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Abstract

The security architecture of the Plaf®perat-

ing system has recently been redesigned to
address some technical shortcomings. This
redesign provided an opportunity also to make
the system more convenient to use securely.
Plan 9 has thus improved in two ways not usu-
ally seen together: it has become more secure
andeasier to use.

The central component of the new architecture is
a per-user self-contained agent calfedt totum.
Factotum securely holds a copy of the user's
keys and negotiates authentication protocols, on
behalf of the user, with secure services around
the network. Concentrating security code in a
single program offers several advantages includ-
ing: ease of update or repair to broken security
software and protocols; the ability to run secure
services at a lower privilege level; uniform man-
agement of keys for all services; and an opportu-
nity to provide single sign on, even to unchanged
legacy applications.Factotum has an unusual
architecture: it is implemented as a Plan 9 file
server.

1. Introduction

Secure computing systems face two challenges:
first, they must employ sophisticated technology
that is difficult to design and prove correct; and
second, they must be easy for regular people to
use. The question of ease of use is sometimes
neglected, but it is essential: weak but easy-to-
use security can be more effective than strong but
difficult-to-use security if it is more likely to be
used. People lock their front doors when they
leave the house, knowing full well that a burglar
is capable of picking the lock (or avoiding the
door altogether); yet few would accept the cost
and awkwardness of a bank vault door on the

house even though that might reduce the proba-
bility of a robbery. A related point is that users
need a clear model of how the security operates
(if not how it actually provides security) in order
to use it well; for example, the clarity of a lock
icon on a web browser is offset by the confusing
and typically insecure steps for installing X.509
certificates.

The security architecture of the Plan 9 operating

system [11] has recently been redesigned to
make it both more secure and easier to use. By
securitywe mean three things: first, the business

of authenticating users and services; second, the
safe handling, deployment, and use of keys and
other secret information; and third, the use of

encryption and integrity checks to safeguard

communications from prying eyes.

The old security architecture of Plan 9 had sev-
eral engineering problems in common with other
operating systems. First, it had an inadequate
notion of security domain. Once a user provided
a password to connect to a local file store, the
system required that the same password be used
to access all the other file stores. That is, the
system treated all network services as belonging
to the same security domain.

Second, the algorithms and protocols used in
authentication, by nature tricky and difficult to
get right, were compiled into the various applica-
tions, kernel modules, and file servers. Changes
and fixes to a security protocol required that all
components using that protocol needed to be
recompiled, or at least relinked, and restarted.

Third, the file transport protocol, 9P [12], that
forms the core of the Plan 9 system, had its
authentication protocol embedded in its design.
This meant that fixing or changing the authenti-
cation used by 9P required deep changes to the
system. If someone were to find a way to break



the protocol, the system would be wide open and
very hard to fix.

These and a number of lesser problems, com-
bined with a desire for more widespread use of
encryption in the system, spurred us to rethink
the entire security architecture of Plan 9.

The centerpiece of the new architecture is an
agent, calledfactotum, that handles the user’'s
keys and negotiates all security interactions with
system services and applications. Like a trusted
assistant with a copy of the owner's keys,
factotum does all the negotiation for security
and authentication. Programs no longer need to
be compiled with cryptographic code; instead
they communicate withfactotum agents that
represent distinct entities in the cryptographic
exchange, such as a user and server of a secure
service. If a security protocol needs to be added,
deleted, or modified, onlf¥actotum needs to be
updated for all system services to be kept secure.

Building on factotum, we modified secure ser-
vices in the system to move user authentication
code intofactotum; made authentication a sepa-
rable component of the file server protocol,
deployed new security protocols; designed a
secure file store, calleslecstore, to protect our
keys but make them easy to get when they are
needed; designed a new kernel module to support
transparent use of Transport Layer Security
(TLS) [3]; and began using encryption for all
communications within the system. The overall
architecture is illustrated in Figure la.

Secure protocols and algorithms are well under-
stood and are usually not the weakest link in a
system’s security. In practice, most security

problems arise from buggy servers, confusing
software, or administrative oversights. It is these
practical problems that we are addressing.
Although this paper describes the algorithms and
protocols we are using, they are included mainly
for concreteness. Our main intent is to present a
simple security architecture built upon a small

trusted code base that is easy to verify (whether
by manual or automatic means), easy to under-
stand, and easy to use.

Although it is a subjective assessment, we
believe we have achieved our goal of ease of use.
That we have achieved our goal of improved
security is supported by our plan to move our
currently private computing environment onto
the Internet outside the corporate firewall. The
rest of this paper explains the architecture and
how it is used, to explain why a system that is
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Figure 1a. Components of the security architecture. Each
box is a (typically) separate machine; each ellipse a process.
The ellipses labeled-y are factotum processes; those
labeledPy are the pieces and proxies of a distributed pro-
gram. The authentication server is one of several reposito-
ries for users’ security information th&tictotum processes
consult as requiredSecstore is a shared resource for stor-
ing private information such as keygactotum consults it

for the user during bootstrap.

easy to use securely is also safe enough to run in
the open network.

2. An Agent for Security

One of the primary reasons for the redesign of
the Plan 9 security infrastructure was to remove
the authentication method both from the applica-
tions and from the kernel. Cryptographic code is
large and intricate, so it should be packaged as a
separate component that can be repaired or modi-
fied without altering or even relinking applica-
tions and services that depend on it. If a security
protocol is broken, it should be trivial to repair,
disable, or replace it on the fly. Similarly, it
should be possible for multiple programs to use a
common security protocol without embedding it
in each program.

Some systems use dynamically linked libraries
(DLLs) to address these configuration issues.
The problem with this approach is that it leaves
security code in the same address space as the
program using it. The interactions between the
program and the DLL can therefore accidentally
or deliberately violate the interface, weakening
security. Also, a program using a library to
implement secure services must run at a privilege
level necessary to provide the service; separating
the security to a different program makes it pos-
sible to run the services at a weaker privilege
level, isolating the privileged code to a single,
more trustworthy component.



Following the lead of the SSH agent [20], we
give each user an agent process responsible for
holding and using the user's keys. The agent
program is calledFractotum because of its simi-
larity to the proverbial servant with the power to
act on behalf of his master because he holds the
keys to all the master’s possessions. It is essen-
tial that factotum keep the keys secret and use
them only in the owner’s interest. Later we’ll
discuss some changes to the kernel to reduce the
possibility of factotum leaking information
inadvertently.

Factotum is implemented, like most Plan 9 ser-
vices, as a file server. It is conventionally
mounted upon the directopimnt/factotum, and

the files it serves there are analogous to virtual
devices that provide access to, and control of, the
services of thefactotum. The next few sections
describe the design dhctotum and how it oper-
ates with the other pieces of Plan 9 to provide
security services.

2.1. Logging in

To make the discussions that follow more con-
crete, we begin with a couple of examples show-
ing how the Plan 9 security architecture appears
to the user. These examples both involve a user
gre logging in after booting a local machine.
The user may or may not have a secure store in
which all his keys are kept. If he doe&ctotum

will prompt him for the password to the secure
store and obtain keys from it, prompting only
when a key isn't found in the store. Otherwise,
factotum must prompt for each key.

In the typescripts)n represents a literal newline
character typed to force a default response. User
input is in italics, and long lines are folded and
indented to fit.

This first example shows a user logging in with-
out help from the secure store. Firstctotum
prompts for a user name that the local kernel will
use:

user[none]: gre

(Default responses appear in square brackets.)
The kernel then starts accessing local resources
and requests, througfactotum, a user/password
pair to do so:

IAdding key: dom=cs.bell-Tabs.com

proto=p9skl

user[gre]l: \n

password: ****
Now the user is logged in to the local system,
and the mail client starts up:

lAdding key: proto=apop
server=plan9.bell-Tlabs.com

user[gre]l: \n

password: ****
Factotum is doing all the prompting and the
applications being started are not even touching
the keys. Note that it's always clear which key is
being requested.

Now consider the same login sequence, but in the

case whergre has a secure store account:
user[none]: gre
secstore password:
STA PIN+SecurID: #*¥*###*#x

That's the lastgre will hear from factotum

unless an attempt is made to contact a system for

which no key is kept in the secure store.

FRFERIKAKN

2.2. The factotum

Each computer running Plan 9 has one user id
that owns all the resources on that systenthe
scheduler, local disks, network interfaces, etc.
That user, thdost owneyis the closest analogue
in Plan 9 to a Unixroot account (although it is
far weaker; rather than having special powers, as
its name implies the host owner is just a regular
user that happens to own the resources of the
local machine). On a single-user system, which
we call a terminal, the host owner is the id of the
terminal’'s user. Shared servers such as CPU
servers normally have a pseudo-user that initially
owns all resources. At boot time, the Plan 9 ker-
nel starts afactotum executing as, and therefore
with the privileges of, the host owner.

New processes run as the same user as the pro-
cess which created them. When a process must
take on the identity of a new user, such as to pro-
vide a login shell on a shared CPU server, it does
so by proving to the host ownerfctotum that

it is authorized to do so. This is done by running
an authentication protocol withfactotum to
prove that the process has access to secret infor-
mation which only the new user should possess.
For example, consider the setup in Figure la. If
a user on the terminal wants to log in to the CPU
server using the Plan &u service [12], therPt
might be thecpu client program andP . the cpu
server. NeithePc nor Pt knows the details of
the authentication. They do need to be able to
shuttle messages back and forth between the two
factotums, but this is a generic function easily
performed without knowing, or being able to
extract, secrets in the messag&s: will make a
network connection t® . Pt andP¢ will then
relay messages between thectotum owned by



the user,Ft, and the one owned by the CPU
server,F ¢, until mutual authentication has been
established. Later sections describe the RPC
between factotum and applications and the
library functions to support proxy operations.

The kernel always uses a single local instance of
factotum, running as the host owner, for its
authentication purposes, but a regular user may
start other factotum agents. In fact, the
factotum representing the user need not be run-
ning on the same machine as its client. For
instance, it is easy for a user on a CPU server,
through standard Plan 9 operations, to replace the
/mnt/factotum in the user’s private file name
space on the server with a connection to the
factotum running on the terminal. (The usual
file system permissions prevent interlopers from
doing so maliciously.) This permits secure oper-
ations on the CPU server to be transparently vali-
dated by the user’s owrfactotum, SO secrets
need never leave the user’s terminal. The SSH
agent [20] does much the same with special SSH
protocol messages, but an advantage to making
our agent a file system is that we need no new
mechanism to access our remote agent; remote
file access is sufficient.

Within factotum, each protocol is implemented
as a state machine with a generic interface, so

protocols are in essence pluggable modules, easy

to add, modify, or drop. Writing a message to
and reading a message froffactotum each
require a separate RPC and result in a single state
transition. Thereforefactotum always runs to
completion on every RPC and never blocks wait-
ing for input during any authentication. More-
over, the number of simultaneous authentications
is limited only by the amount of memory we're
willing to dedicate to representing the state
machines.

Authentication protocols are implemented only
within factotum, but adding and removing pro-
tocols does require relinking the binary, so
factotum processes (but no others) need to be
restarted in order to take advantage of new or
repaired protocols.

At the time of writing, factotum contains
authentication modules for the Plan 9 shared key
protocol (p9skl), SSH's RSA authentication,
passwords in the clear, APOP, CRAM, PPP’s
CHAP, Microsoft PPP's MSCHAP, and VNC's
challenge/response.

2.3. Local capabilities

A capability system, managed by the kernel, is
used to empowefactotum to grant permission

to another process to change its user id. A kernel
device driver implements two files,
/dev/caphash and /dev/capuse. The write-
only file /dev/caphash can be opened only by
the host owner, and only onc&actotum opens
this file immediately after booting.

To use the filesfactotum creates a string of the
form  useridlauseridZrandom-string  uses
SHA1 HMAC to hashuseridlauserid2with key
random-string and writes that hash to
/dev/caphash. Factotum then passes the origi-
nal string to another process on the same
machine, running as userseridl, which writes
the string to/dev/capuse. The kernel hashes
the string and looks for a matching hash in its
list. If it finds one, the writing process’s user id
changes fromuserid1to userid2 Once used, or
if a timeout expires, the capability is discarded
by the kernel.

The capabilities are local to the machine on
which they are created. Hencefactotum run-
ning on one machine cannot pass capabilities to
processes on another and expect them to work.

2.4. Keys

We define the wordkey to mean not only a
secret, but also a description of the context in
which that secret is to be used: the protocol,
server, user, etc. to which it applies. That is, a
key is a combination of secret and descriptive
information used to authenticate the identities of
parties transmitting or receiving information.
The set of keys used in any authentication
depends both on the protocol and on parameters
passed by the program requesting the authentica-
tion.

Taking a tip from SDSI [15], which represents
security information as textual S-expressions,
keys in Plan 9 are represented as plain UTF-8
text. Text is easily understood and manipulated
by users. By contrast, a binary or other cryptic
format can actually reduce overall security.
Binary formats are difficult for users to examine
and can only be cracked by special tools, them-
selves poorly understood by most users. For
example, very few people know or understand
what's inside their X.509 certificates. Most
don’'t even know where in the system to find
them. Therefore, they have no idea what they are
trusting, and why, and are powerless to change



their trust relationships. Textual, centrally stored
and managed keys are easier to use and safer.

Plan 9 has historically represented databases as
attribute/value pairs, since they are a good foun-
dation for selection and projection operations.
Factotum therefore represents the keys in the
format attribute=value where attribute is an
identifier, possibly with a single-character prefix,
andvalueis an arbitrary quoted string. The pairs
themselves are separated by white space. For
example, a Plan 9 key and an APOP key might
be represented like this:

dom=bel1-Tabs.com proto=p9skl user=gre

Ipassword="don’’t tell’
proto=apop server=x.y.com user=gre
Ipassword="open sesame’

If a value is empty or contains white space or
single quotes, it must be quoted; quotes are rep-
resented by doubled single quotes. Attributes
that begin with an exclamation mark)(are con-
sideredsecret Factotum will never let a secret
value escape its address space and will suppress
keyboard echo when asking the user to type one.

A program requesting authentication selects a
key by providing aguery; a list of elements to be
matched by the key. Each element in the list is
either anattribute=value pair, which is satisfied
by keys with exactly that pair; or an attribute fol-
lowed by a question marlattribute?, which is
satisfied by keys with some pair specifying the
attribute. A key matches a query if every ele-
ment in the list is satisfied. For instance, to
select the APOP key in the previous example, an
APOP client process might specify the query

server=x.y.com proto=apop
Internally, factotum's APOP module would add
the requirements of havingser and ! password
attributes, forming the query

server=x.y.com proto=apop user? !password?
when searching for an appropriate key.

Factotum modules expect keys to have some
well-known attributes. For instance, thpgoto
attribute specifies the protocol module responsi-
ble for using a particular key, and protocol mod-
ules may expect other well-known attributes
(many expect keys to havgassword attributes,
for example). Additional attributes can be used
as comments or for further discrimination with-
out intervention byfactotum; for example, the
APOP and IMAP mail clients conventionally
include aserver attribute to select an appropri-
ate key for authentication.

Unlike in SDSI, keys in Plan 9 have no nested

structure. This design keeps the representation
simple and straightforward. If necessary, we

could add a nested attribute or, in the manner of
relational databases, an attribute that selects
another tuple, but so far the simple design has
been sufficient.

A simple common structure for all keys makes
them easy for users to administer, but the set of
attributes and their interpretation is still
protocol-specific and can be subtle. Users may
still need to consult a manual to understand all
details. Many attributes pfoto, user,
password, server) are self-explanatory and our
short experience has not uncovered any particular
difficulty in handling keys. Things will likely
get messier, however, when we grapple with
public keys and their myriad components.

2.5. Protecting keys

Secrets must be prevented from escaping
factotum. There are a number of ways they
could leak: another process might be able to
debug the agent process, the agent might swap
out to disk, or the process might willingly dis-
close the key. The last is the easiest to avoid:
secret information in a key is marked as such,
and wheneveffactotum prints keys or queries
for new ones, it is careful to avoid displaying
secret information. (The only exception to this is
the “plaintext password” protocol, which con-
sists of sending the values of theser and
Ipassword attributes. Only keys tagged with
proto=pass can have their passwords disclosed
by this mechanism.)

Preventing the first two forms of leakage requires
help from the kernel. In Plan 9, every process is
represented by a directory in theroc file sys-
tem. Using the files in this directory, other pro-
cesses could (with appropriate access permission)
examine factotum's memory and registers.
Factotum is protected from processes of other
users by the default access bits of jtgroc
directory. However, we’d also like to protect the
agent from other processes owned by the same
user, both to avoid honest mistakes and to pre-
vent an unattended terminal being exploited to
discover secret passwords. To do this, we added
a control message tgproc called private.
Once thefactotum process has writteprivate

to its /proc/pid/ct1 file, no process can access
factotum’'s memory througtyproc. (Plan 9 has

no other mechanism, such &slev/kmem, for
accessing a process’s memory.)



Similarly, the agent’s address space should not
be swapped out, to prevent discovering unen-
crypted keys on the swapping media. The
noswap control message inproc prevents this
scenario. Neitheprivate nor noswap is spe-
cific to factotum. User-level file servers such as
dossrv, which interprets FAT file systems, could
use noswap to keep their buffer caches from
being swapped to disk.

Despite our precautions, attackers might still find
a way to gain access to a process running as the
host owner on a machine. Although they could
not directly access the keys, attackers could use
the local factotum to perform authentications
for them. In the case of some keys, for example
those locking bank accounts, we want a way to
disable or at least detect such access. That is the
role of theconfirm attribute in a key. Whenever

a key with aconfirm attribute is accessed, the
local user must confirm use of the key via a local
GUI. The next section describes the actual
mechanism.

We have not addressed leaks possible as a result
of someone rebooting or resetting a machine run-
ning factotum. For example, someone could
reset a machine and reboot it with a debugger
instead of a kernel, allowing them to examine the
contents of memory and find keys. We have not
found a satisfactory solution to this problem.

2.6. Factotum transactions

External programs manag&ctotum’'s internal
key state through its file interface, writing textual
key and delkey commands to the
/mnt/factotum/ct1 file. Both commands take
a list of attributes as an argumerkey creates a
key with the given attributes, replacing any
extant key with an identical set of public
attributes.Delkey deletes all keys that match the
given set of attributes. Reading thet1 file
returns a list of keys, one per line, displaying
only public attributes. The following example
illustrates these interactions.

% cd /mnt/factotum

% 1s -1

-lTrw—————— gre gre 0 Jan 30 22:17 confirm
—rW——————— gre gre 0 Jan 30 22:17 ctl
-lr———————— gre gre 0 Jan 30 22:17 Tog
-lTrw—————— gre gre 0 Jan 30 22:17 needkey
——r——r——r—— gre gre 0 Jan 30 22:17 proto
——rw—-rw—-rw— gre gre 0 Jan 30 22:17 rpc

% cat >ctl

key dom=bell-Tabs.com proto=p9skl user=gre
Ipassword="don’ 't tell’

key proto=apop server=x.y.com user=gre

Ipassword="bite me’

% cat ctl

key dom=bell-Tabs.com proto=p9skl user=gre

key proto=apop server=x.y.com user=gre

% echo ’delkey proto=apop’ >ctl

% cat ctl

key dom=bell-labs.com proto=p9skl user=gre
(A file with the 1 bit set can be opened by only
one process at a time.)

The heart of the interface is thec file. Pro-
grams authenticate witfiactotum by writing a
request to thepc file and reading back the reply;
this sequence is called an RPtansaction
Requests and replies have the same format: a tex-
tual verb possibly followed by arguments, which
may be textual or binary. The most common
reply verb isok, indicating success. An RPC
session begins with &tart transaction; the
argument is a key query as described earlier.
Once started, an RPC conversation usually con-
sists of a sequence ofad andwrite transac-
tions. If the conversation is successful, an
authinfo transaction will return information
about the identities learned during the transac-
tion. The attr transaction returns a list of
attributes for the current conversation; the list
includes any attributes given in theart query

as well as any public attributes from keys being
used.

As an example of thepc file in action, consider

a mail client connecting to a mail server and
authenticating using the POP3 protocol's APOP
challenge-response command. There are four
programs involved: the mail clie®c, the client
factotum F ¢, the mail servePg, and the server
factotum Fs. All authentication computations
are handled by thefactotum processes. The
mail programs’ role is just to relay messages.

At startup, the mail server at.y.com begins an
APOP conversation with itfactotum to obtain
the banner greeting, which includes a challenge:
PS . FS:
FS — Ps:
Ps— Fg: read
Fs— Pg: ok +0K POP3 challenge
Having obtained the challenge, the server greets
the client:

Ps— Pc: +0K POP3 challenge
The client then uses an APOP conversation with
its factotum to obtain a response:

Pc - Fc: start proto=apop role=client
server=x.y.com

start proto=apop role=server
ok



o - e
Fc - Pc:
Pc - F¢c: read
Fc - Pc: ok APOP gre response

Factotum requires thastart requests include a

proto attribute, and the APOP module requires

an additional role attribute, but the other
attributes are optional and only restrict the key
space. Before responding to teeart transac-
tion, the clientfactotum looks for a key to use
for the rest of the conversation. Because of the
arguments in thestart request, the key must
have public attributes proto=apop and
server=x.y.com; as mentioned earlier, the

APOP module additionally requires that the key

haveuser and !password attributes. Now that

the client has obtained a response from its
factotum, it echoes that response to the server:

Pc - Pg: APOP gre response

Similarly, the server passes this message to its
factotum and obtains another to send back.

Pg— Fg: write APOP gre response

FS — Ps: ok

Ps— Fg: read

Fs— Pg: ok +0K welcome

Ps— Pc: +0K welcome

Now the authentication protocol is done, and the
server can retrieve information about what the
protocol established.

Pg - Fg: authinfo

Fs— Pg: ok client=gre

capability=capability

The authinfo data is a list ofattr=value pairs,
here a client user name and a capability. (Proto-
cols that establish shared secrets or provide
mutual authentication indicate this by adding
appropriateattr=valuepairs.) The capability can
be used by the server to change its identity to that
of the client, as described earlier. Once it has
changed its identity, the server can access and
serve the client’s mailbox.

Two more files provide hooks for a graphical
factotum control interface. The firstconfirm,
allows the user detailed control over the use of
certain keys. If a key has @nfirm= attribute,
then the user must approve each use of the key.
A separate program with a graphical interface
reads from theonfirm file to see when a confir-
mation is necessary. The read blocks until a key
usage needs to be approved, whereupon it will
return a line of the form

confirm tag=1 attributes

ok
write +OK POP3 challenge
ok

requesting permission to use the key with those
public attributes. The graphical interface then
prompts the user for approval and writes back

tag=1l answer=yes
(or answer=no).

The second filenpeedkey, diverts key requests.
In the APOP example, if a suitable key had not
been found during thestart transaction,
factotum would have indicated failure by return-
ing a response indicating what key was needed:

Fc —» Pc: needkey proto=apop

server=x.y.com user? !password?

A typical client would then prompt the user for
the desired key information, create a new key via
the ct1 file, and then reissue thetart request.
If the needkey file is open, then instead of fail-
ing, the transaction will block, and the next read
from the /mnt/factotum/needkey file will
return a line of the form

needkey tag=1 attributes

The graphical interface then prompts the user for
the needed key information, creates the key via
thect1 file, and writes backag=1 to resume the
transaction.

The remaining files are informational and used
for debugging. Theproto file contains a list of
supported protocols (to see what protocols the
system supportscat /mnt/factotum/proto),
and thelog file contains a log of operations and
debugging output enabled by debug control
message.

The next few sections explain hofiactotum is
used by system services.

3. Authentication in 9P

Plan 9 uses a remote file access protocol, 9P
[12], to connect to resources such as the file
server and remote processes. The original design
for 9P included special messages at the start of a
conversation to authenticate the user. Multiple
users can share a single connection, such as when
a CPU server runs processes for many users con-
nected to a single file server, but each must
authenticate separately. The authentication pro-
tocol, similar to that of Kerberos [18], used a
sequence of messages passed between client, file
server, and authentication server to verify the
identities of the user, calling machine, and serv-
ing machine. One major drawback to the design
was that the authentication method was defined
by 9P itself and could not be changed. Moreover,
there was no mechanism to relegate



authentication to an external (trusted) agent, so a
process implementing 9P needed, besides sup-
port for file service, a substantial body of crypto-
graphic code to implement a handful of startup
messages in the protocol.

A recent redesign of 9P addressed a number of
file service issues outside the scope of this paper.
On issues of authentication, there were two
goals: first, to remove details about authentica-
tion from the protocol itself; second, to allow an
external program to execute the authentication
part of the protocol. In particular, we wanted a
way to quickly incorporate ideas found in other
systems such as SFS [8].

Since 9P is a file service protocol, the solution
involved creating a new type of file to be served:
an authentication file Connections to a 9P ser-
vice begin in a state that allows no general file
access but permits the client to open an authenti-
cation file by sending a special message, gener-
ated by the newauth system call:

afd = fauth(int fd, char *servicename);

Herefd is the user’s file descriptor for the estab-
lished network connection to the 9P server and
servicename is the name of the desired service
offered on that server, typically the file subsys-
tem to be accessed. The returned file descriptor,
afd, is a unique handle representing the authenti-
cation file created for this connection to authenti-
cate to this service; it is analogous to a capabil-
ity. The authentication file represented bfd is

not otherwise addressable on the server, such as
through the file name hierarchy. In all other
respects, it behaves like a regular file; most
important, it accepts standard read and write
operations.

To prove its identity, the user process (via
factotum) executes the authentication protocol,
described in the next section of this paper, over
the afd file descriptor with ordinary reads and
writes. When client and server have successfully
negotiated, the authentication file changes state
so it can be used as evidence of authority in
mount.

Once identity is established, the process presents
the (now verified)afd as proof of identity to the
mount system call:

mount(int fd, int afd, char *mountpoint,

int flag, char *servicename)

If the mount succeeds, the user now has appropri-
ate permissions for the file hierarchy made visi-
ble at the mount point.

This sequence of events has several advantages.
First, the actual authentication protocol is imple-
mented using regular reads and writes, not spe-
cial 9P messages, so they can be processed, for-
warded, proxied, and so on by any 9P agent with-
out special arrangement. Second, the business of
negotiating the authentication by reading and
writing the authentication file can be delegated to
an outside agent, in particul@iactotum; the pro-
grams that implement the client and server ends
of a 9P conversation need no authentication or
cryptographic code. Third, since the authentica-
tion protocol is not defined by 9P itself, it is easy
to change and can even be negotiated dynami-
cally. Finally, sinceafd acts like a capability, it
can be treated like one: handed to another pro-
cess to give it special permissions; kept around
for later use when authentication is again
required; or closed to make sure no other process
can use it.

All these advantages stem from moving the
authentication negotiation into reads and writes
on a separate file. As is often the case in Plan 9,
making a resource (here authentication) accessi-
ble with a file-like interface reduces priori the
need for special interfaces.

3.1. Plan 9 shared key protocol

In addition to the various standard protocols sup-
ported byfactotum, we use a shared key proto-
col for native Plan 9 authentication. This proto-
col provides backward compatibility with older
versions of the system. One reason for the new
architecture is to let us replace such protocols in
the near future with more cryptographically
secure ones.

P9sklis a shared key protocol that uses tickets
much like those in the original Kerberos. The
difference is that we've replaced the expiration
time in Kerberos tickets with a random nonce
parameter and a counter. We summarize it here:

C-S nonce )

S- C: nonces,uidg,domaing

C- A: nonce;,uidg,domaing,uid¢,
factotumz _

A-C: KCE nonces,uid¢c,uidg Knﬁ,
Ks{ nonces,uid¢,uids K,

C-S: Kg{nonce;,uidc,uidg, Ky},
K,{ nonce;,counte

S- C: Kp{nonce,counte

(HereK{x} indicatesx encrypted with DES key
K.) The first two messages exchange nonces and
server identification. After this initial exchange,



the client contacts the authentication server to
obtain a pair of encrypted tickets, one encrypted
with the client key and one with the server key.
The client relays the server ticket to the server.
The server believes that the ticket is new because
it containsnonce; and that the ticket is from the
authentication server because it is encrypted in
the server keXs. The ticket is basically a state-
ment from the authentication server that now
uidc anduidg share a secrét,,. The authentica-
tor K,{nonce;,counte} convinces the server
that the client knowsK,, and thus must baidc.
Similarly, authenticator K,,{ nonce-,countes
convinces the client that the server knoWs,
and thus must belids. Tickets can be reused,
without contacting the authentication server
again, by incrementing the counter before each
authenticator is generated.

In the future we hope to introduce a public key
version of p9sk1, which would allow authentica-
tion even when the authentication server is not
available.

3.2. The authentication server

Each Plan 9 security domain has an authentica-
tion server (AS) that all users trust to keep the

complete set of shared keys. It also offers ser-
vices for users and administrators to manage the
keys, create and disable accounts, and so on. It
typically runs on a standalone machine with few

other services. The AS comprises two services,
keyfs andauthsrv.

Keyfs is a user-level file system that manages an
encrypted database of user accounts. Each
account is represented by a directory containing
the files key, containing the Plan 9 key for
p9skl;secret for the challenge/response proto-
cols (APOP, VNC, CHAP, MSCHAP, CRAM);
Tog for authentication outcomesxpire for an
expiration time; andstatus. If the expiration
time passes, if the number of successive failed
authentications exceeds 50, or dfisabled is
written to the status file, any attempt to access
thekey or secret files will fail.

Authsrv is a network service that brokers shared
key authentications for the protocols p9ski,
APOP, VNC, CHAP, MSCHAP, and CRAM.
Remote users can also callithsrv to change
their passwords.

The p9skl protocol was described in the previous
section. The challenge/response protocols differ
in detail but all follow the general structure:

C-S. nonce

S- C: noncss,uids,domaing

C- A: noncss,uids,domains,
hostidc ,uid¢ .

A-C: Kc{nonces,uidc,uids Ky},
Ks{ nonces,uidc,uids K,

C-S  Kg{nonces,uidc,uids Ky},
Ks{nonce

S-C: Kp{nonce

The password protocol is:
C-A: ud
S L - Geud
- A: passworg,q, passwor
A-C. OK N o

To avoid replay attacks, the pre-encryption clear
text for each of the protocols (as well as for
p9skl) includes a tag indicating the encryption’s
role in the protocol. We elided them in these
outlines.

3.3. Protocol negotiation

Rather than require particular protocols for par-
ticular services, we implemented a negotiation
metaprotocol,p9any which chooses the actual
authentication protocol to use. P9any is used
now by all native services on Plan 9.

The metaprotocol is simple. The callee sends a
null-terminated string of the form:

v.n proto;edomain; proto,edomain, ...

wheren is a decimal version numbeprotoy is
the name of a protocol for which théactotum
has a key, anddomain, is the name of the
domain in which the key is valid. The caller then
responds

protoedomain

indicating its choice. Finally the callee responds
0K

Any other string indicates failure. At this point
the chosen protocol commences. The final
fixed-length reply is used to make it easy to
delimit the 1/0O stream should the chosen protocol
require the caller rather than the callee to send
the first message.

With this negotiation metaprotocol, the underly-
ing authentication protocols used for Plan 9 ser-
vices can be changed under any application just
by changing the keys known by th&ctotum
agents at each end.

P9any is vulnerable to man in the middle attacks
to the extent that the attacker may constrain the
possible choices by changing the stream. How-
ever, we believe this is acceptable since the
attacker cannot force either side to choose algo-
rithms that it is unwilling to use.



4. Library Interface to Factotum

Although programs can acce$sctotum's ser-
vices through its file system interface, it is more
common to use a C library that packages the
interaction. There are a number of routines in the
library, not all of which are relevant here, but a
few examples should give their flavor.

First, consider the problem of mounting a remote
file server using 9P. An earlier discussion
showed how thefauth and mount system calls
use an authentication filafd, as a capability,
but not howfactotum manageafd. The library
contains a routine, amount (authenticated
mount), that is used by most programs in prefer-
ence to the rawfauth andmount calls. Amount
engagesfactotum to validateafd; here is the
complete code:

int

amount(int fd, char *mntpt,

int flags, char *aname)
{

int afd, ret;
AuthInfo *ai;

afd = fauth(fd, aname);
if(afd >= 0){
ai = auth_proxy(afd, amount_getkey,
"proto=p9any role=client");
if(ai !'= NULL)
auth_freeAI(ai);
}
ret = mount(fd, afd, mntpt,
flags, aname);
if(afd >= 0)
close(afd);
return ret;

}
where parametefd is a file descriptor returned
by open or dial for a new connection to a file
server. The conversation witfactotum occurs
in the call toauth_proxy, which specifies, as a
key query, which authentication protocol to use
(here the metaprotocebany) and the role being
played ¢lient). Auth_proxy will read and
write the factotum files, and the authentication
file descriptorafd, to validate the user’s right to
access the service. If the call is successful, any
auxiliary data, held in amuthInfo structure, is
freed. In any case, theount is then called with
the (perhaps validateddfd. A 9P server can
cause thefauth system call to fail, as an indica-
tion that authentication is not required to access
the service.

The second argument tuth_proxy is a func-
tion, hereamount_getkey, to be called if secret

challenge is required as part of the authentica-
tion. This function, of course, will provide this
data to factotum as a key message on the
/mnt/factotum/ctl file.

Although the final argument t@auth_proxy in
this example is a simple string, in general it can
be a formatted-print specifier in the manner of
printf, to enable the construction of more elab-
orate key queries.

As another example, consider the Planpd ser-
vice, which exports local devices to a shell pro-
cess on a remote machine, typically to connect
the local screen and keyboard to a more powerful
computer. At heartgpu is a superset of a service
calledexportfs [12], which allows one machine
to see an arbitrary portion of the file name space
of another machine, such as to export the net-
work device to another machine for gatewaying.
However, cpu is not justexportfs because it
also delivers signals such as interrupt and negoti-
ates the initial environment for the remote shell.

To authenticate an instance afpu requires
factotum processes on both ends: the local,
client end running as the user on a terminal and
the remote, server end running as the host owner
of the server machine. Here is schematic code
for the two ends:

/% client */

int

p9auth(int fd)

{
AuthInfo *ai;

ai = auth_proxy(fd, auth_getkey,
"proto=p9any role=client");
if(ai == NULL)
return -1;

/* start cpu protocol here */

}

/* server */

int

srvp9auth(int fd, char
{

*

*user)
AuthInfo *ai;

ai = auth_proxy(fd, NULL,
"proto=p9any role=server');
if(ai == NULL)
return -1;
/* set user id for server process */
if(auth_chuid(ai, NULL) < 0)
return -1;

/* start cpu protocol here */

}

information such as a password or response to a Auth_chuid encapsulates the negotiation to



change a user id using tlaphash andcapuse
files of the (server) kernel. Note that although
the client process may ask the user for new keys,
usingauth_getkey, the server machine, presum-
ably a shared machine with a pseudo-user for the
host owner, sets the key-getting functiorNta. L.

5. Secure Store

Factotum keeps its keys in volatile memory,
which must somehow be initialized at boot time.
Therefore factotum must be supplemented by a
persistent store, perhaps a floppy disk containing
a key file of commands to be copied into
/mnt/factotum/ctl during bootstrap. But
removable media are a nuisance to carry and are
vulnerable to theft. Keys could be stored
encrypted on a shared file system, but only if
those keys are not necessary for authenticating to
the file system in the first place. Even if the keys
are encrypted under a user password, a thief
might well succeed with a dictionary attack.
Other risks of local storage are loss of the con-
tents through mechanical mishap or dead batter-
ies. Thus for convenience and safety we provide
a secstore (secure store) server in the network
to hold each user’'s permanent list of keykey

file.

Secstore is a file server for encrypted data, used
only during bootstrapping. It must provide
strong authentication and resistance to passive
and active protocol attacks while assuming noth-
ing more from the client than a password. Once
factotum has loaded the key file, further
encrypted or authenticated file storage can be
accomplished by standard mechanisms.

The cryptographic technology that enables
secstore is a form of encrypted key exchange
called PAK [2], analogous to EKE [1], SRP [19],
or SPEKE [5]. PAK was chosen because it
comes with a proof of equivalence in strength to
Diffie-Hellman; subtle flaws in some -earlier
encrypted key exchange protocols and implemen-

tations have encouraged us to take special care.

In outline, the PAK protocol is:
C-S C, q/
S-.C: Sg haslégXy ,C,9)
C-S hasl'(gXy

whereH is a preshared secret between cliént

and serveS. There are several variants of PAK,

all presented in papers mainly concerned with
proofs of cryptographic properties. To aid imple-
menters, we have distilled a description of the
specific version we use into an Appendix to this

paper. The Plan 9 open source license provides
for use of Lucent's encrypted key exchange
patents in this context.

As a further layer of defense against password
theft, we provide (within the encrypted channel
C— 9 information that is validated at a RADIUS
server, such as the digits from a hardware token
[14]. This provides two-factor authentication,
which potentially requires tricking two indepen-
dent administrators in any attack by social engi-
neering.

The key file stored on the server is encrypted
with AES (Rijndael) using CBC with a 10-byte
initialization vector and trailing authentication
padding. All this is invisible to the user of
secstore. For that matter, it is invisible to the
secstore server as well; if the AES Modes of
Operation are standardized and a new encryption
format designed, it can be implemented by a
client without change to the server. The
secstore is deliberately not backed up; the user
is expected to use more than osecstore or
save the key file on removable media and lock it
away. The user’s password is hashed to create
theH used in the PAK protocol; a different hash
of the password is used as the file encryption
key. Finally, there is a command (inside the
authenticated, encrypted channel between client
andsecstore) to change passwords by sending a
newH; for consistency, the client process must at
the same time fetch and re-encrypt all files.

When factotum starts, it dials the local
secstore and checks whether the user has an
account. If so, it prompts for the user’s
secstore password and fetches the key file. The
PAK protocol ensures mutual authentication and
prevents dictionary attacks on the password by
passive wiretappers or active intermediaries.
Passwords saved in the key file can be long ran-
dom strings suitable for simpler
challenge/response authentication protocols.
Thus the user need only remember a single,
weaker password to enable strong, “single sign
on” authentication to unchanged legacy applica-
tions scattered across multiple authentication
domains.

6. Transport Layer Security

Since the Plan 9 operating system is designed for
use in network elements that must withstand
direct attack, unguarded by firewall or VPN, we
seek to ensure that all applications use channels
with appropriate mutual authentication and



encryption. A principal tool for this is TLS 1.0
[3]. (TLS 1.0 is nearly the same as SSL 3.0, and
our software is designed to interoperate with
implementations of either standard.)

TLS defines a record layer protocol for message
integrity and privacy through the use of message
digesting and encryption with shared secrets. We
implement this service as a kernel device, though
it could be performed at slightly higher cost by
invoking a separate program. The library inter-
face to the TLS kernel device is:
int pushtls(int fd, char *hashalg,

char *cryptalg, int isclient,

char *secret, char *dir);
Given a file descriptor, the names of message
digest and encryption algorithms, and the shared
secret,pushtls returns a new file descriptor for
the encrypted connection. (The final argument
dir receives the name of the directory in the TLS
device that is associated with the new connec-
tion.) The function is named by analogy with the
“push” operation supported by the stream 1/O
system of Research Unix and the first two edi-
tions of Plan 9. Because adding encryption is as
simple as replacing one file descriptor with
another, adding encryption to a particular net-
work service is usually trivial.

The Plan 9 shared key authentication protocols

establish a shared 56-bit secret as a side effect.

Native Plan 9 network services such @a and
exportfs use these protocols for authentication
and then invokeusht1s with the shared secret.

Above the record layer, TLS specifies a hand-
shake protocol using public keys to establish the
session secret. This protocol is widely used with
HTTP and IMAP4 to provide server authentica-
tion, though with client certificates it could pro-
vide mutual authentication. The library function

int t1sClient(int fd, TLSconn *conn)

handles the initial handshake and returns the
result of pushtls. On return, it fills theconn
structure with the session ID used and the X.509
certificate presented by the server, but makes no
effort to verify the certificate. Although the orig-
inal design intent of X.509 certificates expected
that they would be used with a Public Key Infras-
tructure, reliable deployment has been so long
delayed and problematic that we have adopted
the simpler policy of just using the X.509 certifi-
cate as a representation of the public key,
depending on a locally-administered directory of
SHA1 thumbprints to allow applications to
decide which public keys to trust for which

purposes.

7. Related Work and Discussion

Kerberos, one of the earliest distributed authenti-
cation systems, keeps a set of authentication tick-
ets in a temporary file called a ticket cache. The
ticket cache is protected by Unix file permis-
sions. An environment variable containing the
file name of the ticket cache allows for different
ticket caches in different simultaneous login ses-
sions. A user logs in by typing his or her Ker-
beros password. The login program uses the
Kerberos password to obtain a temporary ticket-
granting ticket from the authentication server,
initializes the ticket cache with the ticket-
granting ticket, and then forgets the password.
Other applications can use the ticket-granting
ticket to sign tickets for themselves on behalf of
the user during the login session. The ticket
cache is removed when the user logs out [18].
The ticket cache relieves the user from typing a
password every time authentication is needed.

The secure shell SSH develops this idea further,
replacing the temporary file with a named Unix
domain socket connected to a user-level pro-
gram, called an agent. Once the SSH agent is
started and initialized with one or more RSA pri-
vate keys, SSH clients can employ it to perform
RSA authentications on their behalf. In the
absence of an agent, SSH typically uses RSA
keys read from encrypted disk files or uses
passphrase-based authentication, both of which
would require prompting the user for a
passphrase whenever authentication is needed
[20]. The self-certifying file system SFS uses a
similar agent [6], not only for moderating the use
of client authentication keys but also for verify-
ing server public keys [8].

Factotum is a logical continuation of this evolu-
tion, replacing the program-specific SSH or SFS
agents with a general agent capable of serving a
wide variety of programs. Having one agent for
all programs removes the need to have one agent
for each program. It also allows the programs
themselves to be protocol-agnostic, so that, for
example, one could build an SSH workalike
capable of using any protocol supported by
factotum, without that program knowing any-
thing about the protocols. Traditionally each
program needs to implement each authentication
protocol for itself, arO(n?) coding problem that
factotum reduces td(n).

Previous work on agents has concentrated on



their use by clients authenticating to servers.
Looking in the other direction, Sun
Microsystem’s pluggable authentication module
(PAM) is one of the earliest attempts to provide a
general authentication mechanism for Unix-like
operating systems [17]. Without a central
authority like PAM, system policy is tied up in
the various implementations of network services.
For example, on a typical Unix, if a system
administrator decides not to allow plaintext pass-
words for authentication, the configuration files
for a half dozen different servers- rlogind,
telnetd, ftpd, sshd, and so on— need to be
edited. PAM solves this problem by hiding the
details of a given authentication mechanism
behind a common library interface. Directed by
a system-wide configuration file, an application
selects a particular authentication mechanism by
dynamically loading the appropriate shared
library. PAM is widely used on Sun’s Solaris
and some Linux distributions.

Factotum achieves the same goals using the
agent approachFactotum is the only process
that needs to create capabilities, so all the net-
work servers can run as untrusted users (e.g.,
Plan 9'snone or Unix’s nobody), which greatly
reduces the harm done if a server is buggy and is
compromised. In fact, ifactotum were imple-
mented on Unix along with an analogue to the
Plan 9 capability device, venerable programs like
su and login would no longer need to be
installed “setuid root.”

Several other systems, such as Password Safe
[16], store multiple passwords in an encrypted
file, so that the user only needs to remember one
password. Ourecstore solution differs from
these by placing the storage in a hardened loca-
tion in the network, so that the encrypted file is
less liable to be stolen for offline dictionary
attack and so that it is available even when a user
has several computers. In contrast, Microsoft’s
Passport system [9] keeps credentials in the net-
work, but centralized at one extremely-high-
value target. The important feature of Passport,
setting up trust relationships with e-merchants, is
outside our scope. Theecstore architecture is
almost identical to Perlman and Kaufman’s [10]
but with newer EKE technology. Like them, we
chose to defend mainly against outside attacks on
secstore; If additional defense of the files on
the server itself is desired, one can use dis-
tributed techniques [4].

We made a conscious choice of placing encryp-
tion, message integrity, and key management at

the application layer (TLS, just above layer 4)
rather than at layer 3, as in IPsec. This leads to a
simpler structure for the network stack, easier
integration with applications and, most impor-
tant, easier network administration since we can
recognize which applications are misbehaving
based on TCP port numbers. TLS does suffer
(relative to IPsec) from the possibility of forged
TCP Reset, but we feel that this is adequately
dealt with by randomized TCP sequence num-
bers. In contrast with other TLS libraries, Plan 9
does not require the application to change te
calls tosslwrite but simply to add a few lines
of code at startup [13].

8. Conclusion

Writing safe code is difficult. Stack attacks, mis-
takes in logic, and bugs in compilers and operat-
ing systems can each make it possible for an
attacker to subvert the intended execution
sequence of a service. If the server process has
the privileges of a powerful user, such asot

on Unix, then so does the attackeFactotum
allows us to constrain the privileged execution to
a single process whose core is a few thousand
lines of code. Verifying such a process, both
through manual and automatic means, is much
easier and less error prone than requiring it of all
servers.

An implementation of these ideas is in Plan 9
from Bell Labs, Fourth Edition, freely available
fromhttp://plan9.bell-1abs.com/plan9.
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Appendix: Summary of the PAK protocol

Let g >2'%° and p >2%%%* be primes such that
p =rqg +1 with r not a multiple ofg. TakehDZE,
such thatg=h" is not 1. These parameters may
be chosen by the NIST algorithm for DSA, and
are public, fixed values. The clief@ knows a
secret 1 and computesH=(H(C, m))" and
H~1, whereH is a hash function yielding a ran-
dom element oZ,, andH~* may be computed
by gcd. gAII arithmetic is modul@.) The client
givesH ™ - to the servefSahead of time by a pri-
vate channel. To start a new connection, the
client generates a random value computes
m=g*H, then calls the server and serdsndm.
The server checksnz0 mod p, generates ran-
domy, computequ=gY, c=(mH™*)Y, and sends
S M, k=shal("server'C,S,m,u,0,H™1). Next
the client computes =%, verifiesk, and sends
k'Eshal("client",C,S,m,u,o,H‘1). The server
then verifiesk’ and both sides begin using ses-
sion key KEsha]("session"C,S,m,u,o,H‘l).

In the published version of PAK, the server name
Sis included in the initial hash, but doing so is
inconvenient in our application, as the server
may be known by various equivalent names.

MacKenzie has shown [7] that the equivalence
proof [2] can be adapted to cover our version.



