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Abstract

Programmable mobile phones and personal digital
assistants (PDAs) with microphones permit voice-
driven user interfaces in which a user provides in-
put by speaking. In this paper, we show how to ex-
ploit this capability to generate cryptographic keys
on such devices. Speci�cally, we detail our im-
plementation of a technique to generate a repeat-
able cryptographic key on a PDA from a spoken
passphrase. Rather than deriving the cryptographic
key from merely the passphrase that was spoken|
which would constitute little more than an exercise
in automatic speech recognition|we strive to gener-
ate a substantially stronger cryptographic key with
entropy drawn both from the passphrase spoken and
how the user speaks it. Moreover, the cryptographic
key is designed to resist cryptanalysis even by an
attacker who captures and reverse-engineers the de-
vice on which this key is generated. We describe
the major hurdles of achieving this on an o�-the-
shelf PDA bearing a 206 MHz StrongArm CPU and
an inexpensive microphone. We also evaluate our
approach using multiple data sets, one recorded on
the device itself, to clarify the e�ectiveness of our
implementation against various attackers.

1 Introduction

Futuristic mobile computing platforms will o�er,
and in some cases will require, methods of user input
other than a keyboard, mouse or joystick. This is
especially true for head-mounted displays and other
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wearable computers (e.g., see [22]). For such fu-
turistic devices, and even for next-generation PDAs
and programmable mobile phones, voice is a leading
contender for the dominant user input medium.

We argue that if voice prevails in this sense, then
this poses a challenge for securing data on these
devices. On the one hand, if our experience with
laptop computers and mobile phones is any indica-
tion, then these devices will be stolen frequently:
Laptop theft is already the second leading quan-
ti�able cost to enterprises from IT-related security
threats [19]. Similarly, mobile phones are the object
of theft in four of every ten personal robberies in sev-
eral cities in the United Kingdom, and these areas
logged a fourfold increase in personal robberies in-
volving mobile phones between 1998{99 and 2000{
01.1 These trends suggest that encryption of any
sensitive data on such devices is prudent. On the
other hand, presuming that these devices will not be
tamper-resistant, the cryptographic key with which
such encryption can be performed would need to
be derived from the voice input of the user, pre-
sumably some form of spoken passphrase. Unfortu-
nately, spoken passphrases are likely to have far less
entropy than typed ones, due to their need to be
pronouncible and due to other forms of information
loss in a spoken representation (e.g., capitalization
and punctuation).

In this paper we describe an implementation of an
approach to derive a repeatable cryptographic key
from spoken user input, in which the entropy of
the key is drawn from both the passphrase that is
spoken and the speech patterns of the user while
speaking it. In this way, even if the entropy of
the passphrase space is small, the variability across
users' vocal tracts will pose an additional obstacle
to the cryptanalysis of the key. Moreover, our ap-
proach uses techniques designed to withstand an at-

1See http://news.bbc.co.uk/hi/english/uk/newsid 1440000/
1440863.stm.

This version di�ers slightly from the Proceedings of the 11th USENIX Security Symposium, 2002.



tacker who captures and reverse-engineers the de-
vice on which the key generation takes place (but
not while it is taking place), i.e., an attacker who
has full access to the stable storage of the device.
Our general approach for achieving this was dis-
cussed in [16], though as only an initial step toward
this goal, that work evaluated the approach only for
the generation of 46-bit keys, using only utterances
recorded over phone calls, and without regard for
the diÆculties faced in implementing the approach
on resource-constrained devices. Here, we provide a
somewhat more realistic evaluation of this approach
using a full implementation on an o�-the-shelf PDA
(the Compaq IPAQ), using data recorded on that
PDA, and targeting 60-bit cryptographic keys. We
detail numerous changes and re�nements we needed
to make the approach viable on this platform. We
will also give evidence to suggest that the adversary
gains little by knowing the user's passphrase, and
that the advantage the adversary gains by addition-
ally recording the user saying phrases other than the
passphrase is less than one might expect.

We caution the reader, however, of several limi-
tations of our analysis and our approach. First,
though we demonstrate the reliable re-generation of
a key using an 60-bit characterization of the user's
utterance, we do not claim to necessarily achieve
keys with 60 bits of entropy. Indeed, one can draw
few conclusions regarding key entropy from the lim-
ited user studies [16, 17] that we have been able to
perform. That said, our studies suggest that the
technique we have implemented does draw signif-
icant entropy from passphrase utterances, and at
the very least should o�er greater entropy than the
passphrase space alone. Second, as our approach
strives to re-generate a cryptographic key whenever
the legitimate user utters her passphrase, it is nec-
essarily vulnerable to an attacker who can obtain
both the user's device and a high-quality recording
of the user uttering her passphrase; this exposes all
the user's keying material, after all. While any bio-
metric is vulnerable to such an attack, we raise this
point here to emphasize the primary attacker with
which we are concerned: the attacker who captures
the device but that does not have access to the user.
That said, we do show, somewhat surprisingly, that
knowledge of the user's passphrase seems to help the
attacker little, and that even recordings of the user
saying other phrases helps only marginally.

2 Background

In this section we give the background necessary
to describe our contributions in this paper. Our
general approach to generating a cryptographic key
from a spoken utterance of a passphrase is described
in [16] and is based on an approach initially devel-
oped for generating a key from a typed password
and the user's keystroke timings during the entry of
that password [15]. How this paper relates to these
prior publications is described below.

In our approach, the system is initialized by �rst
generating a cryptographic key K, and then gener-
ating a collection of 2m shares of K using a general-

ized secret sharing scheme (e.g., see [24] for a survey
of such schemes), where m is a system parameter.
These shares are aligned in a m � 2 table that is
stored on stable storage. The shares must be gener-
ated and placed within the table so that K can be
reconstructed from any set of m shares consisting of
one share from each row of the table.

Upon entry of the passphrase, the system mea-
sures m biometric features of the user's entry of the
passphrase. We denote the i-th feature by �i, and
denote the value of feature �i on the `-th (success-
ful or unsuccessful) attempt to log into this user's
account (i.e., generate this user's key) by �i(`). In
the case of a spoken passphrase, the features �i are
features extracted from the user's utterance as de-
scribed in [16]. For the `-th login attempt, the sys-
tem then generates a bit string b` 2 f0; 1g

m from
�0(`); : : : ; �m�1(`); b` is called a feature descriptor,
and the i-th bit of b`, denoted b`(i), is determined
from the i-th feature �i(`). Algorithms for gener-
ating b` from �0(`); : : : ; �m�1(`) are proposed and
evaluated in [16], but for the purposes of this paper,
the reader can think of b` being determined by

b`(i) 

�
0 if �i(`) < �i
1 otherwise

(1)

where �i denotes some �xed threshold value. The
system then attempts to reconstruct K using the
table elements at positions hi; b`(i)i0�i<m. When
the login index ` is not necessary in the discussion,
we will typically omit it.

After a history of feature descriptors from success-
ful logins is observed (i.e., logins in which the key
was successfully reconstructed), those elements of
the table that are not typically accessed by the user
are perturbed randomly. So, for example, if the



feature descriptors b induced by a user's biometric
measurements are such that b(4) = 1 consistently,
then the h4; 0i element of the table is randomly al-
tered. If b(i) is suÆciently consistent that element
hi; 1�b(i)i in the table is perturbed in this way, then
b(i) is called a distinguishing feature. We will give
a precise characterization of distinguishing features
in Section 5.

The correct user, when inducing feature descriptors
consistent with those she has induced in the past,
should not encounter any of the altered elements in
the table. We have found, however, that in practice
it is necessary for the system to attempt reconstruc-
tion using feature descriptors within some Hamming
distance cmax of the induced feature descriptor, to
correct for up to cmax \errors" by the user (e.g.,
see [15]). This results in up to

cmaxX
i=0

�
m

i

�
(2)

secret sharing reconstructions per key
(re)generation attempt.

Security of this technique requires that an adversary
who captures the device be unable to eÆciently dif-
ferentiate a random table element from a valid share
of K. If this is the case, then an adversary may be
forced to simply guess feature descriptors until he
�nds K. If d table elements were randomized (i.e.,
there are d distinguishing features), then 2m�d out
of the 2m possible feature descriptors yield K, and
so the probability that a randomly chosen descriptor
will reconstruct the secret is 2�d.

Speci�c secret sharing schemes for populating this
table were investigated in [15]. That paper also
included an evaluation of this approach with fea-
ture descriptors of length m = 15 derived from
the keystroke timings of a user while typing an 8-
character password. There, we evaluated an imple-
mentation in which the table was additionally en-
crypted with the password; in this way, the tech-
nique serves to render a dictionary attack against
the password up to 215 times more diÆcult. Our
subsequent work on voice features [16] described al-
gorithms for generating feature descriptors from the
user's voice while speaking a passphrase. It further
evaluated the security and reliability of the resulting
technique with feature descriptors of length m = 46
derived from preexisting recordings of users over a
phone line. However, in contrast to the keystroke
case, here our evaluation presumed a table that was
not encrypted with the passphrase, in order to avoid

the costs of automatically recognizing the spoken
passphrase (to decrypt the table). In this case,
m = 46 does not provide nearly enough security
for important applications.

In this paper we address the computational chal-
lenges of performing key reconstruction on a
resource-constrained PDA with more realistic pa-
rameters than our previous voice study explored.
Speci�cally, we evaluate our implementation of this
approach for feature descriptors of length m = 60,
and argue that regenerating the key K can be reli-
ably achieved on a 206 MHz StrongARM processor
by correcting for up to cmax � 5 errors (in the sense
described above). The challenges in achieving this
are the front-end signal processing needed to keep
cmax small so that expression (2) remains manage-
able, and in devising a secret sharing scheme and
corresponding reconstruction algorithm that per-
mits this reconstruction to occur in a reasonable
amount of time on this platform. Consequently, we
focus on these contributions in this paper, and refer
the reader to [16] for the algorithmic details com-
prising other steps of the key (re)generation process.

3 Front-end Signal Processing

As described in Section 2, the front-end signal pro-
cessing performed by the device is critical for eÆ-
ciently generating a key from the user's utterance
of her passphrase. Intuitively, the goal of this sig-
nal processing is to translate the sound uttered by
the user|which is received in the device as a se-
ries of amplitude samples from its microphone and
analog-to-digital (A/D) converter|into a represen-
tation suited for the generation of a feature descrip-
tor (using the algorithms of [16]). Ideally, this signal
processing should yield a representation that is as
\clean" as possible, in that inter-word silence and
background noise a�ect this representation as little
as possible. The less silence and background noise in
the representation after signal processing, the more
consistent the user's utterances will be (thereby in-
creasing d and the security of the scheme) and/or
the less error correction will be necessary in the later
stages of key generation (i.e., the smaller cmax and
expression (2) can be).

Of course, the bene�ts of signal processing in terms
of producing a clean representation of the user's ut-
terance must be weighed against the computational



cost of the signal processing itself. The challenge is
to �nd the right balance of eliminating environmen-
tal e�ects early via signal processing, versus relying
on the error correction in the key generation step
to compensate for the e�ects of noise and silence in
the user's utterance. In this section we describe the
series of signal processing steps that we believe best
achieves this balance. These steps are pictured in
Figure 1 and described textually below.

A/DC down sampling
autocorrelation

analysis

LPC
analysis

silence
removal

cepstrum
mean-subtract

frames
voice-only

endpoint
detection

energy

Figure 1: Outline of the front-end modules used for
capturing the speech and processing the signal to
generate a sequence of frames comprising the voice-
only portions in the utterance.

As the speaker utters her passphrase, the signal is
sampled at a prede�ned sampling rate, which is the
number of times the amplitude of the analog sig-
nal is recorded per second. The minimum sampling
rate supported by our target platform, the IPAQTM

(see Section 5.1), is 32 kHz; i.e., 32; 000 samples are
taken per second.2 Each sample is represented by
a �xed number of bits. Obviously, the more bits
there are per sample, the better is the resolution of
the reconstructed signal, but the more storage is re-
quired for saving and processing the utterance. In
our implementation, we represent the signal using
16 bits per sample. Therefore, the amount of stor-
age required per second of recorded speech is

32000
samples

second
� 2

bytes

sample
= 64

kilobytes

second
(3)

Since the utterance of one of our tested passwords
can easily be 6 seconds or more, the storage require-
ments for processing even a single utterance can be

2The IPAQ is claimed to support lower sampling rates,
but we have been unable to get them to work correctly under
Linux.

signi�cant for a resource-constrained device. This
is especially true since, as we have found by experi-
ence, writing to stable storage while the recording is
ongoing can introduce noise into the recording. In
our case, this particularly posed an issue for our ex-
perimental evaluation in which we needed to acquire
many samples from the speaker; see Section 5.1.

To make subsequent processing on the device eÆ-
cient, our implementation �rst makes several modi-
�cations to the recorded speech to reduce the num-
ber of samples. For example, we down-sample the
32; 000 samples per second to only 8; 000 samples
per second, e�ectively achieving an 8 kHz sampling
rate. For most voice-related applications, a sam-
pling rate of 8 kHz is suÆcient to reconstruct the
speech signal. In fact, nearly all phone companies
in North America use a sampling rate of 8 kHz [21].

Down sampling must be performed with some care,
however, due to the sampling theorem [20]. The
sampling theorem tells us that the sampling rate
must exceed twice the signal frequency to guarantee
an accurate and unique representation of the signal.
Failure to obey this rule can result in an e�ect called
aliasing, in which higher frequencies are falsely re-
constructed as lower frequencies. Down sampling
to 8 kHz therefore implies that only frequencies up
to 4 kHz can be accurately represented by the sam-
ples. Therefore, when down sampling to 8 kHz we
use a low-pass digital �lter with cuto� at 4 kHz to
strip higher frequencies from the signal. That is,
this �lter takes sound of any frequencies as input
and passes only the frequencies of 4 kHz or less.

After down sampling, the signal is broken into
30 millisecond (ms) windows, each overlapping the
next by 10 ms. Within each window are 240 samples
(since 8; 000 samples/second � 0:03 seconds = 240
samples). Overlapping windows by 10 ms avoids
discontinuities from one window to the next, and
additional smoothing is performed within each win-
dow to yield as smooth a signal as possible.

The goal of the next signal processing steps is to
derive a frame from each window. A frame is a
12-dimensional vector of real numbers called cep-

stral coeÆcients [20], which have been shown to be
a very robust and reliable feature set for speech and
speaker recognition. These cepstral coeÆcients are
obtained using a a technique called autocorrelation

analysis. The basic premise behind autocorrelation
analysis is that each speech sample can be approx-
imated as a linear combination of past speech sam-



ples. The extraction of a frame of cepstral coeÆ-
cients using autocorrelation analysis involves highly
specialized algorithms that we do not detail here,
but that are standard in speech processing (linear
predictive coding [10]).

A side e�ect of generating frames is a calculation of
the energy of the signal per window. The energy of
a window is proportional to the average amplitudes
of the samples in the window, measured in decibels
(dB). Energy can be used to remove frames repre-
senting silence (which has very low energy) from the
frame sequence, via a process called endpoint detec-

tion [13]. The silence portions of the feature frames
are then removed and the voice portions concate-
nated.

Final modi�cations to the frame sequence are made
via a technique called cepstral mean subtraction.
In this technique, the component-wise mean over
all frames is computed and subtracted from every
frame in the sequence. Intuitively, if the mean
vector is representative of the background noise or
the channel characteristics in the recording environ-
ment, then subtracting that mean vector from all
the frames yields a frame sequence that is more ro-
bust in representing the user's voice.

After this, the speech data is segmented and con-
verted to a sequence of bits (a feature descriptor) as
described in [16]. This feature descriptor is used to
regenerate the secret key from the previously stored
table of shares, as described in Section 2.

4 Encoding Scheme

We review the encoding scheme of Bleichenbacher
presented in [1]. That scheme focuses on the partic-
ular secret sharing scheme we use to populate the
m � 2 table described in Section 2 and from which
the keyK is reconstructed. We quickly found in the
implementation of this technique on the resource-
constrained IPAQ that the secret sharing schemes
suggested in [15] would not suÆce. That paper sug-
gests three di�erent schemes. One is suÆciently re-
source eÆcient for our purposes but also has po-
tential security weaknesses (see [15, Sections 5.1{
5.2], [2]), and while the other two address this weak-
ness [2], they are simply too computationally inten-
sive during reconstruction to permit the degree of
error correction we require. Therefore, to achieve

suÆciently inexpensive reconstruction, we use a se-
cret sharing scheme that permits fast reconstruction
and that appears to be secure for our purposes.

We emphasize that the type of security we require
for our secret sharing scheme is di�erent from the
typical security de�nition of a secret sharing scheme.
The latter de�nition is, informally, that an adver-
sary not possessing a suÆcient set of shares be un-
able to reconstruct the secret. In our case, how-
ever, the adversary who captures the device is in
possession of all shares in the table, and so clearly
possesses enough shares to reconstruct the secret.
Our security requirement is rather that the adver-
sary be unable to eÆciently �nd a suÆcient set of
valid shares in the table, i.e., a set containing a valid
share from each row of the table and no invalid (ran-
dom) elements. Ideally, the best the adversary could
do would be to repeatedly try reconstruction with
a randomly chosen set containing one element from
each row. However, because the invalid shares are
placed according to an unknown distribution deter-
mined by the biometric features of the user|and
not uniformly at random|it is impossible to for-
mally reduce the security of such a scheme to a well-
known cryptographic problem. (Obviously there are
distributions that would leave the scheme trivially
breakable.) As such, until we �nd a better way to
model security, we are stuck with heuristically se-
cure schemes; the approach described in this sec-
tion is one. Nevertheless, we will comment in detail
about our current knowledge of the security of this
scheme in Section 4.4.

4.1 Initialization

Here we do not describe the secret sharing scheme
is its full generality, but rather describe how it is
instantiated for our particular purposes. When a
device is initialized for a user, the device �rst selects
a random (m� 1)-element column vector s 2 Zm�1

p

for p a prime. Here, p can be small; p = 231 � 1 is
a suitable choice, so that arithmetic on 32-bit pro-
cessors is very fast. The vector s is a secret vector,
the recovery of which is necessary to obtain the key
K. For example, K can be de�ned as K = h(s) for
h a one-way function, or K can be encrypted with
h(s).

The second step in initialization is to generate a ran-
dom 2m�(m�1) matrix U = (uij)0�i<2m;0�j<m�1

where each uij 2 Zp. U is a data structure that



is stored in addition to the table, though if U is
generated pseudorandomly, then storing the seed of
the pseudorandom process is suÆcient for U to be
regenerated when needed. The 2m-element table
t = (t0; t1; : : : ; t2m�1)

T 2 Z2mp is then generated as
t �p Us (where \�p" denotes equivalence modulo
p). That is, t is the table as described in Section 2;
intuitively, the element in the i-th \row" and j-th
\column" for 0 � i < m and j 2 f0; 1g is t2i+j .

To complete initialization, s is deleted, and U (or
the seed needed to regenerate it), the table t, and
prime p are stored for the next key regeneration at-
tempt. In addition, y = h0(s) is stored for some
(di�erent) one-way and collision-resistant function
h0 6= h, so that when s is reconstructed, it can be
recognized as correct.

After a suÆcient number of successful key recon-
structions (see Section 4.2), the table t is \hard-
ened" as described in Section 2: if over a number of
successful key reconstructions, each induced feature
descriptor b is consistent on the i-th feature (i.e.,
b(i) is usually the same, as speci�ed more precisely
in Section 5), then element t2i+(1�b(i)) is assigned
to be a random element of Zp. This should usually
not a�ect reconstruction for the correct user, since
that user typically selects t2i+b(i).

4.2 Key reconstruction

As described in Section 2, the input from the user,
in this case an utterance, is used to generate an
m-bit feature descriptor b. The key regeneration
program constructs a vector tb 2 Z

m
p by selecting

the corresponding elements of the table, i.e., (tb)
T =

(t2i+b(i))0�i<m. It similarly constructs am�(m�1)
matrix U b = (u2i+b(i);j)0�i<m;0�j<m�1. Note that
solving

U bs
0 �p tb (4)

for s0 would yield s = s0 if b contained no user er-
rors, and the fact that s0 = s could be con�rmed by
testing whether y = h0(s0). However, since instan-
tiating and solving (4) for all the di�erent feature
descriptors b0 within Hamming distance cmax from
b would require too much time on the target de-
vice, our error correction strategy takes a di�erent
approach.

This faster approach derives from the observation
that the equation U b0s

0 �p tb0 for a feature descrip-
tor b0 contains m equations in m�1 unknowns, and

thus is over-de�ned. This is intentional, and allows
b0 to be rejected very quickly if this equation has
no solution. Speci�cally, let ~U b0 be the m�m ma-
trix whose �rst m� 1 columns are the same as U b0

and whose last column is tb0 . Then, a solution ex-
ists only if det( ~U b0) �p 0, and so if det( ~U b0) 6�p 0
then b0 can be discarded from further consideration.
Using a recursive algorithm, it is possible to check
det( ~U b0) �p 0 for feature descriptors b0 within cmax
errors of b using only one additional Gaussian elim-
ination step per new b0. Due to this feature, our
implementation can test over 6 � 106 feature de-
scriptors b0 per second when m = 60.

Two further observations are worth noting here.
First, the determinant of even a randomly chosen
matrix is 0 mod p with probability p�1, which is
not negligible since p is chosen to be small. There-
fore, if det( ~U b0) �p 0 and so we proceed to solve
U b0s

0 �p tb0 for s
0, it remains necessary to con�rm

s0 by checking y = h0(s0). Second, there is a small
chance that (4) is not solvable even if b is consis-
tent with all the user's distinguishing features, be-
cause U b might not have full rank. Under the as-
sumption that Ub is chosen uniformly at random,
it follows that Ub has rank m � 1 with probabilityQm

j=2(1�p
�j) = 1�p�2+O(p�3). This probability

is much smaller than the probability that the sys-
tem cannot be solved because the feature descriptor
b induced by the user's utterance contains more than
cmax errors, and thus can be ignored.

4.3 Performance

For performance measurements we choose to bench-
mark key reconstruction on a 206 MHz StrongArm
and a 500 MHz Ultra II. The �rst processor is
that currently available in the IPAQTM, on which
our current implementation runs. The second pro-
cessor is in line with the current trends3 in the
hand-held market, and thus, allows us to forecast
expected performance on future PDAs. Our per-
formance benchmarks consists of a collection of
C/C++ modules cross-compiled for the ARM, com-
prising of signal processing code, an enhanced ver-
sion of cryptolib1.2 [11] updated by Daniel Ble-
ichenbacher, and a matrix manipulation package
newmatv9.0 [5] for implementing the segmentation

3The Intel 80200 processor based on the Arm compli-
ant XScaleTM microarchitecture that supports 400, 600, and
733 MHz CPUs is expected to be widely available soon (see
http://developer.intel.com/design/iio/prodbref/80200.htm).



algorithms outlined in [16].

To test the performance of our key reconstruction
routines we devised the following experiment. First,
an m � 2 table of shares of the key K is generated
as outlined in Section 2, i.e., as a user's key regen-
eration table would be initialized in practice. Then,
d rows of the table (features) are selected at ran-
dom to be distinguishing, and one element of each
of these d rows is perturbed randomly|as if the
user were consistent in utilizing the other element
of this row (see Section 2). Finally, a feature de-
scriptor b is chosen with the property that c � cmax
of the d distinguishing features (chosen at random),
say b(i1); : : : ; b(ic), are \errors", i.e., are set to select
the randomly perturbed elements of rows i1; : : : ; ic.
The key reconstruction process performs a number
of reconstructions that depends on c in its attempts
to correct for such errors; the number of reconstruc-
tions performed in the worst case is shown in expres-
sion (2) of Section 2. Our benchmark is the amount
of time required to reconstruct the key K on aver-
age, which is a rough measure of the time required
to perform �

m
c

�
2

+

c�1X
i=0

�
m

i

�
(5)

secret sharing reconstructions and test each for cor-
rectness. Note that for c = cmax, (5) is less than (2)
by
�
m
c

�
=2 since on average, reconstruction succeeds

after searching half of the feature descriptors that
correct b on exactly c locations.

Our results for this benchmark, shown in Figure 2,
are signi�cantly less than multiplying (5) by the
time to perform and test a single reconstruction in
our secret sharing scheme. The reason is due to
the signi�cant optimizations that can be achieved
as described in Section 4.2.

4.4 Security

One potential security weakness of this scheme is
the fact that an adversary who captures the device
can conceivably reconstruct s from not just one el-
ement of the table per row, but instead using any

m elements of the table. For example, if the adver-
sary had reason to believe that the �rst m=2 rows
contained no distinguishing features|and thus all
table elements in these rows were valid|then the
adversary could set t0[i] = t[i] for 0 � i < m and
U 0 = (ui)0�i<m and use these to solve for s. There-

fore, it is important to use only features that are
more likely than not to be distinguishing.

We now describe the fastest attack on our scheme of
which we are aware. An attacker who captures the
device on which the key is generated but who has no
information about the user's distinguishing features
may attack the system by repeatedly guessing a fea-
ture descriptor b at random and solving (4). If there
are d distinguishing features then each guess will be
successful with probability 2�d, but will require the
attacker to solve a system of m linear equations,
which is quite time consuming. A faster approach
is to choose feature descriptors b0; b1; : : : such that
each di�ers from the last in one bit. Then, comput-
ing U�1

bi
requires only one new Gaussian elimination

step per bi, and the further optimizations outlined
in Section 4.2 can also be applied in this case.

The expected time for this attack to succeed can be
computed as follows. Assume that bi and bi+1 di�er
in exactly one position that is chosen at random.
Let G(c) for c � 2 denote the expected number of
Gaussian elimination steps performed until reaching
a bi with no errors (i.e., that is consistent with all of
the user's distinguishing features), assuming that b0
has c errors. Note that bi+1 has a di�erent number
of errors than bi with probability d=m, and if it has
a di�erent number of errors, then it decreases the
number of errors (by one) with probability c=d and
increases it with probability (d � c)=d. Hence, we
get the following equations for G(c).

G(2) = 0

G(c) =
m

d
+

c

d
G(c� 1) +

d� c

d
G(c+ 1)

for 2 < c � d

Solving for these linear equations at c = d=2 yields
the expected number of Gaussian elimination steps
before recovering the key, since a random feature de-
scriptor contains an expected c = d=2 errors. More-
over, after the Gaussian elimination step for each bi,
m(m� 1) multiplications are required to test bi on
average. So, the total cost of this attack is as shown
in Figure 3. (Actually, this is a conservative lower
bound, since the cost of each Gaussian elimination
step itself is not counted.)

In the empirical evaluation that we perform in Sec-
tion 5, we evaluate our approach at m = 60, which
is the smallest value ofm shown in Figure 3. Here, if
70% of the features are distinguishing, then this at-
tack conservatively requires an expected 244 multi-
plications. If 80% of the features are distinguishing,
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Figure 3: A lower bound on the expected number
of multiplications to exhaustively search for the key,
assuming that the d distinguishing features are uni-
formly distributed; see Section 4.4.

then this attack requires at least 250 multiplications
on average. Obviously the security of the scheme
improves as m and d=m are increased, and this is a
goal of our ongoing work.

5 Empirical Results

In this section we empirically evaluate the security
of our technique using two di�erent data sets. In
these evaluations we attempt to conservatively char-

acterize the security of our technique against an at-
tacker who captures the device. It is clear from
Section 4.4 that the number d of distinguishing fea-
tures is central to the security of our scheme, in
that if d is small, then our scheme is vulnerable
to a key recovery attack via exhaustive search (see
Figure 3). Therefore, in order to demonstrate that
our approach is plausibly secure, it is necessary to
demonstrate that a high number of distinguishing
features can be achieved using our techniques. In
addition, we also attempt to characterize the degree
to which additional knowledge aids the attacker's
quest for the key, in the form of either knowing the
passphrase said by the user or having recordings of
the user saying phrases other than her passphrase.

We remind the reader that large d is not suÆcient

for strong security. For example, even if all fea-
tures are distinguishing (d = m) for all users, but
all users' feature descriptors are identical (and the
attacker knows this), then an attacker who cap-
tures a user's device can trivially determine the key.
Therefore, it is equally important that users' fea-
ture descriptors vary widely|or more precisely, are
drawn from a distribution with high entropy. An
entropy evaluation of user's utterances from phone
recordings of users saying the same passphrase is
described in [16, 17], and these studies suggest that
the entropy available in user utterances it substan-
tial even when users say the same passphrase. As
already noted, however, since that study involves
only recordings of users taken over phone lines, and
since that study is limited to m = 46 features, it is
insuÆcient in several ways. Unfortunately, the data



sets with which we are presently working (see Sec-
tions 5.1 and 5.2) include too few users to enable
meaningful measurements of the entropy of users'
feature descriptors, and so here we report results
for distinguishing features only.

In order to calculate the average number of distin-
guishing features per user, it is of course necessary
to de�ne when a feature is distinguishing. Let �i
and �i denote the mean and standard deviation of
feature �i over the recent history of successful lo-
gins.4 Then we say that the i-th feature is distin-
guishing if j�i��ij > k�i for some parameter k > 0.
Note that if feature i is distinguishing, then either
�i > �i + k�i and so usually b(i) = 0 for the user
(see (1)), or �i < �i � k�i and so usually b(i) = 1
for the user. Intuitively, the parameter k tunes the
\sensitivity" of the scheme, in that a small k im-
plies more distinguishing features, and a large k im-
plies fewer. Obviously k must be tuned to balance
achieving a high number of distinguishing features
with enabling the user to successfully regenerate his
key reliably, since a higher number of distinguish-
ing features is advantageous for security but also
requires increasingly similar utterances to regener-
ate the key. The parameter k will play a central role
in our evaluation.

The features �i that we use in the balance of this pa-
per are described in [16, Section 3.2]. Each is de�ned
by comparing the position of a vector characterizing
a segment of the utterance to a �xed plane. This
plane is a parameter of our scheme, and though we
will rarely mention it below, it is important for the
reader to be aware that the data we present is based
on a plane selected, based on our data, to optimize
our measures in certain ways. On the one hand, this
means that our data presents what could be achieved
with a good selection of this plane, and is thus op-
timistic in this regard. On the other hand, since
this plane is selected by searching through a small
set of candidate planes, (in�nitely) many planes are
omitted from this search. Consequently, it is likely
that planes yielding better measures exist. The ex-
perimentation we have conducted thus far does not
permit us to conclude how to select this plane in
general, and this continues to be an area of our on-
going work.

4The \recent history" is de�ned to be the last h successful
logins for some parameter h. Records of the last h successful
logins can be stored in a �le encrypted with the key that is
reconstructed on a successful login. The parameter h will not
play a role in our analysis here.

5.1 Evaluation of IPAQTM recordings

Our �rst data set was collected on a device much like
those we envision for use with our scheme, namely
a Compaq IPAQTM H3600 series. The IPAQ is a
personal digital assistant with a 206 MHz Stron-
gArm CPU, a touch screen LCD, 16 MB 
ash ROM,
16 MB SDRAM, a Philips audio codec UDA1341T
(i.e., an A/D with data compression), built-in mi-
crophones, a compact 
ash type-II expansion slot,
and a speaker output jack. The audio codec has
an integrated analog front-end including automatic
gain control, which adjusts the signal strength based
on the level of the spoken utterance. The sound
driver is full duplex and Open Sound System (OSS)
compliant [29], though we encountered some signal
problems when recording samples at 8 kHz. For this
reason we recorded our samples at 32 kHz and then
downsampled to 8 kHz o�ine; see Section 3.

As illustrated in (3) of Section 3, the storage re-
quirements for merely saving the utterance of a
passphrase can be signi�cant. To overcome the stor-
age limitations of this particular IPAQ in light of
this requirement|and in particular, to permit sav-
ing multiple utterances in our user testing|we used
a 1 GB IBM MicrodriveTM (in the compact 
ash ex-
pansion slot) as a stable store. However, to avoid
recording noise from the Microdrive on disk seeks,
the recordings are �rst written to a primary par-
tition in volatile memory. When the memory ca-
pacity is reached, the Microdrive is automatically
mounted, the data 
ushed to an ext2 �le system on
the drive, and then unmounted. In the event that
a wireless connection can be established, the Micro-
drive can be replaced with a wireless network card,
and the data written to a remote mount point.

The IPAQ was used to record utterances from ten
users. All ten users were recorded saying the
same passphrase multiple times, which in this case
was the address of Carnegie Mellon University:
\Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, Pennsylvania 15213". The user was ap-
proximately one foot away from the IPAQ's micro-
phone. The user was required to wait for at least one
second between pressing the \record" button of our
recording application and speaking, so as to not in-
terleave the voice signal with the device's attempts
to perform automatic gain control. (Since the auto-
matic gain control converges within 0:5 seconds on
the IPAQ, we later discarded the �rst half second
of recorded speech.) Each utterance was separated



from the next by approximately one minute. The
acoustic environment in which these utterances were
recorded was a standard oÆce environment, and as
such, background noise was signi�cant. Six record-
ings of each user|the \training" utterances|were
used to determine the distinguishing features for
that user. The remaining recordings for each user|
the \testing" utterances, of which there were six
from each user on average|were each used to gen-
erate a feature descriptor. Comparing each feature
descriptor to the same user's distinguishing features,
to determine the number of distinguishing features
with which the feature descriptor was consistent,
counted as a \true speaker" trial. Comparing each
feature descriptor to another user's distinguishing
features counted as an \imposter" trial.

The results of this analysis are shown in the left side
of Figure 4. This graph demonstrates the average
number of distinguishing features per user as a func-
tion of k, and the average number of these that the
feature descriptor of a true speaker or an imposter
matched.5 The error bars on the true speaker and
imposter curves show one standard deviation above
and below the average.

There are several points worth noting about these
results. First, the gap between the \distinguishing
features" and \true speaker" points indicates the
number cmax of error corrections that would need
to be performed during the key regeneration pro-
cess to achieve a reasonably low false reject rate.
For example, if k = 0:6, then cmax � 5 should
achieve a reasonable false reject rate, and correct-
ing 5 errors is feasible on today's devices (see Sec-
tion 4.3). Unfortunately, this data suggests that
choosing k = 0:6 yields fewer distinguishing features
than we would like for security (d=m � 0:5 only).
A second point worth noting is that the human im-
posters, even when saying the same passphrase as
the true user, did not match signi�cantly more of the
true user's distinguishing features than if they had
simply guessed a random feature descriptor (shown
by the \random guessing" line in Figure 4, which is
simply half the \distinguishing features" line).

5The points for a given value of k were generated using a
plane chosen to maximize the number of distinguishing fea-
tures and, among all such planes, to maximize a weighted
average of the number of features matched by the \true
speaker" and missed by the \imposter". See the last para-
graph before Section 5.1 for a discussion of this plane.

5.2 Evaluation of Speaker-J recordings

In order to evaluate a di�erent model of imperson-
ation, i.e, one where the attacker has knowledge of
the speaker being impersonated, we explored a sec-
ond data set. Our second data set is one collected
within the context of a di�erent research e�ort, and
so consequently we had less control over the avail-
ability of phrases said by the same user multiple
times. This data set consists of recordings of a
professional speaker, here called \Speaker-J", taken
in a professional studio (i.e., a room with virtually
no background noise) using a high-quality micro-
phone. The same microphone was used through-
out data collection to ensure 
at and consistent fre-
quency response. Consequently, this data set is of
a much higher quality than the data set described
in Section 5.1. This data consists of recordings col-
lected for two separate experiments, but both spo-
ken by the same speaker, Speaker-J. Part I consists
of approximately 1600 sentences (roughly 1 hour of
speech) and includes the speaker reading (with con-
sistent voice quality and head-to-microphone dis-
tance) both standard newswire text and a pre-
pared script that covers rare combinations of speech
sounds. Part II consists of 38 minutes of speech con-
sisting of a group of sentences repeated 7 times, all
recorded in a single day. The elapsed time between
the two datasets was approximately 1 year.

To evaluate our technique, each of these phrases (in
part II) were used as a passphrase in our scheme:
�ve recordings were used to generate the speaker's
distinguishing features for a given phrase, and two
recordings were used to simulate the speaker at-
tempting to regenerate his key. Speci�cs about the
chosen passphrases can be found in Table 1.

The right side of Figure 4 shows the resulting \dis-
tinguishing features" and \true speakers" curves.
These curves are analogous to the curves in the
left side of Figure 4 with the same labels: the �rst
characterizes the number of distinguishing features
for this user based on the training utterances, and
the second gives the average number of features on
which a feature descriptor generated from a test ut-
terance matched the distinguishing features. If we
look at k = 0:6, we again see that cmax � 5 should
approach a reasonable false negative rate (and is
plausible by Section 4.3). Moreover, according to
this data set, the distinguishing features at k = 0:6
are approaching a better range for security, with
d=m � 0:6. On the other hand, the higher quality
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Figure 4: Evaluation of two data sets; see Sections 5.1 and 5.2.

of these recordings may provide a more optimistic
picture than would be realized in practice.

Part I of the Speaker-J data set is very rich, and
moreover, the research e�ort that generated this
data set carefully annotated the speech, identify-
ing the beginning, ending and midpoint of each
phoneme it contains. Informally, phonemes are the
basic units in the sound system of a language; in
the case of English, there are about 50 phonemes.
With these annotations, diphones can be extracted
from the recorded speech. A diphone is a portion
of speech beginning in the middle of one phoneme
and ending in the middle of the next phoneme; a
diphone thus is an example of how the user's speech
transitions from one phoneme to another. Diphones
reveal much about the voice patterns of the user
who uttered them. So, part I of the Speaker-J data
set provides the opportunity to attempt a di�er-
ent form of attack against our system, namely one
that would simulate an attacker who had a corpus
of recordings of the user saying many things other
than the passphrase itself. A question we attempt
to answer is whether these recordings assist the at-
tacker signi�cantly in �nding the user's key.

Speci�cally, consider an attack in which the at-
tacker wishes to test a candidate passphrase (in our
case, selected from part II) but does not how the
user speaks it. The attacker uses a text analysis
module from a text-to-speech (TTS) system [28] to
translate the text of the passphrase into a string
of phonemes that realize the passphrase (i.e., a pro-
nunciation for the text), along with other important
information that is typically used when synthesizing
speech (e.g., the duration and the pitch contour for

each phoneme). Of course, any of these features
may not match exactly what the user says when she
speaks the passphrase. For example, a given word
can be pronounced a number of di�erent ways. So,
even given the correct passphrase as input, there is
no guarantee the text analysis module will yield a
string of phonemes that matches the way the user
speaks the passphrase. Moreover, the duration and
pitch predictions made by the text analysis might
di�er signi�cantly from what the real user sounds
like.

Nevertheless, suppose the attacker possesses a cor-
pus of recordings of the user speaking various
phrases other than the passphrase (in our ex-
periment, part I of the Speaker-J data), anno-
tated to identify phonemes and diphones. The at-
tacker can then attempt to construct how the user
would say the passphrase, using techniques derived
from a concatenative text-to-speech synthesis sys-
tem (e.g., [12]), in one of the following ways:

Cut-and-paste imposter Concatenate the raw
speech samples (diphones, or longer segments)
as-is from the inventory. There are various
forms of this. On the one hand, the at-
tacker may make no modi�cations to duration
or pitch of the resulting speech. This yields
speech that can sound very much like the true
speaker, though there can be severe disconti-
nuities at the concatenation boundaries. In
addition, such an approach can yield notice-
able di�erences in the recording levels within
the passphrase. On the other hand, the at-
tacker can perform minimal signal processing



to match the loudness levels and smooth the
discontinuities.

TTS imposter Use a traditional TTS signal pro-
cessing back-end to synthesize the passphrase.
Note that this is designed to produce nice
sounding speech, but that it also makes use
of the duration and pitch predictions that are
output from the text analysis module. If these
predictions do not correspond to the way the
user actually speaks, this step might impede
the attack. For example, the user may have an
idiosyncratic way of saying a particular word,
either in her passphrase or in the instance in
the attacker's recordings of the user.

We experimented with four types of cut-and-paste
attacks and two types of TTS attacks. The results
of these tests are shown in the right side of Figure 4.
The curves labeled \TTS imposter" and \Cut-and-
paste imposter" capture the best attacks of each
type that we discovered. As the curves demonstrate,
these attacks both performed similarly, and outper-
formed random guessing in some cases. However,
it appears that the attacks as we conducted them
would fall short of breaking our scheme.

Though part I of the Speaker-J data set consists of
1600 sentences, it is not the case that an attacker
would need to assemble of corpus of user recordings
of this extent to attack a typical passphrase. Table 1
approximates the average number of sentences and
their cumulative duration that the attacker would
need to record to obtain the diphones in each of the
�ve passphrases we examined. These numbers were
obtained by randomly selecting sentences from part
I of the Speaker-J dataset until the needed diphones
were obtained.

passphrase passphrase sentences
number phonemes needed

0 24 340 (805 secs)
1 52 455 (1071 secs)
2 29 1297 (3104.88 secs)
3 27 152 (367.320 secs)
4 18 415 (951.421 secs)

Table 1: Approximate number of sentences attacker
would need to record to obtain diphones necessary
to reconstruct each passphrase tested.

As speech synthesis technology improves, the size
of the corpus of user recordings required to signi�-

cantly narrow the search for the user's key will only
decrease. However, TTS and cut-and-paste attacks
of the types we performed require an annotated cor-
pus, and achieving this annotation is a very manu-
ally intensive process that is typically conducted by
speech experts. In the case of the Speaker-J data
set, it is estimated that 200 expert-hours of e�ort
was invested in achieving the annotated data set.
(It takes about one hour to manually segment one
minute of speech.) This is already a signi�cant bar-
rier to an attacker wishing to utilize these avenues
of attack. Though automatic labellers are available
(e.g., [30]), their performance is poor, and we expect
it would substantially increase the error rates for
the attacks outlined herein. We do expect, however,
that the success of such attacks will increase even for
our own data sets, as we explore in more detail ways
to improve the e�ectiveness of these attacks. In the
full version of this paper we will provide a more de-
tailed analysis of these threats on a per-passhprase
basis. We hope that this analysis will be useful for
designing e�ective countermeasures.

6 Related Work

The only prior work of which we are aware on the
topic of generating cryptographic keys from voice
utterances is that in which the cryptographic key is
merely the text of what is spoken, recognized using
standard techniques in automatic speech recogni-
tion. (Actually, we are unaware of speci�c systems
that even just do this, but since it is an immediate
extension of using a typed password as a crypto-
graphic key, we treat it as obvious prior work.) To
our knowledge, our work is the only research to-
ward determining a repeatable cryptographic key
that draws entropy from how the user speaks the
passphrase. How this paper contributes over our
own prior publications on this topic was described
in Section 2.

That said, there has been work on generating cryp-
tographic keys from biometrics other than voice.
The �rst such work of which we are aware is due
to Soutar et al. [25, 26, 27], who describe methods
for generating a repeatable cryptographic key from a
�ngerprint using optical computing and image pro-
cessing techniques. These techniques generate a key
from a two-dimensional image (a �ngerprint being
the obvious example), but do not seem to be well-
suited to the task we pursue here. Solutions based



on this technology are marketed by Bioscript (see
http://www.bioscrypt.com/).

A di�erent approach to generating a repeatable key
based on biometric data is due to Davida, Frankel,
and Matt [4]. In this scheme, a user carries a
portable storage device containing (i) error correct-
ing parameters to decode readings of the biometric
(e.g., an iris scan) with a limited number of errors
to a \canonical" reading for that user, and (ii) a
one-way hash of that canonical reading for veri�ca-
tion purposes. This canonical reading, once gener-
ated, can be used as a cryptographic key, or can be
hashed together with a password (using a di�erent
hash function) to obtain a key. Juels and Watten-
berg [9] generalized and improved the Davida et al.
scheme through a novel modi�cation in the use of
error-correcting codes, thereby shrinking the code
size and achieving higher resilience. These tech-
niques are a di�erent approach for generating cryp-
tographic keys from biometric readings, and reach a
correspondingly di�erent set of tradeo�s. Notably,
whereas our techniques permit a user to reconstruct
her key even if she is inconsistent on a majority
of her feature descriptor bits (not uncommon when
using voice as a biometric [6]), these techniques do
not.

More distantly related work is that of Ellison et
al. for generating a cryptographic key based on
answers to questions posed to a user [7]. The
work is premised on the assumption that ques-
tions can be posed that the legitimate user will an-
swer one way but others attempting to imperson-
ate the user will answer another way. Their con-
struction resembles one instance of our techniques,
namely that of [15, Sections 5.1{5.2], and in this
way their scheme achieves a degree of resilience to
forgotten answers. However, Bleichenbacher and
Nguyen [2] have shown that the Ellison et al. scheme
is insecure, whereas our constructions appear to be
much stronger. Another construction similar to that
in [15, Sections 5.1{5.2] was used in the design of a
forensic database, where a person's medical record
can be decrypted only once a DNA sample of the
person is obtained (e.g., at a crime scene) [3]. How-
ever, this scheme is also insuÆcient for our purposes,
due to the same inadequacies as the scheme of [15,
Sections 5.1{5.2].

Impersonation attacks using recordings of the user
speaking phrases other than her passphrase, as we
explored in Section 5.2, have been previously stud-
ied for the purpose of fooling speaker veri�cation

systems (e.g., [8, 18, 14, 23]). The approach taken
in these works are somewhat di�erent from our ex-
ploration here, however. Notably, in [14, 23], the
authors describe synthesizing a passphrase using a
speaker-independent model, and then adapting the
pitch and duration of the synthesized passphrase
based on relatively few recordings of the user. The
authors give evidence that even these simple attacks
can make it diÆcult to set acceptance thresholds
for a speaker veri�cation system. In future work we
hope to explore how these techniques can be applied
in the context of our work.

7 Conclusion

The viability of (re)generating strong cryptographic
keys from voice utterances remains unproven. While
we believe that the work presented in this paper of-
fers steps toward achieving this goal and evidence
that it can be reached, some critical advances are
still required. Notably, our analyses using m = 46
in [16] and m = 60 here are insuÆcient for security
as required in commercial applications, and our fu-
ture work will continue to focus on reachingm = 80
or higher. More extensive user trials to evaluate
the entropy of users' distinguishing features is also
needed. And, there remain numerous open ques-
tions as to how to tune an implementation of our
approach in practice. The analysis of Section 5
hides many parameters from view, and the relation-
ship between these parameters, security and usabil-
ity need to be further explored.
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