption (Minimal Region). This figure shows the
effect of varying spindown delay on energy consumption for small spindown delay values. The simulations
were run with a one megabyte disk cache, 30 second write delay, name-attribute caching enabled and 4
hour traces.
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Figure 4: Effect of Spindown Delay. This figure illustrates the dual effects of spindown delay on the
length of time a disk sleeps.

that the minimum amount of energy is consumed with a spindown delay of around 2 seconds. Using a 2
second spindown delay saves nearly 90% of the 14400 joules that would be consumed if no spindown policy
were used. At a spindown delay of zero, there 1s a sharp increase in energy consumption due to the cost
associated with spinning up the disk repeatedly. For our disk drive, the spinup cost is 2 seconds of user
delay and 6 joules of energy. The fact that a few second delay is effective confirms the intuition that disk
events usually occur in pockets of a few seconds and that it would be a bad idea to always spin down the
disk immediately.

The unintuitive result of these figures is the sharp slope to the right of 2 seconds. The steepness of
this region indicates that a very small increase in spindown delay beyond a few seconds will yield a very
large energy penalty. With the current practice in industry spinning down the disk after 3-5 minutes, our
results show that a factor of four in energy savings can be achieved by reducing the spindown delay to 2
seconds. This translates into added latency in accessing the disk, but as we will show in section 4.2, this
penalty is small.

It is insightful to compare our 2 second spindown delay policy with the prescient spindown policy
(OPTIMAL_DEMAND in [DKM94]) which uses foreknowledge of disk events to optimally decide when to
spindown the disk. Using the numbers from Table 2 and 3, we can compute the period of time a disk
must remain idle before the cost of spinning up the disk is below that of just idling. The breakeven point
(relative to energy) comes out to be 6.2 seconds. If there is no disk activity for greater than 6.2 seconds,
then spinning down the disk will save energy. We can approximate the effect of an optimal spindown policy
by examining the energy usage and number of spindowns using a fixed 6 second spindown delay. Note that
the only difference between optimal and a fixed 6 second delay occurs when the next disk event occurs
more than 6 seconds into the future. If the idle time is less than 6 seconds, neither policy will spindown
the disk. If the idle time is more than 6 seconds, both will spindown the disk, but optimal will spin down
immediately, instead of waiting 6 seconds before spinning down. Thus the energy consumption for the
optimal policy is the energy consumption of a fixed 6 second delay policy, minus the energy consumed by
the unnecessary idle time before every spindown. As shown in Figure 5, the 6 second delay policy resulted
in about 100 spindowns per session. Multiplying the number of spindowns by 6 seconds at 1 watt of power
consumption in idle mode yields 600 joules that prescient knowledge saves over our 6 second spindown
delay policy. Thus, the prescient algorithm saves only 30% of the energy used by our fixed spindown
delay policy. Since the 2 second spindown delay algorithm already saves 90% of the power that would be
consumed with no spindown policy, the prescient algorithm can at best save an additional 3%. This shows
that attempts to further reduce energy consumption by refining the spindown policy will not yield much
benefit.

4.1.2 Spindown Delay Analysis

The shape of the curve in Figure 2 is somewhat baffling at first sight. Why should a small change in
the left end of the curve yield such drastic changes in energy consumption while the right end is relatively
flat? The answer lies in the fact that spindown delay has two effects on energy consumption. The first
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Figure 5: Number of Spindowns vs. Spindown Delay. This figure shows the average number of
spindowns performed for various spindown delays. The simulations were run with a one megabyte disk
cache, 30 second write delay, name-attribute caching enabled and 4 hour traces.

is how often a disk gets to sleep and the second is how long a disk gets to sleep. Figure 4 shows both of
these effects. The top line of the figure indicates disk activity and the other two bars illustrate the idle
and sleep times of a disk with spindown delay t and 3t. In the region labeled A the next disk event arrives
sufficiently late that the smaller spindown delay is able to take advantage of the inactivity and spindown
the disk. This is not the case with a spindown delay of 3t. Here, the next disk event is considered part of
the disk activity of the preceding cluster and spinning down of the disk occurs 3t time units after this last
event. The goal of choosing a spindown delay value is to make it small enough that it will define clusters
of disk activity, but large enough that the amount of energy saved while sleeping is significantly greater
than the cost of spinning up the disk. A zero spindown delay defines a cluster as a single disk event while
a fifteen minute spindown delay effectively defines a cluster as the entire session. Our analysis shows that
a two second spindown delay effectively determines the extent of a disk cluster.

The second and more important effect of spindown delay on energy consumption is the length of time
a disk gets to sleep. The region labeled B shows that the disk sleeps for a much longer period of time
with the smaller spindown delay. By reducing the delay, we increase the sleep time,; which reduces our
energy consumption. This energy savings is then compounded by the number of spindowns per session.
As shown in Figure b, a spindown delay of 2 seconds results in approximately 100 spindowns per session.
By increasing the spindown delay from 2 seconds to 2 minutes, one can see how this effect is multiplied to
yield the steep slope observed on the left end of figure 2.

4.2 User Delay

Section 4.1 showed that it is possible to reduce the energy consumption of a disk drive to a very small
fraction of what it uses without power management. In this section, we analyze the tradeoff between energy
consumption and user delay. We define user delay as the sum of the spinup delays over the entire 4 hour
trace which are synchronous with the user’s activities. These are the delays that the user will feel in his
interaction with the computer. Asynchronous spinups due to delayed writes from the disk cache are not
counted in user delay, as this activity is transparent to the user.

Figure 6 captures the tradeoff between total user delay over the trace and energy consumption. The
figure shows that by tolerating a small amount of user delay, large energy savings can be achieved. The



16000
—=— DOS
UJ

14000 % —O— SPRITE
& 12000 -
>3
o
=
c 10000
ke
g
E 8000
[%2)
c
e}
O 6000
P
o
2 4000
Ll

2000 -

0 1 1 1 1 1 1 1 |
0 100 200 300 400 500 600 700 800

User Delay (sec)

Figure 6: User Delay vs. Energy Consumption. This figure shows the tradeoff between user delay
and energy consumption. The simulations were run with a one megabyte disk cache; 30 second write delay,
name-attribute caching enabled and 4 hour traces. Obtained by varying spindown delay and plotting
energy consumption vs. user delay for each data point.
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Figure 7: Disk Cache Size vs. Energy Consumption. This figure shows the effect of varying disk
cache size on energy consumption. The simulations were run with a 2 second spindown delay, 30 second
write delay, name-attribute caching enabled and 4 hour traces.

DOS curve bottoms out at around 60 seconds while the Sprite curve bottoms out at around 120 seconds of
user delay. These are the delays which would be felt by a user operating with a 2 second spindown delay
over a 4 hour period. This amounts to 15-30 seconds of user delay per hour. In other words, the user
would have to wait for a 2 second disk spinup 8-15 times per hour. We believe this delay is sufficiently
small that 1ts overall effect will be lost in the overhead of the system and application software. Thus a 2
second spindown delay does not impose a significant performance penalty.

4.3 Disk Cache

Contrary to our initial expectations, the disk cache did not exhibit as large an impact on the results as
we predicted. Although having a disk cache does aid in reducing energy consumption by filtering the disk
traffic, its effect is secondary to the choice of spindown delay.

Figure 7 shows the effects of varying the disk cache size on energy consumption. The figure indicates
that a one megabyte cache is sufficient to achieve most of the energy benefits of disk caching. The cost
of not having a disk cache is a twofold increase in energy consumption. From a power mangement point
of view, trading the energy consumed by one megabyte of DRAM for the additional energy savings of the
disk is a wise investment.

Varying the delay in writing dirty blocks to disk has approximately the same effect on energy consump-
tion as varying the disk cache size. As Figure 8 shows, there is approximately a factor of two decrease in
energy consumption by enforcing a write delay of 30 seconds. Again, the curve is very steep at the left
end and nearly flat at the right end. This indicates that a very small sacrifice in tolerance to lost data
will initially yield large energy savings. However, further sacrifices beyond 60 seconds will not yield any
additional savings. Thus, the policy implemented by Unix and Sprite of delaying writes for 30 seconds has
applicability in the low power environment as well.
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Figure 8: Write Delay vs. Energy Consumption. This figure shows the effect of varying write delay
on energy consumption. The simulations were run with a 2 second spindown delay, one megabyte disk
cache, name-attribute caching enabled and 4 hour traces.

4.4 Spinups

Another area of concern in disk power management is the increased number of disk spinups per session.
Increasing the number of spinups per session increases the friction induced wear on the disk-head interface.
This in turn decreases the useful lifetime of the disk drive. Figure 5 shows the number of spinups per
session under our policies. With a 2 second spindown delay, there are approximately 100 spinups per
4 hour period. Traditional contact start/stop technology disk drives are currently specified at 40,000
start/stops. This gives the moderately disappointing result of 400 four hour sessions before drive wear
becomes a problem. However, the portable computer and embedded systems market is currently funding
huge efforts into the development of non-contact techniques such as dynamic head loading [PK92] which
are targeted specifically for the portable market. These fast, high-shock tolerance drives are expected to
populate all future portable computers. The non-contact technology is expected to increase the number of
starts/stops of disk drives to one million. With this figure, the expected time to failure under a 2 second
spindown delay policy is 10,000 four hour sessions, or about 4 1/2 years of continuous use.

4.5 Name-Attribute Cache

The results of the DOS and Sprite traces turned out to be surprisingly similar from a power management
viewpoint. Although Sprite traces consistently consumed more energy and incurred higher user delays
than the DOS traces, the shapes of the curves were nearly identical. The only notable point of difference
is the relative effectiveness of the name-attribute cache in reducing energy consumption. Table 4 indicates
that name-attribute caching is somewhat useful in the DOS environment, but indispensable in the Sprite
environment. This difference is due to the presence of large numbers of periodic lookup operations in the
Sprite traces. We believe this anomaly is an artifact of the Sprite implementation and is not a general
property of a Unix file system. We therefore conclude that a name-attribute cache is moderately successful



Name-Attribute Cache | DOS (joules) | Sprite (joules)
Enabled 1488 1829
Disabled 1800 9149

Table 4: Relative effectiveness of the name-attribute cache under DOS and Sprite. The simulations were
run with a 2 second spindown delay, one megabyte disk cache, 30 second write delay and 4 hour traces.

in reducing power consumption, but that its primary contribution to the system is improved performance.

5 Conclusion

We have performed a quantitative analysis of the costs and benefits of spinning down a disk drive as
a power management technique. Given an intelligently designed operating system with a one megabyte
write-back disk cache and a twenty directory name-attribute cache, we have shown that 90% of the energy
consumed by a disk drive can be eliminated with almost no performance or reliability impact. Furthermore,
we determined that a spindown delay of 2 seconds minimizes the power consumption of the disk and
that deviation from this minimum rapidly increases the energy consumption without significant gains in
performance.
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