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Abstract

While conducting a security analysis of JavaScript

and VBScript, the most popular scripting languages

on the Web, we found some serious 
aws. Moti-

vated by this outcome, we propose steps towards a

sound de�nition and design of a security framework

for scripting languages on the Web. We show that if

such a security framework had been integrated into

the respective scripting languages from the very be-

ginning, the probability of preventing the multiple

security 
aws, that we and other research groups

identi�ed, would have been greatly increased.

1 Introduction

JavaScript and VBScript are popular scripting lan-
guages used for Web-page design. A user accessing
a JavaScript/VBScript enhanced Web-page causes
scripts to be downloaded onto the user's machine
and to be executed by the interpreter of the user's
browser. Scripts typically cannot (directly) access
the user's �le-system or the network. This is prob-
ably the reason that, in contrast to the Java pro-
gramming language, no formal security model and
hence no explicit rules were ever documented on
what is and what is not allowed by scripts. A
string of serious security 
aws discovered by sev-
eral research groups, including successful attacks on
patches issued to �x original 
aws, shows that this
is a dangerous omission. In particular, we found

aws which allow private data supplied by a user
(e.g., credit card numbers, passwords, e-mail ad-
dress, etc) in a Web transaction to be captured by
an attacker. Such an intrusion works even when a
user employs encryption (e.g., SSL), since the data
is captured either before it is encrypted or after it
is decrypted. In contrast to some of the security

aws found in Java (see [MF97]), the vulnerability

we discovered does not lead to full system penetra-
tion where an attacker can access a user's resources
(�les, processes) at will. It might thus be argued
that such 
aws are less serious. However, security
and privacy concerns (see, e.g., cover story of Time
Magazine, dated 8/15/97) have been the single most
important barrier to electronic commerce achieving
its multi-billion dollar potential. In this light, at-
tacks on a user's security and privacy, are a matter
of serious concern.

Motivated by the above considerations, we proceed
to show necessary steps towards a general security
framework for scripting languages on the Web. We
put forward the notion of a safe interpreter. A safe
interpreter must assure:

� Data Security. Data provided by the user (pos-
sibly encrypted before it is transmitted) can
only be accessed by the intended recipient; the
possibility that credit-card data, transaction
details, etc. may be obtained by someone else
is highly damaging.

� User Privacy. Information about the user
should not be given out unless explicitly al-
lowed by the user; this protects against un-
wanted tracking, identi�cation dossiers, junk e-
mail, surreptitious �le uploads, etc.

As a concrete example, we give excerpts from Se-

cure JS, our proposal for a more secure version of
JavaScript. In this paper, our treatment covers se-
curity issues of scripting languages up to Naviga-
tor 4.* and IE 4.*. However, we do not address
code signing, a topic that transcends scripting lan-
guages. Also, today's browser environment allows
embedded scripts to communicate with entities like
applets and plug-ins, outside the scripting languages
proper, adding a lot to the scope of what scripts can
do via these entities. This "composition" of di�erent



entities with di�erent security policies and frame-
works is not well understood; other safe scripting
environments, such as Safe-Tcl (see [B94, OLW96]),
do not allow such composition. We can only touch
upon this issue; a thorough treatment is beyond the
scope of this paper.
The notion of a secure operating system, which pro-
vides safe containers for di�erent Web technologies
(Java, plug-ins, JavaScript) would help in achiev-
ing the above goals. However, we emphasize that
most of the uncovered vulnerabilities of scripting
languages originate within the language itself. For
instance, a rogue site may contain attack scripts
which can access (and send back) data obtained
from other documents without any penetration of
the underlying operating system or concurrent ap-
plication.
Finally, we show that if our framework had been de-
signed and integrated when either JavaScript or VB-
Script were conceived, the probability of preventing
the string of security 
aws, that were identi�ed by us
and other research groups, would have been greatly
increased. This motivates the need for future de-
signs of scripting languages to explicitly consider se-
curity aspects during initial design. However, secu-
rity is never absolute. Implementation errors, even
in a sound security design, are not unlikely and can
be exploited by an attacker. Such 
aws, however,
are harder to identify by an attacker.

Organization of the Paper: In Section 2 we re-
view the basic concepts of browser scripting, and
brie
y introduce JavaScript and VBScript, the two
most popular scripting languages for Web browsers.
Section 3 presents the essence of our attacks on
JavaScript and VBScript capable browsers. We
then propose, in Section 4, a security framework
for scripting languages on the Web. We illustrate
this framework with concrete notions and examples
taken from our proposal of Secure JS. In Section 5,
we discuss our attack in more detail and point out
how our framework would have helped in prevent-
ing it. Section 6 concludes. In the Appendix, we
discuss attacks designed by other groups and again
show how our framework would have helped in pre-
venting them.

2 Browser Scripting Languages: An

Overview

JavaScript (see [F97, KK97]) is a simple procedu-
ral language that is interpreted by Web browsers

from Netscape Corp. (JScript, Microsoft Corp.'s
implementation, is a clone that is interpreted in
Microsoft's Web browsers. In the rest of this pa-
per, we use JavaScript to refer to both strains.)
JavaScript is object-based in the sense that it uses
built-in and user de�ned extensible objects, but
there are no classes or inheritance. The code is
integrated with, and embedded in, HTML. By de-
fault, JavaScript provides an object-instance hier-
archy that models the browser window and some
browser state information. E.g., the navigator ob-
ject provides information about the browser to a
script, and the history object represents the brows-
ing history in the browser window. Also, through a
process called 're
ection', JavaScript automatically
creates an object-instance hierarchy of elements of
the script's HTML document when it is loaded by
the browser. The location object represents the
URL of the current document, while the document
object encapsulates HTML elements (forms, links,
anchors, images etc.) of the current document. This
de�nes a unique name space for each HTML page
and thus for each collection of scripts embedded in
that page. Variable data types are not declared,
i.e., loose typing. Object references are checked at
runtime, i.e., dynamic binding.

VBScript (see, e.g., [L97]) is an application script-
ing language that looks a lot like Visual Basic. It
is loosely typed and object based. It can be used
for scripting Microsoft's browser, Internet Explorer,
with which it communicates using ActiveX Script-
ing. ActiveX Scripting allows host applications,
like browsers, to compile and execute scripts, and
manage the name-space exposed to the script. The
ActiveX Scripting Object Model (SOM) creates an
object instance hierarchy containing, among other
things, window, navigator and history objects as de-
scribed above. Also, the location object represents
the current URL, and the document object re
ects
the current HTML document. VBScript scripts are
embedded in HTML documents, and are interpreted
automatically when the document is loaded.

3 Our Attack

While conducting a security analysis of JavaScript
we discovered a serious vulnerability in JavaScript-
capable browsers. We subsequently analyzed VB-
Script, and discovered that the vulnerability could
be exploited equally e�ectively using VBScript. The
vulnerability in Microsoft browsers was thus also in
the ActiveX Scripting Object Model - JScript and



VBScript interpreters are front ends that communi-
cate with the underlying ActiveX SOM objects.

3.1 Overview

On the Web, scripts embedded in multiple browser
windows containing documents from the same Web
site (same domain name) are allowed to access data
in each other, in order to support multi-windowed
user interfaces. Our analysis revealed, however, that
browser windows could be tricked into trusting at-
tack scripts from rogue sites, thus allowing them to
access their data. A rogue site could be set up to
track all Web-related activity of visitors even after
they had left the site, using a Trojan-horse attack.
The tracking provided access to all data typed into
forms, including password �elds, cookies, and vis-
ited URLs. The data was extracted right in the
browser, so using a secure encrypted connection to
retrieve documents didn't accord the user any extra
protection. Likewise for users behind �rewalls - data
was intercepted while in the browser, and transmit-
ted to the outside rogue site via a proxy server.

3.2 Implications

This browser vulnerability has a serious implica-
tion for Web users. Once infected by the Trojan
horse, the user's Web interaction is fully exposed to
the attacker - every URL retrieved, all data typed
into forms - including credit card numbers and pass-
words, all cookies set by servers accessed etc.

The HTTP protocol supports a facility for authen-
ticating Web users. Many Web-based services how-
ever use alternate methods of authorization that
provide more 
exibility. These methods involve the
use of dynamically generated, opaque "session keys"
embedded in URLs, in hidden �elds of forms or in
cookies. The ability of the attack to access such in-
formation in an HTML document makes all of these
authentication mechanisms susceptible to compro-
mise.

This browser vulnerability also has a serious im-
plication for intranets. Most users use the same
browser to access information on the intranet as well
as the Internet. A user who has been "attacked" us-
ing this vulnerability has essentially compromised
the �rewall for the duration of the browsing session
- the Trojan horse is able to extract data from subse-
quently loaded intranet documents and transmit it
to an external entity. Any data that the user enters
into forms - ID numbers, vendors and prices, bug
reports, passwords and other proprietary informa-
tion can be relayed to the outside. In addition, the

document itself can be subjected to analysis, yield-
ing information about di�erent �elds, options and
their corresponding values. Particularly serious is
the fact that this exploit bypasses security provided
by secure sockets or HTTP authentication, since
many Web servers and other business platforms are
administered over the Web nowadays. Information
about document URLs and links on pages can also
provide the attacker with an idea of how the do-
main is organized. This knowledge may be used to
help conduct other attacks. One can envisage a sce-
nario where the Trojan horse actively browses the
intranet, possibly under remote control from out-
side the �rewall, trolling for any and all information
accessible via the browser.

4 The Notion of a Safe Interpreter

4.1 Execution Environment

We consider a networked system. The basic entities
on a single machine in our execution environment
are windows, contexts, scripts, interpreters, name-
spaces, and external interfaces. A concrete example
of a window is a browser window. A user can have
multiple windows open on her machine at any point
in time. A window and its content (e.g., the current
HTML document displayed) de�ne a context. When
the content of a window changes (e.g., as the result
of loading a new HTML document), the window's
context changes as well. A script is a code fragment
in a scripting language embedded in the content of a
window. A document may have multiple code frag-
ments embedded in it. All of them share the win-
dow's context. The content of a window (and hence
any embedded script) is typically downloaded from
a Web server across the network by the browser. An
embedded script is executed within the window's
context by an interpreter. A name-space is the hi-
erarchy of objects accessible to a script executing
within the window's context. A script might also be
able to invoke actions external to its context via an
external interface. For example, a script can cause
the browser to open HTTP/FTP connections, send
e-mail etc. Finally, a script can establish a trust re-
lationship between its context and another window's
context, which enables it to access the name-space
of the other context via a reference. For example,
Figure 1 depicts three open windows (w, w0, and
w00) on a user machine, where the scripts execut-
ing in w's and w0's context can access each other's
name-space and scripts in w can access some exter-
nal interface, giving them additional capabilities.
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Figure 1: Execution Environment

In some instances, a browser window may contain
a framed document with multiple frames, which are
subwindows containing other documents. From the
perspective of a safe interpreter, each frame in a
framed document is an independent window.

4.2 Safe Interpreter

A script loaded into a window in the above execu-
tion environment originates at an arbitrary machine
on the network, and is therefore an untrusted entity
on the user's machine. Hence, a safe interpreter has
the task of isolating scripts from executing any un-
safe commands (those that could result in security
compromises if misused), thus implementing what is
called a padded cell in [OLW96]. The interpreter has
to implement access control with respect to objects
within the script's own context. Objects containing
browser or window data for example, should only
be read-accessible. A safe interpreter has to isolate
contexts from each other: a user might decide to
provide some information in one context to be sent
back to a speci�c machine - this information should
not be accessible to any other machine on the net-
work, and hence must be inaccessible to a script in a
di�erent context. On the other hand, under certain
circumstances, scripts in di�erent contexts require
mutual access, e.g., an application on the user's ma-
chine which runs in multiple windows requires the
ability to access data in di�erent windows. A safe
interpreter must allow this kind of access to scripts
in trusted contexts
In summary, a safe interpreter has to implement ac-
cess control, independence of contexts, and manage-

ment of trust among di�erent contexts. Provision
for these components does not realize a particu-
lar security policy. Rather, it gives a framework

in which a variety of security policies can be easily

r/wr i s

N

Figure 2: Partitioning of the Name-space

implemented. We discuss these components in the
next few sections.

4.3 Access Control

The �rst task of a safe interpreter is to clearly spec-
ify what objects are accessible to an arbitrary con-
text - i.e. what constitutes its name-space. A safe
interpreter (1) de�nes the name-space NC of a con-
text C, i.e., which objects exist at the time C is
activated, (2) the initial values of these objects, and
(3) ensures and implements the following partition-
ing of NC :

� Nr

C
: Items in the object-instance hierarchy

readable by a script in C.

� Nw

C
: Items in the object-instance hierarchy

readable and writable by a script in C.

� Ns

C
: Items created by a script in C.

� N i

C
: Items created by the interpreter in C.

We use the term item to describe either an object,
function, variable, or an object property. Func-
tions do not need to be treated separately in this
framework - they are executable if they are read-
able. Figure 2 shows the following invariants: Nr

C

and Nw

C
are disjoint, Ns

C
and N i

C
are disjoint. Also

(Nr

C
[ Nw

C
) = (Ns

C
[ N i

C
) = NC . N i

C
is special

in the sense that insertion and deletion of elements
into N i

C
occurs only when the interpreter creates

and deletes a context - scripts in an active context
cannot directly add and remove items from this set.
Initial values of some of the items in N i

C
depend on

the window, in which the context is loaded and ac-
tivated - the execution environment. It is the role of
the safe interpreter to assure correct initialization.

Design Issue 1 for Secure JS: De�ning the

Name-space The �rst design issue is to exactly
de�ne NC = (Ns

C
[N i

C
). The client-side JavaScript

environment is de�ned by its object instance hierar-
chy - objects have properties which may be other
objects. N i

C
is roughly equivalent to the entire



JavaScript object hierarchy at the time an HTML
document is being loaded into a window. Every
object created by a script after the document is al-
ready loaded belongs to Ns

C
. The window object is

the root of the JavaScript object instance hierar-
chy. It has a number of properties. For example,
window.name is a string that contains the browser-
window's name. The window object also contains
other properties such as the window.document ob-
ject that contains HTML elements re
ected from
the current document, the window.navigator ob-
ject that encapsulates properties of the browser
software, the window.history object that repre-
sents the browsing history in that window etc. All
of these properties are created by the interpreter
when a context is loaded and hence belong to N i

C
.

In contrast, consider the code fragment var foo;

foo = "bar";. This assignment is equivalent to
window.foo = "bar";, and results in the window

object getting a new property foo, whose value is
the string "bar". This property foo of window

is created by a script after the context has been
loaded. Consequently, foo belongs to Ns

C
.

Explicit speci�cation of what belongs to the name-
space regulates what can ever directly be accessed
by a script. A more �ne-grained speci�cation of
what belongs to N i

C
depends on the policy for User

Privacy. For example, document.referrer con-
tains the URL of the document from which the
user reached the current document. Some of the
properties of window.navigator (e.g. userAgent)
contain information about the user's operating sys-
tem. Many privacy-conscious users employ pri-
vacy proxies, such as the Anonymizer (see [Anon])
or LPWA (see [LPWA]) to �lter this type of in-
formation from their HTTP requests. Hence, we
recommend against the inclusion of these items in
N i

C
(and hence in NC). The window.history ob-

ject contains an array of strings that specify URLs
that have been previously visited by the user in
that browser window. In all current versions of
JavaScript, this array is no longer in N i

C
by de-

fault, to protect against unauthorized access to that
information by scripts. Note that Ns

C
contains ob-

jects created directly by scripts. From the stand-
point of security and privacy, these objects do not
need to be protected from the scripts that created
them. This semantically splits the name-space into
two disjoint subsets, one that contains objects to
which scripts have largely unregulated access (Ns

C
),

and one that contains objects that can be accessed

and manipulated only in speci�c ways (N i

C
.) 2

Design Issue 2 for Secure JS: Read-only

vs Writable Objects We now have to specify
the partitions Nr

C
and Nw

C
. Semantically, cer-

tain properties of the name-space are unmodi�able,
e.g., document.lastModified speci�es the time at
which the currently loaded document was last mod-
i�ed; document.URL contains a string that repre-
sents the URL from which the document was re-
trieved. Such objects are trivially in Nr

C
, the read-

only subset of the name-space. Other properties,
such as document.forms.length etc., that are re-

ected from the loaded HTML document should not
be directly modi�able by scripts, and hence belong
in Nr

C
. Object properties, like document.domain,

are used for trust management (see Section 4.5) and
should be in Nr

C
. The value property of most form

elements is intended to be modi�able by scripts, and
thus belongs to Nw

C
. However, the value property

of a FileUpload element contains a user speci�ed
local �lename to be transmitted over the network
as part of the form submission. To disallow scripts
from setting this property and retrieving arbitrary
local �les, this object rightly belongs in Nr

C
. All ob-

jects created directly by a script are writable, and
hence in Nw

C
. One method of unauthorized activ-

ity involves a script covertly passing information to
another script. This necessarily involves one script
writing a value into an object that is subsequently
read by another script. By treating writable objects
(in Nw

C
) more strictly, the interpreter can protect

against establishment of such covert channels. 2

We have seen how a safe interpreter assures that NC

is always disjoint from any private user resources
on the machine, such as the �le system, process
data, sockets, etc. This is much like the concept
of a padded cell in Safe-Tcl ([OLW96]). However,
access to such resources is very useful. In Safe-
Tcl, such accesses are regulated via a master inter-

preter, whose methods can be invoked by the safe
interpreter. Hence, such access is regulated within
the language itself. Unfortunately, for scripting lan-
guages on the Web, no such master interpreter is
available. External interfaces give a script capabil-
ities to invoke browser functionality, or methods of
Java applets and ActiveX scripts. Each such invo-
cation across interfaces needs to be examined by the
interpreter, which has the option of (1) allowing the
call to proceed, (2) aborting the call, or (3) asking
the user's explicit permission for the call to pro-
ceed. However, the resulting overall security policy
depends both on the policy of the safe interpreter
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Figure 3: External Interfaces

and the policy of the external interface, the latter
being beyond the control of the safe interpreter.
For example, Figure 3 presents a situation, for
JavaScript, in which scripts can access the browser,
Java applets, and browser plug-ins through exter-
nal interfaces. As a result, a script can (albeit indi-
rectly) access the �le system or the network, making
HTPP, FTP, and SMTP requests via the browser.
Hence, the overall access security policy with re-
spect to these resources depends, besides the safe
interpreter, on the policies for the browser, for ap-
plets, and plug-ins. For example, if a new method
is introduced for applets to access a �le and the safe
interpreter remains unchanged, then a script invok-
ing this new method might not be subjected to an
appropriate check by the safe interpreter. What is
really needed, is sound semantics for composition

of security policies. This is an area hardly inves-
tigated and understood at the time of this writing
and is beyond the scope of this paper. A safe in-
terpreter therefore should minimize the number of
accepted external interfaces and their methods of-
fered to scripts. Furthermore, it should adopt a con-
servative policy for every invocation of a call across
an external interface, as well as external accesses to
the script's name-space. A secure operating system
providing safe containers and interfaces for di�erent
applications (Java, plug-ins, etc) is an alternative.

Design Issue 3 for Secure JS: Access to Ex-

ternal Interfaces In order to be useful, JavaScript
needs, at the very least, an interface to browser ca-
pabilities to access the network and special �les.
User supplied data (in forms) need to be transmitted
back to an origin server. A script chooses the origin-
server (URL) via form.action and the SUBMIT
method via form.method, and submits the user data

via form.submit. Whenever a protocol speci�ed in
the URL of the origin server is not HTTP, the safe
interpreter should get a user's approval. SMTP and
FTP requests potentially reveal a user's e-mail ad-
dress. Furthermore, a user might be browsing via a
privacy HTTP-proxy and thus unwittingly lose this
protection when being switched to another proto-
col. The safe interpreter must prevent a script from
directly accessing local �les of a user. This includes
any browser related �les, such as bookmarks, caches,
history, etc. A general treatment of external inter-
faces (with Java, plug-ins etc.) is beyond the scope
of this paper - it requires an understanding of the
very general issue of composition of security policies.

2

4.4 Independence of Contexts

To ensure independence of di�erent contexts, the
following restrictions have to be enforced by a safe
interpreter:

� For each active context C, Nw

C
and Ns

C
must

be disjoint from NC
0 of each other context C 0.

If an active context C is terminated and a new con-
text C 0 is loaded and activated in a window w, a
safe interpreter has to do the following operation in
NC in order to transform it into the initial name
space NC

0 such that the name space NC
0 does not

depend in any way on C (see also Figure 4):

� Remove and rebuild N i

C
: The set (instance hi-

erarchy) is deleted and rebuilt according to the
newly loaded HTML document. This process
must ensure that while rebuilding, each item in
Nw

C
is set to a neutral value (null).

� Delete Ns

C
: remove all its items.

� Invalidate all references to NC within other
contexts, which have been established by a
trust relationship (see subsequent section).

Design Issue 4 for Secure JS: Independent

Browser Windows A safe interpreter must ensure
that the memory of the object hierarchy that cor-
responds to Nw

C
is disjoint for di�erent windows.

This includes objects like the window.navigator

object, which might represent the same browser in-
stance for all windows. Enforcing disjointness pro-
tects against the establishment of covert channels
between scripts. As described earlier, one method
of unauthorized script activity involves a script
covertly passing information to another script by
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writing a value into an object that is subsequently
read by the other script. This is particularly rele-
vant for items whose value persists across document
retrievals, e.g., some properties of the window ob-
ject. By treating writable objects (in Nw

C
) more

strictly, the interpreter can protect against such
covert channels. Secure JS does not allow values
of items in Nw

C
to persist when the current docu-

ment is unloaded. For example, window.name is a
string that speci�es the name of the browser win-
dow. If scripts write a value into this property of
the window, then any changes will disappear when
the current document in the window gets unloaded.

2

Design Issue 5 for Secure JS: Garbage Col-

lection From the above discussion it follows that
garbage collection based on simple reference count-
ing is not su�cient to ensure security since it will not
collect all objects that should be collected. When-
ever a document is unloaded, the safe interpreter has
to traverse the entire object hierarchy: Each item in
Ns

C
must be deleted. E.g., the code fragment var

i; i = 0 creates an item window.i, which must
be removed. Appropriate items in N i

C
are deleted.

Each remaining item in Nw

C
must be set to a neutral

value, even if it is above the document object in the
hierarchy. E.g., window.status and window.name.
All references contained in other windows that point
to objects in the current window must be invalidated
(see also next section), even if the current window
remains open (and thus window.closed would be
false, if the window reference remained valid). 2

4.5 Management of Trust

While most contexts are typically independent, cer-
tain applications greatly bene�t from establishing
mutual trust relationships among contexts in di�er-
ent concurrently active windows. This allows, for

example, the coordination of information in multi-
ple windows when presented to a user. In order to
maintain a secure system, we need to specify (1)
when a script in context C is allowed to establish a
relationship with context C 0 and (2) the subsequent
privileges for NC

0 issued to scripts in C and vice
versa.

If context C 0 (in window w0) trusts C (in window w),
then access to C 0's name-space is allowed. The safe
interpreter provides scripts in context C with a ref-
erence to context C 0. Via this reference, a script in
C can read all items in Nr

C
0 , read and write all items

in Nw

C
0 and insert items into Ns

C
0 . Note that the

speci�cation in Section 4.4 implies that if a script
in C inserts an object into Ns

C
0 , this object will only

be accessible to C as long as C 0 is active in w0. After
that, C's reference to C 0 is set to null. We can ex-
tend this approach to di�erent trust relationships of
various degrees: (1) Read-only access to C 0's name-
space. (2) Access only to objects in C 0's name-space
which are not declared private by C 0. The second
approach requires that each object have a property
privatewhich, when set, makes the object invisible
to external scripts.

Global Access Control List. A script in context
C requests to establish a trust relationship via either
a open() or connect() function call to its interpreter.
The safe interpreter then has to decide if such a
relationship is permissible. This decision depends
on the access control policy. We make use of access
control lists (ACL). ACLs are a well-known tools
for implementing secure operating and �le systems.
In our model, an ACL is a set of contexts. For
example, an ACL can be a set of URLs, where each
URL represents a window's current content. We
associate with each context C a single access control
list (ACL), which indicates the set of contexts which
have the privilege to obtain access to NC . The ACL
is part of NC and its value is loaded whenever C is
loaded into a window. The ACL should only reside
in Nr

C
; otherwise, a script, possibly from a di�erent

context, can change the ACL.
Let us now de�ne the open() and connect() func-
tions:

� A script in C issues open(C', w'), where w0 is
a new (i.e., not currently open) window: If C
is in C 0s ACL, then a new window w0 is cre-
ated and context C 0 is activated in w0; a trust
relationship is established.

� A script in C issues open(C', w'), where w0 is an
open window with an active context C 00 (pos-
sibly C 00 = C 0): If C is in C 0s ACL, then C 00



is terminated and C 0 is activated; a trust rela-
tionship is established.

� A script in C issues connect(C', w'): If C 0 is
already active in window w0, a trust relation-
ship is established; otherwise it is handled like
an open() call.

Design Issue 6 for Secure JS: Global Access

ControlWe introduce the property document.ACL,
the document's access control list to be a member
of Nr

C
and N i

C
. In Secure JS, window.open imple-

ments the open() function described above. The re-
quired inputs are a URL and a name. The safe inter-
preter checks that document.domain in the context
of the calling script is included in document.ACL of
the context (de�ned via the URL) to be loaded. If
this check succeeds, then the interpreter proceeds
as follows: If name matches an open window w0,
then the current document (context) in w0 is un-
loaded and the new context (URL) is loaded. If
there is no match with an open window, then the
interpreter opens a new window w0 with name and
loads the the new context (URL). If the access con-
trol check is positive, window.open returns a ref-
erence to the context in w0. The safe interpreter
also checks if document.domain of w0 is included
in the calling script's document.ACL. If this check
is positive, then a side e�ect of the this function
call is that w'.opener provides w0 with a refer-
ence the calling script's context. We also intro-
duce a new method window.connect with the same
arguments as window.open. This method di�ers
from window.open only in the case where a win-
dow with name name and context URL already
exists. In that case connect simply provides the
two contexts with references to each other. Lastly,
we introduce the new object property private.
For Secure JS, each object in the object hierar-
chy has this additional property. If this property
is set to true, the corresponding object is invisi-
ble to external scripts. After executing victim =

window.open("www.vendor.com", "spy"), (and
passing the ACL check) a script might try snoop =

victim.document.forms[0].elements[0].value,
assuming that in the victim-context, the �rst �eld
in the �rst form asks the user for a credit-card num-
ber. If that �eld was speci�ed to be private, then the
safe interpreter would not execute the above state-
ment. 2

Local Access Control List. While the above ap-
proach implements a reasonable trust security pol-
icy (not unlike a UNIX �le system enhanced with

ACLs), it allows that "the right to exercise access
carries with it the right to grant access" (as noted in
the context of "unmodi�ed" capability systems in,
e.g., [B84, G89a, KL87]). For example, if a script
in context C 0 is allowed to read (and hence copy)
an object in context C, then every script which is
in a context C 00, such that C 00 is in C 0's ACL, can
read this object. For more sensitive information,
such transitivity of trust might not be suitable. For
instance, bugs in the design of C 0 can lead to unin-
tended values of the ACL of C 0, which then allows
scripts of an adversarial context C 00 to access data
in C, undetectable to C. Many extensions to capa-
bility systems have been proposed to address this
concern (see, e.g., [G89b, KH84, KL87]). In our en-
vironment, the following simple re�nement of the
above access list based control is su�cient: Besides
a context-global ACL, each object in this context
is associated with its own, local ACL (the same as
the global ACL when the context is loaded). In
the realm of secure operating systems, the data plus
its data security attributes is called a segment (see,
e.g., [KL87]). When an object gets copied (from
one context to another), the segment remains in-
tact, i.e., the safe interpreter copies the ACL as well.
The open and connect routines work as described in
the �rst solution; however, if a relationship is estab-
lished, scripts in NC get a reference only to those
items in NC

0 , for which C is in their local ACL.
Hence, a script's context now plays the role of its
capability (see [KL87]), which is checked against the
ACL of the segment of the item made accessible. A
local ACL (of a segment) is not part of the scripting
language proper and consequently should be physi-
cally stored within the safe interpreter, inaccessible
to any script. Segments copied from a di�erent con-
text might have a di�erent ACL. With this security
policy, bugs in context C 0 no longer allow access of
third parties to context C.

A somewhat di�cult aspect of the scheme described
above, is to unequivocally de�ne the semantics of
"copying" an object, which guides when the object's
ACL has to be updated. Assignments are straight-
forward. Many scripting language allow control 
ow
constructs, such as if ... then ... else or while ...

do. If a conservative policy is assumed, then assign-
ments made in the scope of a control 
ow construct
should be considered to be "copies" of values read
in the control part. This is similar to, for example,
the tainting facility of PERL (see [WCS96]).

Design Issue 7 for Secure JS: Local Access

Control If Secure JS is used with the option of local
access control, then every object in the JavaScript



object hierarchy has a property ACL, its local access
control list. Once again, ACL property belongs in
Nr

C
. When a context is loaded and items in N i

C

are created, the value of their respective ACL prop-
erty is set to the value of window.document.ACL.
Items created by scripts (and hence in Ns

C
) also

have the same initial value of their ACL. Now con-
sider the example, where a script in context C exe-
cuted window.open which returned a reference vic-
tim to another window (context) C 0. The script can
now execute the following code: creditCardNum =

victim.document.forms[0].elements[0].value

assuming that the �rst element of the �rst form
of context C 0 asks the user for a credit card num-
ber. A side e�ect of this code is the assignment
creditCardNum.ACL = victim.document.ACL.
The script in C now executes window.open again
to open another window with a third context
C 00. A script in C 00 could potentially execute
snoop = window.opener.creditCardNum. How-
ever, before this code is executed, the safe in-
terpreter veri�es that C 00's document.domain is
included in window.opener.creditCardNum.ACL,
permitting the operation only if the check succeeds.

2

4.6 How the pieces �t together

In this section, we brie
y show how the concepts of
access control, independence of contexts, and trust
management support data security and user privacy.

User Privacy: Almost all data on a user's ma-
chine which is not directly related to the current
HTML document should be considered private to
a user. Access control provides a padded cell for
scripts, which assures that scripts cannot access the
�le system, process data and other unsafe resources.
By maintaining a clear separation of data outside
a name-space, read-only items, and writable items
within the name-space, access control assures that
scripts only have access to those parts of browser
and window related data, which do not compromise
a user's privacy while browsing. We have also de-
scribed the external interface to a browser. Further-
more, independence of contexts assures that there
are no "hidden channels" among di�erent contexts.
For example, if a writable item persisted across
changes of context (as it is currently the case in
JavaScript), it could be used as a user-invisible (al-
beit non-persistent) 'cookie' accessible to collabo-
rating Web-sites.

Data Security: Data provided by a user in a con-
text C of a window w (e.g., by �lling out a form in
the context's HTML document) is only available to

scripts in a di�erent context C 0, if C 0 is in C's ACL.
Scripts in any other context however, are not able
to access this data. Furthermore, setting the private
property of an object guarantees that only scripts
of the same context can access that object. This
is assured by trust management. Independence of

contexts assures that any context C 0 activated after
C in w cannot access any data written in C. Fur-
thermore, if C 00 had a reference to a context C 0 that
was loaded in w before C, this reference was set to
null at the time C 0 was unloaded; assured by inde-
pendence of contexts. Hence, only scripts in trusted
contexts can access the user input data. Accesses to
user data by external interfaces are guarded by the
safe interpreter.

5 Security Analysis

In this section, we discuss scripting languages vul-
nerabilities exposed by di�erent attacks, highlight-
ing how they could have been prevented using a safe
interpreter. We discuss other variants of this attack,
as well as other problems with JavaScript in the Ap-
pendix.

5.1 Bell Labs Attack

Our security analysis of scripting languages on
browsers from Netscape Corp. and Microsoft Corp.
that are currently in use revealed that browser win-
dows could be tricked into trusting attack scripts
from rogue sites, thus allowing them to access
their data (and hence the name-space of embedded
scripts). See [CERT97, NN-Bug97, MSIE-Bug97].
Using this vulnerability, a rogue site could be set
up to track all Web-related activity of visitors even
after they had left the site, using a Trojan-horse at-
tack. The tracking provided access to all data typed
into forms (e.g., password �elds), to cookies, and to
visited URLs.
There were three requirements for the Trojan horse
to successfully snoop on user activity. It needed
to persist across multiple document fetches (script
context changes), it needed to be able to access data
from other loaded documents (across windows), and
it needed to be able to transmit captured data to a
desired location. A 'safe interpreter', properly im-
plemented, would have safeguarded against all those
attack components.

5.2 Initialization

Initially, the user loads an HTML document (con-
text C) into a browser window w, which (unknown



to the user) contains some adversarial script. This
script �rst sets itself up to exist independently of the
original window w, so it can persist across multiple
document loads in w. To do this, it creates a new
window (subsequently called the snooping window)
w0 using a window.open() call, and loads a di�erent
HTML document (context C 0) that contains the at-
tack script into w0. Though a vigilant user could
notice the presence of the new window, the creation
of a new window is not a suspicious act in itself-
many sites use multiple windows to display docu-
ments on the Web. In addition, control over size,
placement and stacking of windows can be used ef-
fectively to reduce the chances of detection.

5.3 Data Extraction

The attack script in w0 next gets a handle (object
reference) to window w. In Netscape Navigator 2.*,
this is done by setting a property of the snooping
window w0 when it was created by the adversarial
script in window w. In all other browser versions,
the window.opener property of the JavaScript object
window gives the attack script in window w0 the
desired reference to w. We discuss more speci�cs of
the vulnerability and the attack in the context of
di�erent browsers, highlighting the de�ciencies that
were exploited.

Netscape Navigator

Navigator 2.*, 3.*, and 4.* all use various means of
trust management: (1) document address based ac-
cess control - only a script from the HTTP server
(domain name) that sent the HTML document is
able to access data in a document, (2) a Perl-like
'tainting' model ( [WCS96, F97, KK97]), and (3)
a digital signature based scheme for access control
[KK97], in which only signed scripts with the appro-
priate rights are able to access data in documents
from other domains.
The attack script (in window w0) bypassed secu-
rity in all cases by using the window reference
to insert arbitrary scripts into the observed win-
dow w's context in the form of JavaScript URLs
(These are URLs of the form javascript:<JavaScript

code>.) We discovered that code in these JavaScript
URLs was not subject to access control and per-
sisted across document reloads (context changes) in
w. The inserted scripts periodically gathered all
information available in the current context of the
observed window w, and made it available to the
snooping window w0. Data was stolen by directly
writing into properties of the snooping window doc-
ument from the observed window, in the case of

Navigator 2.* and 3.*. In the case of Navigator 4.*,
data was extracted by writing to and reading from
a property of a mutually accessible object. Hence,
the contexts of these two windows (w and w0) were
not disjoint!

Microsoft Internet Explorer

Microsoft Internet Explorer 3.* did not impose any
security restrictions that needed to be bypassed.
Starting with the window reference of the observed
window w, attack scripts in the snooping window
w

0 were free to walk the instance object hierarchy
of the observed window w, and had direct access to
all the information in any documents subsequently
loaded into the observed window. The attack scripts
periodically polled the current context C of the ob-
served window w for its contents, copied the data,
and then transmitted the captured data to a remote
server.

We subsequently discovered that the same e�ect
could be achieved using VBScript. This variant of
the attack scripts used VBScript to set up a snoop-
ing window w0, which was subsequently able to walk
the instance hierarchy of the observed window w,
and capture and transmit all the information.

The beta version of Microsoft IE 4.0 also has a se-
curity model centered around script address based
access control. Once again, the exploit bypassed
security by using JavaScript URLs to inject and ex-
ecute arbitrary JavaScript code in the observed win-
dow, and to move captured data from the observed
window to the snooping window.

5.4 Data Transmission

Once data was obtained, scripts in the snooping
window w0 were free to transmit it to a location
of their choosing. They could transmit directly via
HTTP by sending the data to a dynamically con-
structed URL. This could not be detected by the
user. The snooping window could put the data into
�elds of a form and automatically submit the form.
This method could be detected and circumvented
by a vigilant user who had set up the browser to
require interactive con�rmation of all form submis-
sions. Finally, code in the snooping window could
communicate with an installed Java applet and/or
ActiveX script to transmit the information to a de-
sired location. This also could not be detected by
the user.



5.5 Role of a Safe Interpreter in the Bell
Labs Attack

The safe interpreter described in Section 4 would
have protected against this style of attacks. When
the attack was set up, context C in w, the observed
window, and context C 0 in w0, the snooping window,
trusted each other, since they both originated on
the attacker's Web-site. Proper trust management
would have terminated the trust relationship when
C was unloaded from w - trust doesn't persist across
unloading of HTML documents (context changes.)
The contexts would have been prevented from writ-
ing into each other. Enforcement of independence of
contexts by the safe interpreter would subsequently
have disallowed any accesses from C 0 to C (and vice
versa) via the reference to C, rendering it useless
for tracking. Finally, a regulated external interface
could have been used to implement policies that
alerted the user to potentially suspicious activity
when the safe interpreter detected that an attempt
was made to send data from a di�erent site to the
attacker's machine.

6 Conclusions

We have shown how taking steps towards a care-
ful security design for scripting languages can help
in preventing successful attacks on a user's se-
curity and privacy on the Web. It is not sur-
prising that well known notions in access con-
trol, such as \ACL" and \capability" (see, e.g.,
[B84, G89a, G89b, KL87]) reappear, not only in
our context, but also in ongoing research on how
to design a more 
exible Java (downloaded ex-
ecutable content) security architecture (see, e.g.,
[JRP96, G97, WBDF97]). It demonstrates that
for a sound security model for downloadable, exe-
cutable content on the Web, there are no shortcuts
to a careful design based on notions and algorithms
developed for secure operating systems.
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Appendix: Other Attacks

In this section we describe some of the other browser
scripting language based attacks that were reported.

The Tracker attack

An attack that behaved similar to the Bell Labs at-
tack, and worked speci�cally in Netscape Navigator
3.0 was devised independently, see [B97], and was
equally e�ective at monitoring user activity on the
Web. It worked even for Navigator 3.02, which in-
corporated a patch for the Bell Labs attack! The
onUnload() event handler for document objects is a
piece of JavaScript code that is executed when the
browser unloads the current HTML document be-
fore replacing it with a new document. This attack
worked by using attack scripts in an attack win-
dow w0 (context) to dynamically insert a new onUn-

load() handler in the observed browser window w.
This newly inserted code would be activated when
the current document C was unloaded, and would
walk through the object instance hierarchy and sur-
reptitiously transmit all accessible information to a
remote server.

A safe interpreter would not allow scripts of an un-
trusted context C 0 to insert code into context C,
thus disallowing subversion of the onUnload() event
handler.

Singapore Attack

Another similar attack was devised independently
(see [C97]) and worked speci�cally in Netscape Nav-
igator 4.*. It was even more insidious. This Tro-
jan horse did not use a separate window to per-
sist across multiple document fetches, and was thus
harder to detect. The Java VM in browsers allows
applet threads to continue to run even after the doc-
ument that started the applet is unloaded. (A dis-
cussion of Java and its security is outside the scope
of this document, see, e.g., [MF97]). LiveConnect
[F97] is a 'glue' technology from Netscape Corp.
that is designed to allow Java applets, browser
plugins and JavaScript scripts to communicate in
Netscape's browsers. It is manifested as an API
that programmers can use to implement desired in-
teraction between these di�erent entities. An applet
can communicate with scripts by using LiveConnect
Java classes to get a window handle (reference to
a JavaScript context). The attack applet obtained
a window handle of its own window w, which re-
mained valid even after the HTML document C that
initially loaded the applet was unloaded, and an-
other HTML document C 0 was loaded into the win-
dow. The applet could then, via the window handle,
walk through the JavaScript object instance hier-
archy of the new document, access any contained
information, and transmit it to a remote server.
A safe interpreter would invalidate the reference to a
context C (including references given to external in-
terfaces) as soon as C was unloaded and thus would
prevent the Singapore attack. This attack however,
is a reminder that interaction between di�erent en-
tities with di�erent security policies is not well un-
derstood and always a potential threat.
This point was further substantiated by the Santa
Barbara attack (see [S97]), which produced similar
results in Netscape Communicator 4.02. It used a
Java applet to access and steal data in HTML doc-
uments in an observed windowW by tricking it into
executing attack JavaScript code.

Other Scripting Attacks

From the start, JavaScript implementations inad-
vertently allowed malicious scripts to attack a user
in di�erent ways [L96].
Early implementations of JavaScript stored the
user's browsing history into the history object, and



allowed scripts read-access to the whole object. Ma-
licious scripts were free to transmit this informa-
tion to a server, allowing operators to trivially build
dossiers on Web users. Another problem, discovered
early on, was the complete absence of access control!
This allowed malicious scripts to actively (and eas-
ily) track a user's browsing history by monitoring
another browser window. A variant of this method
allowed scripts to browse directories in a user's ma-
chine by starting with a document obtained via a
URL using the �le: protocol - the script could walk
through the instance hierarchy of a dynamically gen-
erated document that represented the directory and
its contents from the local �le system, and transmit
this information to a remote server. In another in-
stance, the interpreter let scripts from one document
(context) stay resident even after the document was
unloaded, opening the door to variants of the above
attacks.

Browsers began to support the mailto: protocol for
submitting forms on the Web, which used the E-
mail infrastructure for transport, instead of HTTP.
Automatic submission of forms by scripts, using the
mailto: protocol (and hence, the browser as an ex-
ternal interface) allowed Web-site operators to sur-
reptitiously capture the email address of users. File
Upload elements in HTML-forms provided a mech-
anism for Web users to transmit (or upload) �les
from the local �le system to a remote Web server.
Malicious scripts, however, were able to specify the
absolute path of an arbitrary �le, and cause the
browser (again as an external interface) to automat-
ically submit the form, transmitting the contents of
that �le to the remote server.

The �x for these problems typically involved hob-
bling the responsible feature - scripts were no longer
allowed to access the list of URLs in the history

object; a script-address based access control pol-
icy was developed - JavaScript scripts could read
properties of a document only if the scripts were
loaded from the same server (domain name) as the
document; automatic submission of forms using the
mailto: protocol was disallowed; and File Upload
elements in forms could have their value set only
interactively, not by a Web-site operator.

An insidious variant of the File Upload attack was
later discovered in Netscape browsers. It exploited
an obscure bug in the implementation of JavaScript
that allowed an attack script to assign an arbitrary
�le name to a File Upload element of a form. (An
implementation of this attack violated a name-space
rule of the safe interpreter by adding elements to
N i

C
, the interpreter-created object set, after the

context C was already activated!) The speci�ed

�le would be transmitted to the Web server when
the form was submitted, either automatically by
JavaScript or as a result of a user-initiated submis-
sion.
The recently reported French Privacy Bug in
Netscape Communicator 4.02 allowed a malicious
script to read and transmit a user's local browser
preferences �le if the script could successfully guess
it's location on the local �le-system. The Freiburg
Issue a�ected Microsoft Internet Explorer 4.0, and
allowed a script to read and transmit local text,
HTML or image �les if the JScript or VBScript
script could successfully guess their location on the
�le-system.
Though most of these 
aws were �xed as scripting
implementations evolved, a formal speci�cation of
a safe interpreter or safe interaction with a browser
vis-a-vis scripting has not been developed and pub-
licly released.
Access control in the safe interpreter formally spec-
i�es what a script is allowed to access in the user's
environment - hence policies on access to history

information, user information, �les etc. can eas-
ily be implemented. Regulated external interfaces
can be used to implement policies that safeguard
against surreptitious capture of information via
HTTP, FTP and SMTP, or from the �le-system.
Finally, the formalism of a safe interpreter enables
one to reason about browser scripting at the level of
semantics, rather than mechanics of di�erent oper-
ations.


