
USENIX Association

Proceedings of the
11th USENIX Security

Symposium

San Francisco, California, USA
August 5-9, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A General and Flexible Access-Control System for the Web

Lujo Bauer∗ Michael A. Schneider† Edward W. Felten∗
Secure Internet Programming Laboratory

Department of Computer Science
Princeton University

{lbauer,schneidr,felten}@cs.princeton.edu

Abstract

We describe the design, implementation, and per-
formance of a new system for access control on the
web. To achieve greater flexibility in forming access-
control policies – in particular, to allow better in-
teroperability across administrative boundaries – we
base our system on the ideas of proof-carrying au-
thorization (PCA). We extend PCA with the no-
tion of goals and sessions, and add a module system
to the proof language. Our access-control system
makes it possible to locate and use pieces of the se-
curity policy that have been distributed across ar-
bitrary hosts. We provide a mechanism which al-
lows pieces of the security policy to be hidden from
unauthorized clients. Our system is implemented
as modules that extend a standard web server and
web browser to use proof-carrying authorization to
control access to web pages. The web browser gen-
erates proofs mechanically by iteratively fetching
proof components until a proof can be constructed.
We provide for iterative authorization, by which a
server can require a browser to prove a series of chal-
lenges. Our implementation includes a series of op-
timizations, such as speculative proving, and modu-
larizing and caching proofs, and demonstrates that
the goals of generality, flexibility, and interoperabil-
ity are compatible with reasonable performance.

1 Introduction

After a short period of being not much more than
a curiosity, the web quickly became an important
∗Supported in part by NSF Grant CCR-9870316.
†Supported by a Fannie and John Hertz Graduate Fellow-

ship.

medium for discussion, commerce, and business. In-
stead of holding just information that the entire
world could see, web pages also became used to ac-
cess email, financial records, and other personal or
proprietary data that was meant to be viewed only
by particular individuals or groups.

This made it necessary to design mechanisms that
would restrict access to web pages. The most widely
used mechanism is for the user to be prompted for
a username and password before he is allowed to
see the content of a page [11]. A web administrator
decides that a certain page will be visible only if a
user enters a correct username/password pair that
resides in an appropriate database file on the web
server. A successful response will often result in the
client’s browser being given a cookie; on later visits
to the same or related web pages, the cookie will be
accepted as proof of the fact that the user has al-
ready demonstrated his right to see those pages and
he won’t be challenged to prove it again [19]. An
organization such as a university may require that
all people wishing to see a restricted web page first
visit a centralized login page which handles authen-
tication for all of the organization’s web sites. The
cookie placed on the client’s browser then contains
information which any of the organization’s web
servers can use to verify that it was legitimately is-
sued by the organization’s authentication service. In
cases such as this one the functions of authentication
(verifying an identity) and authorization (granting
access) are separated into two distinct processes.

More modern methods of controlling access to web
pages separate these functions even further, not as
an optimization, but as a basic element of their de-
sign. Increasingly in use are systems in which a
certificate, such as a Kerberos ticket [15, 17] or an
X.509 certificate [14], is obtained by a user through
out-of-band means; a web browser and a web server

are augmented so that the web browser can pass the
certificate to the web server and the web server can
use the certificate to authorize the user to access a
certain page. The advantage of these mechanisms
is that, in addition to providing more secure imple-
mentations of protocols similar to basic web authen-
tication, they make it possible for a host of different
services to authorize access based on the same token.
An organization can now provide a single point of
authentication for access to web pages, file systems,
and Unix servers.

Though growing increasingly common, most no-
tably due to the use of Kerberos in new versions of
the Windows operating system, these systems have
not yet gained wide acceptance. This is partly be-
cause they don’t adequately deal with all the re-
quirements for authorization on the web, so their
undeniable advantages may not be sufficient to jus-
tify their cost.

One of the chief weaknesses of these systems is that
they are not good at providing interoperability be-
tween administrative domains, especially when they
use different security policies or authorization sys-
tems. Having a centralized authentication server
that issues each user a certificate works well when
there’s a large number of web servers which are will-
ing to trust that particular authentication server (at
a university, for example), but when such trust is ab-
sent (between two universities) they bear no bene-
fit. There have been attempts to build systems that
cross this administrative divide [9] but the problem
still awaits practical solution.

We have built a system that addresses this issue;
in this paper we present its design, implementation,
and performance results. Our system even further
uncouples authorization from authentication, allow-
ing for superior interoperation across administrative
domains and more expressive security policies. Our
implementation consists of a web server module and
a local web proxy. The server allows access to pages
only if the web browser can demonstrate that it is
authorized to view them. The browser’s local proxy
accomplishes this by mechanically constructing a
proof of a challenge sent to it by the server. Our sys-
tem supports arbitrarily complex delegation, and we
implement a framework that lets the web browser
locate and use pieces of the security policy (e.g.,
delegation statements) that have been distributed
across arbitrary hosts. Our system was built for
controlling access to web pages, but could relatively
easily be extended to encompass access control for

other applications (e.g., file systems) as well.

2 Goals and Design

In designing our system for access control of web
pages we had several criteria that we wanted to ad-
dress:

• interoperability and expressivity;

• ease of implementation and integration with
web servers and web browsers;

• efficiency;

• convenience to the user;

• applicability to spheres other than web access
control.

2.1 Interoperability and Expressivity

Even the most flexible of current systems for web
access control are limited in their ability to inter-
operate across administrative boundaries, especially
when they use different security policies or autho-
rization systems. One of the main reasons for this
is that though they attempt to separate the func-
tions of authorization and authentication, they over-
whelmingly continue to express their security policy
– the definition of which entities are authorized to
view a certain web page – in terms of the identities of
the users. Though the web server often isn’t the en-
tity that authenticates a user’s identity, basing the
security policy on identity makes it very difficult to
provide access to users who can’t be authenticated
by a server in the same administrative domain.

The way we choose to resolve this issue is by mak-
ing the security policy completely general – access
to a page can be described by an arbitrary predi-
cate. This predicate is likely to, but need not, be
linked to a verification of identity – it could be that a
particular security policy grants access only to peo-
ple who are able to present the proof of Fermat’s
last theorem. Since the facts needed to satisfy this
arbitrary authorization predicate are likely to in-
clude more than just a verification of identity, in
our access-control system we replace authentication

servers with more general fact servers. In this sce-
nario the problem of deciding whether a particular
client should be granted access to a particular web
page becomes a general distributed-authentication
problem, which we solve by adapting previously de-
veloped techniques from that field.

Distributed authentication systems [7, 8, 14] pro-
vide a way for implementing and using complex se-
curity policies that are distributed across multiple
hosts. The methods for distributing and assembling
pieces of the security policy can be described using
logics [1, 6, 12], and distributed authentication sys-
tems have been built by first designing an appropri-
ate logic and the implementing the system around
it [2, 3, 5]. The most general of the logics – that is,
the one that allows for expressing the widest range
of security policies – was recently introduced by Ap-
pel and Felten (AF logic) [4]. The AF logic is a
higher-order logic that differs from standard ones
only by the inclusion of a very few rules that are
used for defining operators and lemmas suitable for
a security logic.

A higher-order logic like the AF logic, however, is
not decidable, which means that no decision pro-
cedure will always be able to determine the truth
of a true statement, even given the axioms that
imply it. This makes the AF logic unsuitable for
use in traditional distributed authentication frame-
works in which the server is given a set of credentials
and must decide whether to grant access. This prob-
lem can be avoided in the server by making it the
client’s responsibility to generate proofs. The server
must now only check that the proof is valid – this is
not difficult even in an undecidable logic – leaving
the more complicated task of assembling the proof
to the client. The server, using only the common un-
derlying AF logic, can check proofs from all clients,
regardless of the method they used to generate the
proof or the proof’s structure. This technique of
proof-carrying authorization (PCA) perfectly satis-
fies our goal of interoperability – as long as a server
bases its access control policy on the AF logic, inter-
operation with systems in different administrative
hierarchies is no more difficult than interoperation
with local ones.

2.2 Convenience of Use and Implemen-
tation

An important goal for a web access-control system
that aspires to be practical is that it be imple-
mentable without modification of the existing in-
frastructure – that is, web browsers and web servers.
Our access-control system involves three types of
players: web browsers, web servers, and fact servers
(which issue tokens that can certify not only suc-
cessful authentication – as do ordinary authentica-
tion servers – but also any other type of fact that
they store).

We enable the web browser to understand our au-
thorization protocol by implementing a local web
proxy. The proxy intercepts a browser’s request for
a protected page and then executes the authoriza-
tion protocol to generate the proof needed for ac-
cessing the page; the web browser sees only the re-
sult – either the page that the user attempted to
access or an appropriate failure message. Each user
has a unique cryptographic key held by the proxy.
Users’ identities are established by name-key certifi-
cates stored on fact servers. The use of keys makes
it unnecessary to prompt the user for a password,
making the authorization process quicker and more
transparent to the user.

For tighter integration with the browser and bet-
ter performance, the proxy could be packaged as a
browser plugin. This would make it less portable,
however, as a different plugin would have to be writ-
ten for each type of browser; we did not feel this was
within the scope of our prototype implementation.

The web server part of our system is built around
an unmodified web server. The web server is PCA-
enabled through the use of a servlet which inter-
cepts and handles all PCA-related requests. The
two basic tasks that take place on the server’s side
during an authorization transaction are generating
the proposition that needs to be proved and verify-
ing that the proof provided by the client is correct.
Each is performed by a separate component, the
proposition generator and the checker, respectively.

Fact servers hold the facts a client must gather be-
fore it can construct a proof. Each fact is a signed
statement in the AF logic. We implement an off-
line utility for signing statements, which lets us use
a standard web server as a fact server. The fact
server can also restrict access to the facts it pub-

lishes with a servlet, in the same manner as the web
server.

2.3 Efficiency

The whole access-control process is completely
transparent to a user. To be practical, it must also
be efficient. Assembling the facts necessary to con-
struct a proof may involve several transactions over
the network. The actual construction of the proof,
the cryptographic operations done during the proto-
col, and proof checking are all potential performance
bottlenecks.

Though our system is a prototype and not
production-quality, its performance is good enough
to make it acceptable in practice. Heavy use of
caching limits the need to fetch multiple facts over
the network and speculative proving makes it pos-
sible to shorten the conversation between the web
proxy and the servlet.

2.4 Generality

The best current web authorization mechanisms
have the characteristic that they are not limited to
providing access control for web pages; indeed, their
strength is that they provide a unified method that
also regulates access to other resources, such as file
systems. Our system, while implemented specifi-
cally for access control on the web, can also be ex-
tended in this manner. The idea of proof-carrying
authorization is not specific to web access control,
and the mechanisms we develop, while implemented
in a web proxy and a servlet, can easily be modified
to provide access control for other resources.

3 Implementation

In this section we use the running example of Al-
ice trying to access midterm.html (Figure 1) to de-
scribe the implementation of our system in detail.
We describe each part of the system when it be-
comes relevant as we follow the example (the text
of which will be indented and italicized).

Alice BobRequest midterm.html

Challenge

Proof

midterm.html

�

�

�

�

Cert. Authority

(Registrar)

Request ACL

"Registrar.CS101"

�

�

Request cert.

"Alice ∈ CS101"

�

�

Figure 1. Alice wants to read midterm.html.
In practice, caching makes most of the mes-
sages shown unnecessary.

3.1 Example and Overview

Let us consider the following scenario. Bob is a
professor who teaches CS101. He has put up a web
page that has the answers to a midterm exam his
class just took. He wants access to the web page to
be restricted to students in his class, and he doesn’t
want the web page to be accessible before 8 P.M.

Alice is a student in Bob’s class. It’s 9 P.M., and
she wants to access the web page (http://server/
midterm.html) that Bob has put up. Her web
browser contacts the server and requests the page
/midterm.html.

Upon receiving this request, the server constructs
a challenge (a statement in the logic) which must
be proven before the requested URL will be re-
turned. The server returns an “Authorization Re-
quired” message (Figure 1, step 2) which includes
the challenge, “You must prove: The server says
that it’s OK to read /midterm.html.”

When Alice receives the response, she examines the
challenge and attempts to construct a proof. Un-
fortunately, the attempt fails: Alice has no idea
how to go about proving that it’s OK to read
/midterm.html. She sends another request to the
server: “Please tell me who can read /midterm.

html” (step 3).

The server’s reply (step 4) tells her that all the stu-
dents taking CS101 (the Registrar has a list of them)
may access the page, as long as it’s after 8 P.M. Still,
that does not give her enough information to con-
struct the proof. She contacts the Registrar (step
5), and from him gets a certificate asserting, “un-
til the end of the semester, Alice is taking CS101”
(step 6).

Finally, there is enough information to prove that
Alice should be allowed to access the file. Once a
proof is generated, Alice sends another request for
/midterm.html to the server (step 7). This time
she includes in the request the challenge and its
proof. The server checks that the proof is valid,
and that Alice proved the correct challenge. If both
checks succeed, the server returns the requested
page (step 8).

3.2 Logic

Our authorization system, like other proof-carrying
authorization systems, has a core logic with an
application-specific logic defined on top of it.

The application-specific logic is used to define the
operators and rules useful for writing security poli-
cies for web access control – in our case standard
operators like says and speaksfor were sufficient.
Unlike in traditional distributed authorization sys-
tems, in which these operators would be primitive,
in proof-carrying authorization systems these oper-
ators are implemented as definitions using the core
logic. This is what makes it possible for our system
to work seamlessly across administrative domains –
as long as they share a common core logic, the op-
erators of any application-specific logic can be re-
garded merely as abbreviations.

The following are operators of our application-
specific logic, their informal definitions, and their
encodings in the AF logic.

A says F A principal A says any statement that
is true. Also, if A says the formula X , and the
formula Y is true, and X and Y imply formula
Z, then A also says Z – this allows the principal
A to draw conclusions based on its beliefs.

A says F ≡ ∃G . A(G) ∧ (G→ F)

A speaksfor B This operator is used for delega-
tion. If principal A speaks for principal B, then
anything that A says is spoken with principal
B’s authority.

A speaksfor B ≡ ∀F . (A says F)
→ (B says F)

A.s The principal A.s (or localname(A, s)) is a
new principal created in A’s local name space
from the string s. Principal A controls what
A.s says. In our example, the principal reg-
istrar creates the principal registrar.cs101, and
signs a formula like ‘key(“alice”) speaksfor (reg-
istrar.“cs101”)’ for each student in the class.

A.s(F) ≡ ∀L . lnlike(L)→ L(A)(S)(F)

The lnlike operator is used to break the re-
cursion in the definition of localname. The
definition of lnlike looks complicated, but is
such that lnlike(L) is true for every function
L that behaves as a local name should; that
is, it returns true for every function that gener-
ates a principal whose authorityA can delegate.
localname is one of the operators explicitly de-
fined so that it obeys only the set of rules that
we require of it; this makes its definition some-
what more complicated and adds complexity to
the proofs of lemmas about it.

lnlike(L) ≡ ∀A,S, F,G .
((A says G) and (G→ (L(A)(S) says F)))
→ L(A)(S)(F)

Rules about these operators can be proved as lem-
mas and are also transient to the core logic. Using
the operators we defined, we can now prove rules
such as this one, which states that says follows im-
plication:

A says F F → G
A says G

says imp

The core logic we use is a variant of the AF logic
(the rules of which are presented in Appendix A).
The only rules that aren’t standard rules of higher-
order logic are the four that allow us to reason about
digital signatures, time, and implication inside the
says operator.

3.3 Client: Proxy Server

The job of the proxy server is to be the intermedi-
ary between a web browser that has no knowledge
of the PCA protocol and a web server that is PCA-
enabled. An attempt by the browser to access a
web page results in a dialogue between the proxy
and the server that houses the page. The dialogue is
conducted through PCA-enhanced HTTP—HTTP
augmented with headers that allow it to convey in-
formation needed for authorization using the PCA
protocol. The browser is completely unaware of this
dialogue; it sees only the web page returned at the
end.

When Alice requests to see the page http://
server/midterm.html , her browser forms the re-
quest and sends it to the local proxy (Figure 2, step
1). The proxy server forwards the request without
modifying it (step 2).

3.4 Secure Transmission and Session
Identifiers

The session identifier is a shared secret between the
client and server. The identifier is used in challenges
and proofs (including in digitally signed formulas
within the proofs) to make them specific to a single
session. This is important because the server caches
previously proven challenges and allows clients to
present the session identifier as a token that demon-
strates that they have already provided the server
with a proof.

The session identifier is a string generated by the
server using a cryptographic pseudorandom number
generator. Our implementation uses a 144-bit value
which is then stored using a base-64 encoding. (144
bits was chosen because the value converts evenly
into the base-64 encoding.)

Since the session identifier may be sufficient to gain
access to a resource, stealing a session identifier,
akin to stealing a proof in a system where goals are
not unique, compromises the security of the system.
In order to keep the session identifier secret, com-
munication between the client and server uses the
secure protocol HTTPS instead of normal HTTP in
all cases where a session identifier is sent. If the
client attempts to make a standard HTTP request
for a PCA-protected page, the server replies with

a special “Authorization Required” message which
directs the client to switch to HTTPS and retry the
request.

Alice’s proxy contacts the server, asking for
midterm.html . Since that page is PCA-protected
and the proxy used HTTP, the server rejects the
request. The proxy switches to HTTPS and sends
the same request again.

Make request

challenge

in reply?

Done

same

challenge?

purge assumptions

assum's.

purged?

try to prove

fetch facts
new

facts?

Fail

proved?

N

Y

Y

Y

Y

Y

N

N

N

N

Figure 3. Client flowchart.

3.5 Server: Proposition Generator and
Iterative Authorization

When a client attempts to access a PCA-protected
web page, the server replies with a statement of
the theorem that it wants the client to prove before
granting it access. This statement, or proposition,
can be generated autonomously; it depends only on
the pathname of the file that the client is trying to
access and on the syntax of the logic in which it is
to be encoded.

Client Server

Web

browser

HTTP

proxy

Prover
Prop.

gen.

Checker

HTTP server

Fact server

2
5

346

7

8

9
12

1011

13

Figure 2. The components of the system.

The server’s proposition generator provides the
server with a list of propositions. The server returns
to the client the first unproven proposition. If the
client successfully proves that proposition in a sub-
sequent request, then the server will reply with the
next unproven proposition as the challenge. This
process of proving and then receiving the next chal-
lenge from a list of unproven propositions is called
iterative authorization. The processes for the client
and server are shown in the flowcharts of Figure 3
and Figure 4.

The process of iterative authorization terminates
when either the client gives up (i.e., cannot prove
one of the propositions) or has successfully proven
all of the propositions, in which case access is al-
lowed. If the client presents a proof which fails
when the server checks it, it is simply discarded.
In this case, the same challenge will be returned to
the client twice.

If the client receives the same challenge twice, it
knows that although it “successfully” constructed
a proof for that challenge, the proof was rejected
by the server. This means that one of the client’s
assumptions must have been incorrect. The client
may choose to discard some assumptions and retry
the proof process.

Our system generates a proposition for each direc-
tory level of the URL specified in the client’s re-
quest. This ensures that the client has permission
to access the full path (i.e., just like in standard
access control for a hierarchical file system). Since
the server returns identical challenges regardless of
whether the requested object exists, returning a
challenge reveals no information about the existence

of objects on the server.

Isolating the proposition generator from the rest of
the server makes it easy to adapt the server for other
applications of PCA; using it for another applica-
tion may require nothing more than changing the
proposition generator.

After receiving the second, encrypted request, the
server first generates the session ID, “sid”. It then
passes the request and the ID to the proposition
generator. The proposition generator returns a list
of propositions that Alice must prove before she is
allowed to see /midterm.html :

(key "server") says
(goal "http://server/" "sid")

(key "server") says
(goal "http://server/midterm.html" "sid")

For the purposes of this example, we will deal only
with the second challenge. In reality, Alice would
first have to prove that she is allowed to access
http://server/ , and only then could she try to
prove that she is also allowed to access http://
server/midterm.html .

A benefit of iterative authorization is that it allows
parts of the security policy to be hidden from unau-
thorized clients. Only when a challenge has been
proven will the client be able to access the facts that
it needs to prove the next challenge. In the context
of our application this means, for example, that a
client must prove that it is allowed to access a direc-
tory before it can even find out what goal it must
prove (and therefore what facts it must gather) to
gain access to a particular file in that directory.

Proof

supplied? check proof

proof

OK?

more

challenges?

add to cache

get next challenge

proof

cached?

Return

requested

page

Return

challenge

Y

N

Y

Y

Y

N

N

N

generate challenges

Figure 4. Server flowchart.

3.6 Server: Challenges; Client: Proofs

For each authorization request, the server’s proposi-
tion generator generates a list of propositions which
must be proven before access is granted. Each
proposition contains a URL and a session identi-
fier. The server checks each proposition to see if
it was previously proven by the client by checking
a cache of previously proven challenges. If all of
the propositions have been proven, access is allowed
immediately. Otherwise, the first unproven propo-
sition is returned to the client as a challenge. Any
other unproven propositions are discarded.

The server constructs a reply with a status code of
“Unauthorized.” This is a standard HTTP response
code (401) [10]. The response includes the required
HTTP header field “WWW-Authenticate” with an
authentication scheme of “PCA” and the unproven

proposition as its single parameter.

Once the client has constructed a proof of the chal-
lenge, it makes another HTTPS request (this can be
done with the same TCP connection if allowed by
keep-alive) containing the challenge and the proof.
The challenge is included in an “Authorization”
request-header field, and the proof is included in a
series of “X-PCA-Proof” request-header fields. The
server checks that the proof proves the supplied
challenge, adds the challenge to its cache of proven
propositions, and then begins the checking process
for the next proposition.

The first proposition in the example is the one
stating that the server says that it’s OK to read
http://server/ . The server checks whether it
has already been proven and moves on to the
next one. (Remember that for the purposes of
the example we’re concentrating only on the sec-
ond proposition; the authorization process for each
is identical.) The next proposition states that
the server says it’s OK to read http://server/
midterm.html . This one hasn’t been proven yet,
so the server constructs an HTTP response that
includes this proposition as a challenge and sends
it to Alice. This is step 5 of Figure 2.

3.7 Client: Prover

In the course of a PCA conversation with a server,
the proxy needs to generate proofs that will demon-
strate to the server that the client should be allowed
access to a particular file. This task is independent
enough from the rest of the authorization process
that it is convenient to abstract it into a separate
component. During a PCA conversation the client
may need to prove multiple statements; the process
of proving each is left to the prover.

The core of the prover in our system is the Twelf log-
ical framework [18]. Proofs are generated automati-
cally by a logic program that uses tactics. The goal
that must be proven is encoded as the statement
of a theorem. Axioms that are likely to be helpful
in proving the theorem are added as assumptions.
The logic program generates a derivation of the the-
orem; this is the “proof” that the proxy sends to the
server.

The tactics that define the prover roughly corre-
spond to the inference rules of the application-
specific logic. Together with the algorithm that uses

them, the tactics comprise a decision procedure that
generates proofs – for our system to always find
proofs of true statements, this decision procedure
must be decidable.

A tactic for proving A speaksfor C would be to find
proofs of A speaksfor B and B speaksfor C and then
use the transitivity lemma for speaksfor. Other tac-
tics might be used to guide the search for these sub-
goals. The order in which tactics are applied af-
fects their effectiveness. Care must also be taken
to avoid situations in which tactics might guide the
prover into infinite (or finite but time-consuming)
branches that don’t lead to a proof. For the re-
stricted set of rules that we are interested in, the
prover in our system is able to automatically gener-
ate proofs whenever they exist.

As part of generating the proof of a goal given to it
by the proxy, the prover’s job is to find all the as-
sumptions that are required by the proof. Assump-
tions needed to generate a proof might include state-
ments made by the server about who is allowed to
access a particular file, statements about clock skew,
statements by which principals delegate authority to
other principals, or statements of goal. While some
of these might be known to the proxy, and would
therefore have been provided to the prover, others
might need to be obtained from web pages.

Since fetching assumptions from the web is a rela-
tively time-consuming process (hundreds of millisec-
onds is a long time for a single step of an interac-
tive authorization that should be transparent to the
user), the prover caches the assumptions for future
use. The prover also periodically discards assump-
tions which have not been recently used in successful
proofs.

3.8 Client: Iterative Proving

The client is responsible for proof generation. The
client may not always be able to generate a proof of
the challenge on the first try. It may need to obtain
additional information, such as signed delegations
or other facts, before the proof can be completed.
The process of fetching additional information and
then retrying the proof process is called iterative
proving. The process does not affect the server, and
terminates when a proof is successfully generated.

Proof generation can be divided into two phases. In

the first phase, facts are gathered. In the second
phase, straightforward prover rules are used to test
if these facts are sufficient to prove the challenge. If
so, the proof is returned. Otherwise, the phases are
repeated, first gathering additional facts and then
reproving, until either a proof is successfully gener-
ated, or until no new facts can be found.

The fact-gathering phase involves the client gather-
ing four basic types of facts.

Self-signed Assumptions The first type of facts
comes from the client itself. The client can sign
statements with its own private key, and these may
be useful in constructing proofs. Often, for exam-
ple, it is necessary for the client to sign part of the
challenge itself and use this as an assumption in the
proof.

Alice will sign the statement

goal "http://server/midterm.html" "sid"

Applying the signature axiom to this state-
ment will yield

(key "alice") says
(goal "http://server/midterm.html" "sid")

Armed with this assumption (and no others, so
far), Alice tries to prove the challenge. The at-
tempt fails in the client (i.e., no proof is con-
structed, so nothing is sent to the server); Alice
realizes that this assumption by itself isn’t suffi-
cient to generate a proof so she tries to collect more
facts. (Steps 6 and 8 of Figure 2.)

Goal-oriented facts The second type of facts
is typically (though not necessarily) provided by
the web server. While generating propositions and
checking proofs are conceptually the two main parts
of the server-side infrastructure, a PCA-enabled
server may want to carry out a number of other
tasks. One of these is managing pieces of the secu-
rity policy. To generate a proof that it is authorized
to access a particular web page, a client will have to
know which principals have access to it. Such infor-
mation, since it describes which principals have di-
rect access to a particular goal, we call goal-oriented
facts.

In our implementation, the server keeps this infor-
mation in access-control lists. Entries from these

lists, encoded in a manner that makes them suitable
for use as assumptions, are provided to the client on
demand. They are not given out indiscriminately,
however. Before providing a goal-oriented fact, the
server uses an additional PCA exchange to check
whether the client is authorized to access the fact.

In our system the client queries the server for goal-
oriented facts for each challenge it needs to prove.
Goals are described by URLs, and the server re-
quires PCA authorization for a directory before it
will return the goal-oriented facts that describe ac-
cess to files/directories inside that directory. The
goal-oriented fact that describes access to the root
directory is freely returned to any client. In this
way, a client is forced to iteratively prove autho-
rization for each directory level on the server.

Since her first attempt at generating a proof
didn’t succeed, Alice sends a message to the
server requesting goal-oriented facts about http:
//server/midterm.html . Upon receiving the re-
quest, the server first checks whether Alice has
demonstrated that she has access to http://
server/ . It does this by generating a list of as-
sumptions (there will be only a single assumption
in the list) and then checking whether Alice has
proven it. After determining that Alice is allowed
access to the root directory, the server gives to Al-
ice a signed version of the statement

not (before "server" (8 P.M.))
imp ((localname (key "registrar") "cs101")

says (goal "http://server/midterm.html"
"sig"))

imp (goal "http://server/midterm.html" "sig")

Alice translates it into, “Server says: ‘If it is
not before 8 P.M., and a CS101 student says it’s
OK to read midterm.html , then it’s OK to read
midterm.html .’ ”
Fetching the ACL entry from the server is also de-
scribed by steps 2 through 5 of Figure 2.

Server Time In order to generate proofs which
include expiring statements, the client must make
a guess about the server’s clock. The third type
of facts is the client’s guess about the time which
will be showing on the server’s clock at the instant
of proof checking. If the client makes an incorrect
guess, it might successfully generate a proof which
is rejected by the server. (An incorrect guess about
the server’s clock is the only reason for rejecting a
properly formed proof, since it is the only “fact” the

the server might not accept.) In this case, the client
adjusts its guess about the server’s clock and begins
the proof generation process again.

In order to use the goal-oriented assumption it re-
ceived from the server, Alice must also know some-
thing about the current time. Since it’s 9 P.M. by
her clock, she guesses that the server believes that
the time is before 9:05 P.M. and after 8:55 P.M.
This corresponds to the assumption

before "server" (9:05 P.M.) and
not (before "server" (8:55 P.M.))

Armed with the self-signed assumption, the goal-
oriented assumption, and the assumption about
time, Alice again tries proving that she can ac-
cess midterm.html . Again, she discovers that she
doesn’t have enough facts to construct a proof. She
knows that Registrar.CS101 can access the file, but
she doesn’t know how to extend the access privi-
lege to herself.

Key-oriented facts The fourth type of facts
come from hints that are embedded in keys and that
enable facts to be stored on a separate (perhaps cen-
tralized or distributed) server. Concatenated with
each public key is a list of URLs which may contain
facts relevant to that key.

At each fact-fetching step, the client examines all
of the keys referenced in all of the facts already
fetched. Each key is examined for embedded hints.
The client then fetches new facts from all of these
hint URLs. If needed, these new facts will be exam-
ined for additional hint URLs, which will then be
fetched; this process will continue until all needed
facts have been found. In this way, the client does
a breadth-first search for new facts, alternating be-
tween searching one additional depth level and at-
tempting to construct a proof with the current set
of facts.

Although the proof didn’t succeed, Alice can now
use the hints from her facts to try to find additional
facts that might help the proof. Bob’s server’s key
and the Registrar’s key are embedded in the facts
Alice has collected. In each key is encoded a URL
that describes a location at which the owner of that
key publishes additional facts. Bob’s server’s key,
heretofore given as key "server" actually has the
form key "server;http://server/hints/".
Before giving up, Alice’s prover follows these URLs
to see if it can find any new facts that might help.

This is shown as step 7 of Figure 2. Following
the hint in the Registrar’s key, Alice downloads
a signed statement which she translates into the
assumption

(key "registrar") says
(before "registrar" (end of semester)
imp ((key "alice") speaksfor

(localname (key "registrar")
"cs101")))

This fact delegates to Alice the right to speak on
behalf of Registrar.CS101: “The Registrar says
that until the end of the semester, whatever Al-
ice says has the same weight as if Registrar.CS101
said it.”
Following the hint in Bob’s server’s key, Alice ob-
tains a new fact that tells her the clock skew be-
tween Bob’s server and the Registrar.
Alice now finally has enough facts to generate a
proof that demonstrates that she is authorized to
read http://server/midterm.html . Alice makes
a final request to access http://server/midterm.
html , this time including in it the full proof.

3.9 Server: Proof Checking

The Theory. After it learns which proposition it
must prove, the client generates a proof and sends
it to the server. If the proof is correct, the server
allows the client to access the requested web page.
Proofs are checked using Twelf. The proof provided
by the client is encoded as an LF term [13]. The type
(in the programming languages sense) of the term is
the statement of the proof; the body of the term is
the proof’s derivation. Checking that the derivation
is correct amounts to type checking the term that
represents the proof. If the term is well typed, the
client has succeeded in proving the proposition.

As is the case for the client, using Twelf for proof
checking is overkill, since only the type-checking al-
gorithm is used. The proof checker is part of the
trusted computing base of the system. To minimize
the likelihood that it contains bugs that could com-
promise security, it should be as small and simple
as possible. Several minimal LF type checkers have
already been or will shortly be implemented [16, 20];
one of these could serve as the proof checker for our
system.

LF terms can either have explicit type ascriptions
or be implicitly typed. The explicitly-typed version

may need to introduce more that one type annota-
tion per variable, which can lead to exponential in-
crease in the size of the proofs. The implicitly-typed
version is much more concise, but suffers from a dif-
ferent problem: the type-inference algorithm that
the server would need to run is undecidable, which
could cause correct proofs not to be accepted or the
server to be tied up by a complicated proof.

The LF community is currently developing a type
checker for semi-explicitly typed LF terms that
would solve both problems. Its type-inference algo-
rithm will be decidable, and the level of type ascrip-
tion it will require will not cause exponential code
blowup. Until it becomes available, our system will
require proofs to be explicitly typed.

The Practice. Checking the proof provided by
the client, however, is not quite as simple as just
passing it through an LF type checker. The body
of an LF term is the proof of the proposition repre-
sented by its type. If the term has only a type as-
cription but no body, it represents an axiom. That
the axiom may type check does not mean that we
want to allow it as part of the proof. If we were to do
so, the client could respond to a challenge by send-
ing an axiom that asserted the proposition it needed
to prove; obviously we wouldn’t want to accept this
statement as proof of the challenge. In addition,
the server must verify any digital signatures that
are sent with the proof.

To solve these problems, the server preprocesses the
client’s proof before passing it to a type checker.
The preprocessor first makes sure that all of the
terms that make up the proof have both a type and
a body. A proof that contains illegal axioms is re-
jected.

Next, two special types of axioms are inserted into
the proof as necessary. The first type is used to
make propositions about digital signatures, and the
second type is used to make propositions regarding
time. These are required since the proof checker
cannot check digital signatures or time statements
directly. The client inserts into the proof place hold-
ers for the two types of axioms it can use. The server
makes sure that each axiom holds, generates an LF
declaration that represents it, and then replaces the
placeholder with a reference to the declaration.

For digital signatures, the client inserts into the
proof a proposition of the special form “#signature

key, formula, sig”. The server checks that sig is a
valid signature made by the key key for the formula
formula. If so, the #signature statement is replaced
by an axiom asserting that key signed formula.

To make statements about time, the client inserts a
proposition of the special form “#now”. The pre-
processing stage replaces the #now with an axiom
asserting the current time. Axioms of this form are
necessary when signed propositions include an expi-
ration date, for example.

Once the proof has been parsed to make sure it
contains no axioms and special axioms of these two
forms have been reintroduced, the proof is checked
to make sure it actually proves the challenge. (The
proof might be a perfectly valid proof of some other
challenge!) If this final check succeeds, then the
whole proof is passed to an LF type checker; in our
case, this is again Twelf.

If all of these checks succeed, then the challenge is
inserted into the server’s cache of proven proposi-
tions. The server will either allow access to the page
(if this was the last challenge in the server’s list) or
return the next challenge to the client.

The server receives Alice’s request for midterm.
html and generates a list of propositions that need
to be proven before access is granted. Only the
last proposition is unproven, and its proof is in-
cluded in Alice’s request. The server expands the
#signature and #now propositions, and sends the
proof to the type-checker. The proof checks suc-
cessfully, so the server inserts it in its cache; Al-
ice won’t have to prove this proposition again.
Finally, the server checks whether Alice proved
the correct challenge, which she has. There are
no more propositions left to be proven, Alice has
successfully proven that she is authorized to read
http://server/midterm.html . The server sends
the requested page to Alice.

4 Optimizations and Performance
Results

4.1 Caching and Modularity

Our authorization protocol involves a number of po-
tentially lengthy operations like transferring data
over the network and verifying proofs. We use

caching on both the client and the server to alle-
viate the performance penalty of these operations.

Client-side One of the inevitable side-effects of
a security policy that is distributed across multi-
ple hosts is that a client has to communicate with
each of them. Delegation statements in the secu-
rity policy may force this communication to happen
sequentially, since a client might fetch one piece of
data only to discover that it needs another. While
there is little than can be done to improve the worst-
case scenario of a series of sequential fetches over the
network, subsequent fetches of the same facts can
be eliminated by caching them on the client. Some
facts that reside in the cache may expire; but since it
is easy for the client to check whether they are valid,
they can be checked and removed from the cache
out-of-band from the proof-generation process.

Server-side To avoid re-checking proofs, all cor-
rectly proven propositions are cached. Some of
them may use time-dependent or otherwise ex-
pirable premises–they could be correct when first
checked but false later. If such proofs, instead of
being retransmitted and rechecked, are found in
the cache, their premises must still be checked be-
fore authorization is accepted. The proofs are kept
cached as long as the session ID with which they are
associated is kept alive.

Since all proofs are based on a sparse and basic core
logic, they’re likely to need many lemmas and defi-
nitions for expressing proofs in a concise way. Many
clients will use these same lemmas in their proofs;
most proofs, in fact, are likely to include the same
basic set of lemmas. We have added to the proof
language a simple module system that allows us to
abstract these lemmas from individual proofs. In-
stead of having to include all the lemmas in each
proof, the module system allows them to be im-
ported with a statement like basiclem = #include
http://server/lemmas.elf. If the lemma
speaksfor trans, for example, resides in the
basiclem module, it can now be referenced from the
body of the proof as basiclem.speaksfor trans.
Instead of being managed individually by each
client, abstracting the lemmas into modules allows
them to be maintained and published by a third
party. A company, for instance, can maintain a sin-
gle set of lemmas that all its employees can import
when trying to prove that they are allowed to access
their payroll records.

To make the examples in the previous section more
understandable, we have omitted from them refer-
ences to modules. In reality, each proof sent by a
client to a server would be prefixed by a #include
statement for a module that contained the defini-
tions of, for example, says, speaksfor, localname
and the lemmas that manipulate them, as well as
more basic lemmas.

Aside from the administrative advantages, an im-
portant practical benefit of abstracting lemmas into
modules is increased efficiency, both in bandwidth
consumed during proof transmission and in re-
sources expended for proof checking. Instead of
transmitting with each proof several thousands of
lines of lemmas, a client merely inserts a #include
declaration which tells the checker the URL (we cur-
rently support only modules that are accessible via
HTTP) at which the module containing the lemmas
can be found. Before the proof is transmitted from
the client to the server, the label under which the
module is imported is modified so that it contains
the hash of the semantic content (that is, a hash
that is somewhat independent of variable names and
formatting) of the imported module. This way the
checker knows not only where to find the module,
but can also verify that the prover and the checker
agree on its contents.

When the checker is processing a proof and encoun-
ters a #include statement, it first checks whether a
module with that URL has already been imported.
If it has been, and the hash of the previously im-
ported module matches the hash in the proof, then
proof checking continues normally and the proof can
readily reference lemmas declared in the imported
module. If the hashes do not match or the module
hasn’t been imported, the checker accesses the URL
and fetches the module. A module being imported
is validated by the checker in the same way that a
proof would be. Since they’re identified with con-
tent hashes, multiple versions of a module with the
same URL can coexist in the checker’s cache.

The checker takes appropriate precautions to guard
itself against proofs that may contain modules that
endlessly import other modules, cyclical import
statements, and other similar attacks.

4.2 Speculative Proving

In our running example the web proxy waited for
the server’s challenge before it began the process of
constructing a proof. In practice, our proxy keeps
track of visited web pages that have been protected
using PCA. Based on this log, the proxy tries to
guess, even before it sends out any data, whether
the page that the user is trying to access is PCA
protected, and if it is, what the server’s challenge
is likely to be. In that case, it can try to prove
the challenge even before the server makes it (we
call this prove-ahead or speculative proving). The
proof can then be sent to the server as part of the
original request. If the client guessed correctly, the
server will accept the proof without first sending a
challenge to the client. If the web proxy already
has all the facts necessary for constructing a proof,
this will reduce the amount of communication on
the network to a single round trip from the client
to the server. This single round trip is necessary in
any case, just to fetch the requested web page; in
other words, the proof is piggybacked on top of the
fetch message.

4.3 Performance Numbers

protocol stage ms
fetch URL attempt without HTTPS 198
fetch URL attempt with no proof 723
failed proof attempt 184
fetch file fact + failed proof attempt 216
fetch key fact + successful proof attempt 497
fetch URL attempt (empty server cache) 592
failed proof attempt 184
fetch file fact + successful proof attempt 295
fetch URL attempt (server cached module) 330
total 3219

Figure 5. Worst-case performance.

protocol stage ms
fetch URL attempt with no proof 180
failed proof attempt 184
fetch file fact + successful proof attempt 295
fetch URL attempt (server cached module) 330
total 989

Figure 6. Typical performance.

As one might expect, the performance of our system
varies greatly depending on how much information

protocol stage ms
construct proof from cached facts 270
fetch URL attempt (server cached module) 330
total 600

Figure 7. Fully-cached performance.

protocol stage ms
fetch URL attempt (already authorized) 175
total 175

Figure 8. Performance with valid session ID.

is cached by the proxy and by the server. The rele-
vant metric is the amount of time it takes to fetch a
protected web page. We evaluated our system using
the example of Alice trying to access midterm.html
(see figures 5–8; for comparison, figure 9 shows the
length of time to fetch a page that is not protected;
the actual example from which we obtained perfor-
mance data did not include facts about time).

The slowest scenario, detailed in figure 5, is when all
the caches are empty and the first attempt to fetch
the protected page incurs initialization overhead on
the server (this is why the first attempt to fetch
the URL takes so long even though a proof isn’t
included). In this case, it takes 3.2 seconds for the
proxy to fetch the necessary facts, construct a proof,
and fetch the desired page.

A more typical situation is that a user attempts to
access a protected page on a previously visited site
(figure 6). In this case, the user is already likely to
have proven to the server that she is allowed access
to the server and the directory, and must prove only
that she is also allowed to access the requested page.
In this case she probably needs to fetch only a single
(file or goal) fact, and the whole process takes 1
second. Speculative proving would likely eliminate
the overhead of an attempted fetch of a protected
page without a proof, saving about .2 seconds. If
the client already knows the file fact (figure 7), that
length of the access is cut to about .6 seconds.

When a user wants to access a page that she has
already accessed and the session identifier used dur-

protocol stage ms
fetch URL attempt (page not protected) 50
total 50

Figure 9. Access control turned off.

ing the previous, successful attempt is still valid,
access is granted based on just the possession of the
identifier – this takes about 175 milliseconds.

Alice’s proof might have to be more complicated
than in our example; it could, for example, contain
a chain of delegations. For each link of the chain
Alice would first have to discover that she couldn’t
construct the proof, then she would have to fetch
the relevant fact and attempt to construct the proof
again – which in our system would currently take
about .6 seconds.

The performance results show that, even when all
the facts are assembled, generating proofs is slow (at
least 200 ms) and grows slower as the user learns
more facts. While this is a fundamental bottle-
neck, the performance of our prover is over an order
of magnitude slower than it need be. If this were
a production-strength implementation, we would
likely have implemented the theorem prover in Java.
The capabilities of Twelf are far greater than what
we need and impose a severe performance penalty;
a custom-made theorem prover that had only the
required functionality would be more lightweight.
This also impacts the proof-checking performance;
a specialized checker [21] would be much faster.

5 Conclusion

In this paper we describe an authorization sys-
tem for web browsers and web servers that solves
the problem of interoperability across administra-
tive or trust boundaries by allowing the use of ar-
bitrarily complex security policies. Our system is
implemented as add-on modules to standard web
browsers and web servers and demonstrates that
it is feasible to use a proof-carrying authorization
framework as a basis for building real systems.

We improve upon previous work on proof-carrying
authorization by adding to the framework a notion
of state and enhancing the PCA logic with goal con-
structs and a module system. The additions of state
(through what we call sessions) and goals are instru-
mental in making PCA practical. We also introduce
mechanisms that allow servers to provide only selec-
tive access to security policies, which was a concept
wholly absent from the original work. In addition,
we refine the core logic to make it more useful for ex-
pressing interesting application-specific logics, and

we define a particular application-specific logic that
is capable of serving as a security logic for a real
distributed authorization system.

Our application allows pieces of the security policy
to be distributed across arbitrary hosts. Through
the process of iterative proving the client repeat-
edly fetches proof components until it is able to con-
struct a proof. This mechanism allows the server
policy to be arbitrarily complex, controlled by a
large number of principals, and spread over an ar-
bitrary network of machines in a secure way. Since
proof components can themselves be protected, our
system avoids releasing the entire security policy to
unauthorized clients. Iterative authorization, or al-
lowing the server to repeatedly challenge the client
with new challenges during a single authorization
transaction, provides a great deal of flexibility in
designing security policies.

Our performance results demonstrate that it is pos-
sible to reduce the inherent overhead to a level
where a system like ours is efficient enough for real
use. To this end, our system uses speculative prov-
ing – clients attempt to guess server challenges and
generate proofs ahead of time, drastically reducing
the exchange between the client and the server. The
client also caches proofs and proof components to
avoid the expense of fetching them and regenerat-
ing the proofs. The server also caches proofs, which
avoids the need for a client to produce the same
proof each time it tries to access a particular ob-
ject. A module system in the proof language al-
lows shared lemmas, which comprise the bulk of the
proofs, to be transmitted only if the server has not
processed them, saving both bandwidth and proof-
checking overhead.

Ongoing work includes investigating the use of
oblivious transfer and other protocols for fetching
proof components without revealing unnecessary in-
formation and further refining our security logic to
reduce its trusted base and increase its generality. In
addition to allowing clients to import lemmas from
a third party, we would like to devise a method for
allowing them to import actual proof rules as well.
We are also exploring the idea of using a higher-
order logic as a bridge between existing (non-higher-
order) security logics in a way that would enable
authentication frameworks based on different logics
to interact and share resources. Finally, we intend
to significantly improve the performance of our sys-
tem, in particular by using a specialized prover and
proof checker.

6 Acknowledgments

The authors would like to thank Andrew W. Appel
for his advice and the anonymous reviewers for their
helpful comments.

7 Availability

More information about our system and proof-
carrying authorization, including a download-
able version of our prototype implementation, is
available at http://www.cs.princeton.edu/sip/
projects/pca.

References

[1] M. Abadi. On SDSI’s linked local name spaces.
Journal of Computer Security, 6(1-2):3–21, Octo-
ber 1998.

[2] M. Abadi, M. Burrows, B. Lampson, and G. D.
Plotkin. A calculus for access control in dis-
tributed systems. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):706–734,
September 1993.

[3] M. Abadi, E. Wobber, M. Burrows, and B. Lamp-
son. Authentication in the Taos Operating System.
In Proceedings of the 14th ACM Symposium on
Operating System Principles, pages 256–269, Sys-
tems Research Center SRC, DEC, Dec. 1993. ACM
SIGOPS, ACM Press. These proceedings are also
ACM Operating Systems Review, 27,5.

[4] A. W. Appel and E. W. Felten. Proof-carrying au-
thentication. In Proceedings of the 6th ACM Con-
ference on Computer and Communications Secu-
rity, Singapore, November 1999.

[5] D. Balfanz, D. Dean, and M. Spreitzer. A security
infrastructure for distributed Java applications. In
21th IEEE Computer Society Symposium on Re-
search in Security and Privacy, Oakland, CA, May
2000.

[6] M. Blaze, J. Feigenbaum, and M. Strauss.
Compliance checking in the PolicyMaker trust-
management system. In Proceedings of the 2nd Fi-
nancial Crypto Conference, volume 1465 of Lecture
Notes in Computer Science, Berlin, 1998. Springer.

[7] J.-E. Elien. Certificate discovery using SPKI/SDSI
2.0 certificates. Master’s thesis, Massachusetts In-
stitute of Technology, May 1998.

[8] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. M. Thomas, and T. Ylonen. SPKI Certificate
Theory, September 1999. RFC2693.

[9] M. Erdos and S. Cantor. Shib-
boleth architecture draft v04.
http://middleware.internet2.edu/shibboleth/docs/,
Nov. 2001.

[10] R. T. Fielding, J. Gettys, J. C. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hyper-
text Transfer Protocol – HTTP/1.1. IETF - Net-
work Working Group, The Internet Society, June
1999. RFC 2616.

[11] K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and
don’ts of client authentication on the web. In Pro-
ceedings of the 10th USENIX Security Symposium,
Washington, DC, Aug. 2001.

[12] J. Y. Halpern and R. van der Meyden. A logic
for SDSI’s linked local name spaces. In Proceed-
ings of the 12th IEEE Computer Security Foun-
dations Workshop, pages 111–122, Mordano, Italy,
June 1999.

[13] R. Harper, F. Honsell, and G. Plotkin. A frame-
work for defining logics. Journal of the Asso-
ciation for Computing Machinery, 40(1):143–184,
Jan. 1993.

[14] International Telecommunications Union. ITU-T
recommendation X.509: The Directory: Authenti-
cation Framework. Technical Report X.509, ITU,
1997.

[15] O. Kornievskaia, P. Honeyman, B. Doster, and
K. Coffman. Kerberized credential translation: A
solution to web access control. In Proceedings of
the 10th USENIX Security Symposium, Washing-
ton, DC, Aug. 2001.

[16] G. C. Necula. Compiling with Proofs. PhD thesis,
Carnegie Mellon University, Oct. 1998. Available
as Technical Report CMU-CS-98-154.

[17] B. C. Neuman and T. Ts’o. Kerberos: An au-
thentication service for computer networks. IEEE
Communications, 32(9):33-38, Sept. 1994.

[18] F. Pfenning and C. Schürmann. System descrip-
tion: Twelf: A meta-logical framework for deduc-
tive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated
Deduction (CADE-16-99), volume 1632 of LNAI,
pages 202–206, Berlin, July 7–10 1999. Springer.

[19] V. Samar. Single sign-on using cookies for web
applications. In Proceedings of the 8th IEEE
Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, pages 158–163,
Palo Alto, CA, 1999.

[20] A. Stump, C. Barrett, and D. Dill. CVC: a cooper-
ating validity checker. Submitted to 14th conference
on Computer Aided Verification, 2002.

[21] A. Stump and D. Dill. Faster Proof Checking in the
Edinburgh Logical Framework. In 18th Interna-
tional Conference on Automated Deduction, 2002.

A Axioms of the Core Logic

Axioms of the higher-order core logic of our PCA
system. Except for the last four, they are standard
inference rules for higher-order logic.

A B
A ∧B and i A ∧ B

A
and e1 A ∧ B

B
and e2

A
A ∨ B or i1 B

A ∨ B or i2

A ∨ B [A]
C

[B]
C

C
or e

[A]
B

A→ B
imp i A→ B A

B
imp e

A(Y) Y not occurring in ∀x.A(x)
∀x.A(x)

forall i

∀x.A(x)
A(T)

forall e
X = X

refl

X = Z H(Z)
H(X)

congr

signature(pubkey , fmla, sig)
Key(pubkey) says fmla

signed

Key(A) says (F imp G) Key(A) says F
Key(A) says G

key imp e

before(S)(T1) T2 > T1

before(S)(T2)
before gt

Key(localhost) says before(X)(T)
before(X)(T)

timecontrols

