
Trading Capacity for Performance in a Disk Array∗

Xiang Yu† Benjamin Gum† Yuqun Chen†

Randolph Y. Wang† Kai Li† Arvind Krishnamurthy‡ Thomas E. Anderson§

Abstract

A variety of performance-enhancing techniques,
such as striping, mirroring, and rotational data repli-
cation, exist in the disk array literature. Given a
fixed budget of disks, one must intelligently choose
what combination of these techniques to employ.
In this paper, we present a way of designing disk
arrays that can flexibly and systematically reduce
seek and rotational delay in a balanced manner. We
give analytical models that can guide an array de-
signer towards optimal configurations by considering
both disk and workload characteristics. We have im-
plemented a prototype disk array that incorporates
the configuration models. In the process, we have
also developed a robust disk head position predic-
tion mechanism without any hardware support. The
resulting prototype demonstrates the effectiveness of
the configuration models.

1 Introduction

In this paper, we set out to answer a simple ques-
tion: how do we systematically increase the perfor-
mance of a disk array by adding more disks?

This question is motivated by two phenomena.
The first is the presence of a wide variety of
performance-enhancing techniques in the disk array
literature. These include striping[17], mirroring[3],
and replication of data within a track to improve ro-
tational delay[18]. All of these techniques share the
common theme of improving performance by scal-
ing the number of disks. Their performance impacts,
however, are different. Given a fixed budget of disks,
an array designer faces the choice of what combina-
tion of these techniques to use.

∗This work was supported in part by the Scalable I/O
project under the DARPA grant DABT63-94-C-0049 and by
the National Science Foundation under grant CDA-9624099
and CCR-9984790.
†Department of Computer Science, Princeton University,

{xyu,gum,yuqun,rywang,li}@cs.princeton.edu.
‡Department of Computer Science, Yale University,

arvind@cs.yale.edu.
§Department of Computer Science and Engineering, Uni-

versity of Washington, Seattle, tom@cs.washington.edu.

The second phenomenon is the increasing cost
and performance gap between disk and memory.
This increase is fueled by the explosive growth of
disk areal density, which is at an annual rate of about
60% [8]. On the other hand, the areal density of
memory has been improving at a rate of only 40%
per year [8]. The result is a cost gap of roughly two
orders of magnitude today.

As disk latency has been improving at about
only 10% per year [8], disks are becoming increas-
ingly unbalanced in terms of the relationship be-
tween capacity and latency. Although cost per byte
and capacity per drive remain the predominant con-
cerns of a large sector of the market, a substantial
performance-sensitive (and, in particular, latency-
sensitive) market exists. Database vendors today
have already recognized the importance of building
a balanced secondary storage system. For example,
in order to achieve high performance on TPC-C [26],
vendors configure systems based on the number of
disk heads instead of capacity. To achieve D times
the bandwidth, the heads form aD-way mirror, aD-
way stripe, or a RAID-10 configuration [4, 11, 25],
which combines mirroring and striping so that each
unit of the striped data is also mirrored. What is
not well understood is how to configure the heads to
get the most out of them.

The key contributions of this paper are:
• a flexible strategy for configuring disk arrays and
its performance models,
• a software-only disk head position prediction
mechanism that enables a range of position-
sensitive scheduling algorithms, and
• evaluation of a range of alternative strategies
that trade capacity for performance.
More specifically, we present a disk array config-

uration, called an SR-Array, that flexibly combines
striping with rotational replication to reduce both
seek and rotational delay. The power of this config-
uration lies in that it can be flexibly adjusted in a
balanced manner that takes a variety of parameters
into consideration. We present a series of analyti-
cal models that show how to configure the array by
considering both disk and workload characteristics.



To evaluate the effectiveness of this approach, we
have designed and implemented a prototype disk ar-
ray that incorporates the SR-Array configurations.
In the process, we have developed a method for
predicting the disk head location. It works on a
wide range of off-the-shelf hard drives without spe-
cial hardware support. This mechanism is not only
a crucial ingredient in the success of the SR-Array
configurations, it also enables the implementation of
rotational position sensitive scheduling algorithms,
such as Shortest Access Time First (SATF) [14, 23],
across the disk array. Because these algorithms in-
volve inter-disk replicas, without the head-tracking
mechanism, it would have been difficult to choose
replicas intelligently even if the drives themselves
perform sophisticated internal scheduling.

Our experimental results demonstrate that the
SR-Array provides an effective way of trading capac-
ity for improved performance. For example, under
one file system workload, a properly configured six-
disk SR-Array delivers 1.23 to 1.42 times lower la-
tency than that achieved on highly optimized strip-
ing and mirroring systems. The same SR-Array
achieves 1.3 to 2.6 times better sustainable through-
put while maintaining a 15 ms response time on this
workload.

The remainder of the paper is organized as fol-
lows. Section 2 presents the SR-Array analytical
models that guide configuration of disk arrays. Sec-
tion 3 describes the integrated simulator and proto-
type disk array that implement the SR-Array config-
uration models. Section 4 details the experimental
results. Section 5 describes some of the related work.
Section 6 concludes.

2 Techniques and Analytical Models

In this section, we provide a systematic analysis
of how a combination of the performance-enhancing
techniques such as striping and data replication
can contribute to seek distance reduction, rotational
delay reduction, overall latency improvement, and
throughput improvement. These analytical models,
though approximations in some cases, serve as a ba-
sis for configuring a disk array for a given workload.

2.1 Reducing Seek Distance

We start by defining the following abstract prob-
lem: suppose the maximum seek distance on a single
disk is S, the total amount of data fits on a single
disk, and accesses are uniformly distributed across
the data set. Then, how can we effectively employ
D disks to reduce the average seek latency? We use
seek distance to simplify our presentation. (Seek la-

A A A

CB CB

(a)

(b)

Figure 1: Techniques for reducing seek distance. Capital
letters represent a portion of the data. To the left of the
arrows, we show how data is (logically) stored on a single
disk. To the right, we show different ways that data on
the single disk can be distributed on two disks (D = 2):
(a) D-way mirroring, and (b) D-way striping.

tency is approximately a linear function of seek dis-
tance only for long seeks [22].) As a base case, one
can show that the average seek distance for reads on
a single disk [24] is S1 = S/3.

The first seek reduction technique is D-way mir-
roring (shown in Figure 1(a)). D-way mirroring can
reduce seek distance because we can choose the disk
head that is closest to the target sector in terms of
seek distance. With D disks, the average seek dis-
tance is the average of the minimum of D random
variables [3], which is S/(2D + 1).

The second technique is striping (and keeping
disks partially empty). Figure 1(b) illustrates a two-
way striping. Data on the original single disk is par-
titioned into two disjoint sets: B and C. We store B
on the outer edge of the first disk and C on the outer
edge of the second disk. The space in the middle of
these two disks is not used. In this case, the sin-
gle large disk is in effect split into two smaller disks.
As a result, the disk head movement is restricted to
a smaller region. Assuming constant track capacity
and uniform accesses, Matloff [17] gives the average
seek distance of a D-way stripe (Ss):

Ss(D) =
S

3D
(1)

The amount of seek reduction achieved by striping is
better than that of D-way mirroring. However, D-
way mirroring provides reliability through the use
of multiple copies. A hybrid scheme would provide
reliability along with smaller seek latencies. RAID-
10, widely used in practice, is a concrete example of
such a hybrid scheme: in a RAID-10 system, data
is striped across Ds disks while each block is also
replicated on Dm different disks.

2.2 Reducing Rotational Delay

As we reduce the average seek distance, the rota-
tional delay starts to dominate the disk access cost.
To address this limitation, we replicate data at dif-
ferent rotational positions, and by choosing a replica



(c)(b)(a)

Figure 2: Techniques for reducing rotational delay. (a)
Randomly placed replicas. (b) Evenly spaced replicas. (c)
Replicas placed on different tracks (either within a single
disk or on different disks).

that is rotationally closest to the disk head, we can
reduce rotational delay. Replication for reducing ro-
tational delay can increase seek distance by pushing
data farther apart. We will discuss combining the
techniques for reducing seek and rotation distance
in a later section.

If the time needed to complete a rotation on a
single disk is R, we observe that the average rota-
tional delay Rr(1) is simply half of a full rotation,
i.e. Rr(1) = R/2. If we replicate data D times, and
spread the replicas evenly on a track (i.e. 360/D de-
grees apart from each other as shown in Figure 2(b)),
the average read rotational latency Rr is:

Rr(D) =
R

2D
(2)

We can also show that the average read rotational
latency is Rr = R/ (D + 1), if we randomly place
replicas (shown in Figure 2(a)) on the same track.
This technique is therefore less beneficial than evenly
distributing the replicas and is not used in our de-
sign.

However, having multiple replicas on one track
increases average rotational latency Rw for writing
all these replicas to:

Rw(D) = R− R

2D
(3)

Of course, we could reduce the write costs by
writing the closest copy synchronously and prop-
agating other copies during idle periods. Equa-
tion (3) gives the worst case cost when we are not
able to mask the replica propagation. Notice that
Rr(D) + Rw(D) = R. Thus if reads are more fre-
quent than writes, making more replicas will reduce
overall latency. If reads and writes are equally fre-
quent, varying D will not change the average over-
all latency. If writes are more frequent than reads,
the approach with no replication is always the best.
Note that this relationship is independent of the
value of R and is only true for foreground replica
propagation. Background propagation may make
replication desirable even when writes outnumber
reads.

Figures 2(a) and (b) illustrate the concept of
rotational replication by making copies within the
same track. Unfortunately, this decreases the band-
width of large I/O as a result of shortening the ef-
fective track length and increasing track switch fre-
quency. To avoid unnecessary track switches, we
place the replicas on different tracks either within a
cylinder of a single disk or on different disks (shown
in Figure 2(c)). Track skews must be re-arranged so
that large sequential I/Os that cross track bound-
aries do not suffer any unnecessary degradation.

2.3 Reducing Both Seek and Rotational
Delay

In the previous sections, we have discussed ex-
isting techniques for reducing seek distance and ro-
tational delay in isolation. Their combined effects,
however, are not well understood. We now develop
models that predict the overall latency as we increase
the number of disks.

SR-Array: Combining Striping and Rota-
tional Replication

Since disk striping reduces seek distance and rota-
tional replication reduces rotational delay, we can
combine the two techniques to reduce overall la-
tency. We call the resulting configuration an SR-
Array. Figure 3 shows an example SR-Array. In
an SR-Array, we perform rotational replication on
the same disk. We explore rotational replication on
different disks in a later section.

Given a fixed budget of D disks, we would now
like to answer the following question: what degree
of striping and what degree of rotational replication
should we use for the best resulting performance?
We call this the “aspect ratio” question. We first
consider this question for random access latency, and
then we examine how the model can be extended to
take into account other workload parameters.

Read Latency on an SR-Array

In this paper, we define overhead to include various
processing times, transfer costs, track switch time,
and mechanical acceleration/deceleration times. We
focus on the overhead-independent part of the la-
tency in the following analysis.

Let us assume that we have a single disk’s worth
of data, and we have a total of D disks. Suppose
the maximum seek time on one disk is S, the time
for a full rotation is R, only 1/Ds of the cylinders
on a single disk is used to limit the seek distance,
and Dr is the number of replicas for reducing rota-
tional delay (DsDr = D). If Dr = 1, an SR-Array
degenerates to simple striping and only 1/D of the



A1

A1

(a)

(b)

B1
C1

C2

A2
B2

A1

A2

A2

C1

C1

C2

C2

B1

B1

B2

B2

Figure 3: Reducing both seek and rotational delay in an
SR-Array. (a) Data on an original disk is divided into
six parts. (b) A 3 × 2 SR-Array. Each disk holds only
one sixth of the original data. The two rotational replicas
for each block ensure that the maximum rotational delay
for any data is half of a full rotation. (Two times the
number of disks are needed to support two-way rotational
replication; this is shown in the vertical dimension.) The
rotational replicas expand the seek distance between differ-
ent data blocks so the maximum seek distance on each of
these six disks is the same as that in a simple three-way
striped system (denoted by the three disks in the horizontal
dimension).

available space is used. If Ds = 1, we use all the
available space. In Figure 3, Ds = 3 and Dr = 2.

Because the random read latency is the sum
of the overhead, the average seek time, and the
average rotational time, we can approximate the
overhead-independent part of random read latency
TR(Ds, Dr) as:

TR(Ds, Dr) =
S

3Ds
+

R

2Dr
(4)

Given the constraint of DsDr = D, we can prove
that the following configuration produces the best
overall latency for independent random I/Os under
low load: 

 Ds =
√

2S
3RD

Dr =
√

3R
2SD

(5)

The overhead-independent part of latency under this
configuration is therefore:

Tbest =

√
2SR
3D

(6)

It is likely that the optimal Ds and Dr are not inte-
ger values. For such scenarios, we choose Dr to be

the maximum integer factor of D that is less than
or equal to the optimal non-integer value.

Disks with slow rotational speed (large R) de-
mand a higher degree of rotational replication. In
terms of the SR-Array illustration of Figure 3(b),
this argues for a tall thin grid. Conversely, disks with
poor seek characteristics (large S) demand a large
striping factor. In terms of Figure 3(b), this argues
for a short fat grid. The model indicates that the la-
tency improvement on an SR-Array is proportional
to the square root of the number of disks (

√
D).

So far, our discussion of the model applies to ran-
dom access by assuming an average seek of S/3 in
Equation (6). To capture seek locality, we replace
S/3 with the average seek of a workload. In the
later experimental sections, this is accomplished by
dividing S/3 with a “seek locality index” (L), which
is observed from the workload. The model does not
directly account for sequential access.

Read/Write Latency on an SR-Array

Now we extend the latency model of an SR-Array
to model the performance of both read and write
operations. When performing a write, in the worst
case scenario of not being able to mask the cost of
replica propagation, we must incur a write latency
of TW (Ds, Dr):

TW (Ds, Dr) =
S

3Ds
+R− R

2Dr
(7)

Let the number of reads be Xr, the number of
writes that can be propagated in the background be
Xwb, and the number of writes that are propagated
in the foreground be Xwf . We define the ratio p:

p =
Xr +Xwb

Xr +Xwb +Xwf
(8)

The average read/write latency, T (Ds, Dr) = pTR+
(1− p)TW , can be expressed as:

T (Ds, Dr) =
S

3Ds
+ p

R

2Dr
+ (1− p)(R− R

2Dr
) (9)

The first term is the average seek incurred by any
request. The second term is the average rotational
delay consumed by I/O operations that do not result
in foreground replica propagation (based on Equa-
tion (2)) with probability p; and the third term is
the rotational delay consumed by writes whose repli-
cas are propagated in the foreground due to lack of
idle time (based on Equation (3)) with probability
1−p. We can prove that the following configuration
provides the best overall latency:






Ds =
√

2S
3R(2p−1)D

Dr =
√

3R(2p−1)
2S D

(10)

The latency under this configuration is:

Tbest =

√
2SR(2p− 1)

3D
+ (1− p)R (11)

A low p ratio calls for a short fat grid in Fig-
ure 3(b). A p ratio under 50% precludes rotational
replication and pure striping provides the best con-
figuration. In the best case, when all write replicas
can be propagated in the background (or when we
have no writes at all), writes and reads become in-
distinguishable as far as this model is concerned, so
p approaches 1 and the latency improvement is pro-
portional to

√
D.

2.4 Scheduling and Throughput

We now consider throughput improvements and ad-
dress the following questions: 1) How do we schedule
the requests to take advantage of the additional re-
sources? 2) How do we modify the SR-Array aspect
ratio models to optimize for throughput?

Scheduling on an SR-Array

In our SR-Array design, we choose to place a block
and all its replicas (if any) on a single disk. Re-
quests are sent to the only disk responsible for the
data, which queues requests and performs schedul-
ing on each disk locally and independently. In con-
trast, in a mirrored system, because any request can
be scheduled for any copy, devising a good global
scheduler is non-trivial. We report heuristics-based
results for mirrored systems in later sections. In this
section, we focus on scheduling for an SR-Array and
develop an extension of the LOOK algorithm for an
SR-Array, which we call RLOOK.

Under the traditional LOOK algorithm, the disk
head moves bi-directionally from one end of the disk
to another, servicing requests that can be satisfied
by the cylinder under the head. On an SR-Array
disk, in addition to scanning the disk like LOOK
in the seek direction, our RLOOK scheduling also
chooses the replica that is rotationally closest among
all the replicas during the scan.

Suppose q is the number of requests to be sched-
uled for a single RLOOK stroke on a single disk, and
S, R, Ds, Dr, D, and p retain their former defini-
tions from Section 2.3, the average time of a single
request in the stroke is T (Ds, Dr):

T (Ds, Dr) =
S

qDs
+p

R

2Dr
+(1−p)(R− R

2Dr
) (12)

The first term amortizes q requests over the end-to-
end seek time, which is an approximation of the time
needed for a LOOK stroke. The two remaining terms
are identical to those of Equation (9). (Empirically,
this is a good approximation when q > 3. When q ≤
3, the requests are so sparse that the latency models
of Equations (9) through (11) are used instead.)

Starting with Equation (12), we can prove that
the best latency is achieved with the following con-
figuration: 


Ds =

√
2S

R(2p−1)qD

Dr =
√

R(2p−1)q
2S D

(13)

Under this configuration, the average request la-
tency of RLOOK is:

Tbest =

√
2SR(2p− 1)

qD
+ (1− p)R (14)

Assuming that each request has an overhead of To,
we can approximate the single disk throughput by

N1 =
1

To + Tbest
(15)

In addition to the parameters that we have seen
in the previous models, the aspect ratio is now also
sensitive to q, a measure of the busyness of the sys-
tem. A long queue allows for the amortization of the
end-to-end seek over many requests; consequently,
we should devote more disks to reducing rotational
delay. In terms of the SR-Array illustration of Fig-
ure 3(b), this argues for a tall thin grid. As with
the model in the last section, a p ratio under 50%
also precludes rotational replication; pure striping is
best and Equations (13) through (15) do not apply.
In the best case, when all replicas are propagated in
the background, p approaches 1, and the model sug-
gests that the overhead-independent part of service
time also improves proportionally to

√
D.

Having modeled the throughput of a single disk,
we attempt to model the throughput of an SR-Array
with D disks and a total of Q = Dq outstand-
ing requests, where q is the average queue size per
disk. We assume that the requests are randomly dis-
tributed in the system. There could be a load im-
balance in the form of idle disks when Q is not much
more than D. The probability of one disk being idle
is
(
1− 1

D

)Q. Therefore, the total throughput of the
system is:

ND ≈ D
[
1−

(
1− 1

D

)Q]
·N1 (16)



Although this approximation is derived based on
reasoning about the presence of idle disks, we shall
see in Section 4.2 that it is in fact a good approxi-
mation of more general cases.

Now that we have described the RLOOK exten-
sion to LOOK, it is easy to understand a similar
extension to SATF: RSATF. An RSATF scheduler
chooses the next request with the shortest access
time by considering all rotational replicas. It is well
known that SATF outperforms LOOK [14, 23] by
considering rotational delay. Our experimental re-
sults will show that the gap between RLOOK and
RSATF is smaller because both scheduling algo-
rithms consider rotational delays. Once the detailed
low level disk layout is understood, RLOOK is sim-
ple to implement; it is an attractive local scheduler
for an SR-Array.

2.5 Comparing SR-Array with Striped
Mirror

In an SR-Array, all replicas exist on the same
disk. Removing this restriction, we can place these
replicas at rotationally even positions on different
disks in a “synchronized” mirror, a mirrored system
whose spindles are synchronized. We call this layout
strategy a striped mirror, one flavor of the RAID-10
systems known in the disk array industry. (RAID-10
is a broader term that typically does not necessar-
ily imply the requirement of synchronized spindles
and the placement of replicas at rotationally even
positions.) To make the performance of the striped
mirror competitive to a corresponding SR-Array, we
must choose replicas intelligently based on rotational
positioning information.

Even with these assumptions, a striped mirror is
not equivalent to an SR-Array counterpart. Con-
sider a simple example involving only two disks:
blocks A and B reside on different disks in an SR-
Array; but each of the disks in a corresponding
striped mirror has both blocks. Now consider a ref-
erence stream of AAB. On an SR-Array, the two
accesses to A are satisfied by two rotational repli-
cas on one disk, consuming less than a full rotation
in terms of rotational delay; and the access to B is
satisfied by a different disk so its access time is inde-
pendent of the first disk and the first two accesses.
In an attempt to emulate the behavior of the SR-
Array, we must send the two accesses to A to the
two replicas on different disks in a striped mirror;
but now the access time of B is affected by the first
two accesses because both disks are busy. In general,
it is impossible to enforce identical individual access
time for a stream of requests to an SR-Array and a
striped mirror.

Statistically, the read latency of a striped mirror
should be slightly better than the latency on a cor-
responding SR-Array. This is because the average
of the minimum of the sum of seek and rotational
delay is smaller than the sum of the average seek
and average minimum rotational delay.

In terms of throughput, the simple example above
shows that for an arbitrary stream of requests, there
does not exist a general schedule on a striped mirror
that is equivalent to that on a corresponding SR-
Array. We do not pretend to know how to optimally
choose replicas on a striped mirror. Section 3 dis-
cusses a number of heuristics. The performance of
our best effort implementation of a striped mirror
has failed to match that of an SR-Array counter-
part.

In terms of feasibility, as spindle synchronization
is becoming a rarer feature on modern drives, one
can only approximate striped mirrors on unsynchro-
nized spindles. In terms of reliability, a striped mir-
ror is obviously better than an SR-Array.

In general, it is possible to combine an SR-Array
with a striped mirror to achieve the benefits of both
approaches so that some of the replicas are on the
same disk and some are on different ones. The result
is the most general configuration: a Ds ×Dr ×Dm

“SR-Mirror”, where Ds implies that only 1/Ds of
the space is used (to reduce seek time), Dr is the
number of replicas on the same disk, and Dm is the
number of replicas on different disks. A D × 1 × 1
system is D-way striping. A 1× 1 ×D system is a
D-way mirror. A Ds×Dr×1 system is an SR-Array.
A Ds× 1× 2 is the most common RAID-10 configu-
ration. We may approximate the performance of an
SR-Mirror by replacing Dr in the SR-Array models
with Dr ×Dm.

2.6 Summary of Techniques and Models

In this section, we have explored how by scaling
the number of disks in a storage system we can 1)
reduce seek distance, 2) reduce rotational delay, 3)
reduce overall latency by combining these techniques
in a balanced manner, and 4) improve throughput.
To achieve these goals, the storage system needs to
be configured based on a number of parameters. We
have developed simple models that capture the fol-
lowing parameters that influence the configuration
decisions:
• disk characteristics in the form of seek and rota-
tional characteristics (S and R),
• read/write ratio (p),
• busyness of the system (q), and
• seek locality (L).



We note that there does not exist a single “per-
fect” SR-Array configuration; instead, there may ex-
ist one “right” configuration for every workload and
cost/performance specification. As we increase the
number of disks, and if we properly configure the
storage system, under the right conditions, the vari-
ous models of this section suggest the following rule
of thumb: By using D disks, we can improve the
overhead-independent part of response time by a fac-
tor of

√
D.

3 Implementation

In the previous section, we analyzed how to con-
figure a disk array to deliver better performance as
we scale the number of disks in the system. In this
section, we describe the prototype MimdRAID im-
plementation that puts the theory to test.

3.1 Overview

To show the feasibility of our approach, we have
developed an infrastructure for experimenting with
the various techniques. Figure 4 illustrates the sys-
tem components and how they stack against each
other. There are a number of ways of configuring the
system. The controlling agent (at the top) can be
either a user level disk driver or an OS kernel device
driver. The devices (at the bottom) can be either
a disk simulator or real SCSI disks. The remain-
ing components (in the middle) are shared across all
configurations and are built in a layered fashion.

The SCSI Abstraction Layer abstracts device spe-
cific operations such as SCSI device detection at
boot time, issuing SCSI commands, and retrieval of
command status. We currently support two different
10000 RPM SCSI drives: Seagate ST34502LW and
ST39133LWV; but all experimental results reported
are based on the ST39133LWV.

The Calibration Layer is used for calibrating the
disk and extracting information regarding the phys-
ical layout of the disk. It keeps track of where the
disk head is currently located and calculates how
much time is required to move the head from its cur-
rent position to a target sector. Section 3.2 provides
more details about our head-tracking technique.

A parallel layer to the SCSI abstraction layer is
the Simulator. We decided to integrate the simulator
into the architecture to shorten the simulation time
for long traces: we not only eliminate idle time, but
also replace I/O time (which can be long) with sim-
ulated time. The simulator also provides the flexi-
bility of exploring the impact of changing disk char-
acteristics. To faithfully simulate the behavior of
the disks that we currently use in the prototype, the

Logical Disk

Disk Configuration

SATF RLOOKLOOK

Scheduling

Calibration

Head Position
Prediction

Geometry
Extraction

User Device Driver Kernel Device Driver (Z:)

Simulator
SCSI Abstraction Device

Detection

RSATF

Figure 4: Prototype architecture.

simulator receives timing information from the cali-
bration layer to configure itself.

The Scheduling layer implements several disk
scheduling policies. This layer maintains a
read/write command queue for each physical disk
and invokes a user determined policy to pick the
next request at each scheduling step. We call these
queues the drive queues. Sections 3.3 and 3.4 pro-
vide details of the scheduling policies.

The Disk Configuration Layer provides support
for configuring a collection of disks using techniques
such as D-way mirroring, striping, SR-Array, and
SR-Mirror. It translates I/O requests for a logical
disk to a set of I/O commands on the physical disks
and inserts them into the appropriate drive queues.
The striping unit is 64K bytes in our experiments.

The topmost Logical Disk Layer is in charge of ex-
posing the logical disk to the application. The kernel
device driver exposes a mount point (e.g. drive let-
ter Z: in Windows 2000) to user space. The user
level driver exposes the disk in the form of an API
to the application.

3.2 Predicting Disk Head Position

The techniques presented in Section 2 rely on
the driver’s ability to accurately predict the disk
head location and the cost of disk operations such
as track switches, seeks, and rotational placement.
The driver also needs information on the layout of
the physical sectors on the disk.

Previous proposals that depend on the knowl-
edge of head positions have relied on hardware sup-
port [5, 27]. Unfortunately, this level of support is
not always available on commodity drives. We have



developed a software-only head-tracking method.
Our scheme requires issuing read accesses to a fixed
reference sector at periodic intervals. The head
tracking algorithm computes the disk head position
based on the time stamp taken immediately after
the completion of the most recent read operation
of the reference sector. The basic idea is that the
time between two read accesses of the reference sec-
tor is always an integral multiple of the full rota-
tion time plus an unpredictable OS and SCSI over-
head. By gradually increasing the time interval be-
tween adjacent read requests to the reference sec-
tor, we amortize the overhead of reading the ref-
erence sector. Our experiments show that periodic
re-calibration at an interval of two minutes yields
predictions that have an error of only 1% of a full
rotation time with 98% confidence. It is encourag-
ing that we can achieve a high degree of accuracy
with a low overhead associated with reading the ref-
erence sector every two minutes. To further reduce
this overhead, we can exploit the timing information
and known disk head location at the end of a request.
We have not implemented this optimization.

To obtain an accurate image of the disk, we use
methods that are similar to those used by Wor-
thington [29] for determining the logical to physi-
cal sector mapping. We obtain information on disk
zones, track skew, bad sectors, and reserved sectors
through a sequence of low-level disk operations.

The last piece of information that we measure
is the cost of performing track switches and seeks.
Small errors in these timing measurements may in-
troduce a penalty that is close to a full rotation. To
reduce the number of rotation misses, we introduce
a slack of k sectors so that when the mechanism pre-
dicts the head to be less than k sectors away from the
target, the scheduler conservatively chooses the next
rotational replica after the target. This slack can be
adjusted by a real time feedback loop to ensure that
more than 99% of the requests are on target.

3.3 Scheduling Reads

The head-tracking mechanism, along with accu-
rate models of the disk layout and the seek profile, al-
lows us to implement sophisticated local scheduling
policies on individual disks; these include RLOOK,
SATF, and RSATF.

Scheduling on a mirrored system, however, is
more complex due to the fact that a request can be
serviced by any one of the disks that have the data.
We use the following heuristic scheduling algorithm.
When a read request arrives, if some of the disks
that contain the data are idle, the scheduler imme-
diately sends the request to the idle disk head that is

closest to a copy of the data. If all disks that contain
the desired data are busy, the logical disk layer du-
plicates the request and inserts the copies into the
drive queues of all these disks. As soon as such a
request is scheduled on one disk, all other duplicate
requests are removed from all other drive queues.
When a disk completes processing a request, its lo-
cal scheduler greedily chooses the “nearest” request
from its own drive queue. Although this heuristic
algorithm may not be optimal, it can avoid load im-
balance and works fairly well in practice.

3.4 Delayed Writes

While multiple copies of data reduce read latency,
they present a challenge for performing writes ef-
ficiently because more than one copy needs to be
written. We need to make Dr × Dm copies for a
Ds ×Dr ×Dm SR-Mirror. It is however feasible to
propagate the copies lazily when the disks are idle.
We can issue a write to the closest copy and de-
lay writing the remaining copies. For back-to-back
writes to the same data block, which happens fre-
quently for data that die young [21], we can safely
discard unfinished updates from previous writes.

In our implementation, we maintain for each disk
a delayed write queue, which is distinct from the
foreground request queue. When a write request ar-
rives, we initially schedule the first write using the
foreground request queue just as we do for reads.
As soon as writing one of the replicas is scheduled,
we set aside the remaining update operations for
the other replicas in the individual delayed write
queues. Entries from this queue are serviced when
the foreground request queue becomes empty. De-
layed writes require us to make a copy of the data
because the original buffer is returned to the OS as
soon as the first write completes.

To provide crash recovery, the physical location
of the first write is stored in a delayed write metadata
table that is kept in NVRAM. Note that it is not nec-
essary to store a copy of the data itself in NVRAM–
the physical location of the first write is sufficient
for completing the remaining delayed writes upon
recovery; so the table is small. When the metadata
table fills up to a threshold (10,000 entries in the cur-
rent implementation), we force delayed writes out by
moving them to the foreground request queue.

3.5 Validating the Integrated Simulator

So far, we have described the architecture and the
components of the integrated MimdRAID simulator
and device driver. To establish 1) the accuracy of
the head-tracking mechanism, and 2) the validity of



Operating system Microsoft Windows 2000
CPU type Intel Pentium III 733 MHz
Memory 128 MB
SCSI Interface Adaptec 39160
SCSI bus speed 160 MB/s
Disk model Seagate ST39133LWV 9.1 GB
RPM 10000
Average seek 5.2 ms read, 6.0 ms write

Table 1: Platform characteristics.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8 16 32 64 128

T
h

ro
ug

hp
ut

 (
re

q
ue

st
s/

s)

Queue Length

100% Read
Simulator
100% Read
Disk

50% Read
Simulator

50% Read
Disk

Figure 5: Comparison of throughput results from the pro-
totype system and the simulator. We use two random
workloads, one with just reads, and another with an equal
number of reads and writes. The request size is 512 bytes.
The array configuration is a 2× 3 SR-Array based on the
RSATF scheduler. Writes are synchronously propagated
in the foreground. We vary the number of outstanding
requests (on the x-axis).

the simulator, we perform a series of experiments us-
ing “Iometer”, a benchmark developed by the Intel
Server Architecture Lab [13]. Iometer can generate
different workloads of various characteristics includ-
ing read/write ratio, request size, and the maximum
number of outstanding requests. We use Iometer to
generate equivalent workloads to drive both the de-
vice driver and the simulator. Table 1 lists some
platform characteristics of the prototype. Figure 5
shows the Iometer result. The throughput discrep-
ancy between the simulator and the prototype under
all queueing conditions is under 3%.

To shed more light on the accuracy of the model,
in Table 2, we give more detailed statistics of sub-
jecting the model and the prototype to the “Cello
base” file system workload (described in Section 4.1).
The mean prediction error and low standard devia-
tion show that there are essentially only two types of
requests: 99.8% of the predictions are almost right
on target, and 0.2% of the predictions miss their
targets by a very small amount of time and incur
a full rotation penalty. The net effect of these rare
rotation misses, however, is insignificant in terms of
overall access time. These results indicate that the

Misses 0.22%
Mean Prediction Error 3 µs
Standard Deviation of Error 31 µs
Average Access Time 2746 µs
Demerit 52 µs
Demerit/Access Time 1.9 %

Table 2: Detailed statistics of model accuracy when sub-
jected to the “Cello base” file system workload. The con-
figuration is a 2×3 SR-Array based on RSATF scheduling.
I/O requests in this experiment are physical I/O requests
sent to drives; and access time is that of a physical I/O.
Prediction error is the difference between the access time
predicted by the scheduler and the actual measured access
time of a single request. We calculate demerit using the
definition by Ruemmler and Wilkes [21].

simulator faithfully simulates a real SR-Array, allow-
ing us to understand the behavior of the SR-Array
using simulation-based results in later sections.

4 Experimental Results

In this section, we evaluate the performance of
the prototype MimdRAID under two sets of experi-
ments. The first set of experiments is based on play-
ing real-world file system and transaction processing
traces on the MimdRAID simulator. The second set
of experiments is based on running on the prototype
itself a synthetic workload generator that is designed
to stress it in ways beyond what is possible with the
traces. The purposes of the experiments are to: 1)
validate the models of Section 2, 2) show the effec-
tiveness and importance of workload-driven config-
uration, and 3) demonstrate the use of scaling the
number of disks as a cost-effective means of improv-
ing performance for certain workloads.

4.1 Macro-benchmarks

We test our system using two traces. Cello is a
two month trace taken on a server running at HP
Labs [21]. It had eight disks and was used for run-
ning simulations, compilations, editing, and reading
mail and news. We use one week’s worth of trace
data (for the period of 5/30/92 through 6/6/92).
TPC-C is a disk trace (collected on 5/03/94) of an
unaudited run of the Client/Server TPC-C bench-
mark running at approximately 1150 tpmC on a 100
Warehouse database.

Logical Data Sets

The 9.1 GB Seagate disks that we use are much
larger and faster than any of the original disks used
in the trace; therefore, we do not map the original
small disks one-to-one onto our large disks. Instead,
we group the original data into three logical data



Cello Cello TPC-C
base disk 6

Data size 8.4 GB 1.3 GB 9.0 GB
I/Os 1,717,483 1,545,341 3,598,422

Duration 1 week 1 week 2 hours
Avg. I/O rate 2.84/s 2.56/s 500/s

Reads 55.2% 35.8% 54.8%
Async. writes 18.9% 16.1% 0

Seek
locality (L) 4.14 16.67 1.04
Read after

write (1 hour) 4.15% 3.8% 14.8%

Table 3: Trace characteristics. The “seek locality” row
is calculated as the ratio between the average of random
seek distances on that disk and the average seek distance
observed in the trace. This ratio is used to adjust the S
parameter when applying the models of Section 2 in sub-
sequent discussions. The “read after write (1 hour)” row
lists the percentage of I/O operations that are reads that
occur less than one hour after writing the same data.

sets and study how to place each data set in a disk
array made of new disks.

The first data set consists of all the Cello disk
data with the exception of disk 6, which houses
“/usr/spool/news”. We merge these separate Cello
disk traces based on time stamps to form a single
large trace. The data from different disks are con-
catenated to form a single data set. We refer to this
workload as “Cello base” in the rest of the paper.
The second data set consists solely of Cello disk 6.
This disk houses the news directory; it exhibits ac-
cess patterns that are different from the rest of the
Cello disks and accounts for 47% of the total ac-
cesses. We refer to this workload as “Cello disk 6”
in the rest of the paper. The third data set consists
of data from 31 original disks of the TPC-C trace.
We merge these traces to form a single large trace;
and we concatenate these disks to form a single data
set as well. We refer to this workload as “TPC-C”.

Table 3 lists the key characteristics of the trace
data sets. Of particular interest is the last row,
which reports the fraction of I/Os that are reads to
recently written data. Although this ratio is high for
TPC-C, it does not rise higher for intervals longer
than an hour. Together with the amount of avail-
able idle time, this ratio impacts the effectiveness
of the delayed write propagation strategy and influ-
ences the array configurations.

To test our system with various load conditions,
we also uniformly scale the rate at which the trace
is played based on the time stamp information. For
example, when the scaling rate is two, the traced
inter-arrival times are halved.

model model

0

1

2

3

4

5

6

7

2 4 6 8 10 12

R
es

po
ns

e 
T

im
e 

(m
s)

Disks

split
mirror

sr
sm_xyu_satf

0

1

2

3

4

5

6

7

2 4 6 8 10 12

R
es

po
ns

e 
T

im
e 

(m
s)

Disks

split
mirror

sr
sm_xyu_satf

1 1

(a) Cello base (b) Cello disk 6

Striping
Dsx1x1

RAID-10
Dsx1x2

Dm-Way
Mirror
1x1xDm

SR-Array
DsxDrx1

Striping
Dsx1x1

RAID-10
Dsx1x2

Dm-Way
Mirror
1x1xDm

SR-Array
DsxDrx1

SR-Array
DsxDrx1
Model

SR-Array
DsxDrx1
Model

Figure 6: Comparison of average I/O response time of
the Cello file system workloads on different disk array
configurations. The SR-Array uses the RSATF scheduler
and the remaining configurations use the SATF scheduler.
The two configurations labeled as “RAID-10” and “Dm-
way mirror” are reliable configurations and are denoted
by thicker curves. This convention is used throughout the
rest of the figures.

Playing Cello Traces at Original Speed

As a starting point, we place the Cello base data
set on one Seagate disk and the Cello disk 6 data
set on another. Although we have fewer number of
spindles in this case than in the original trace, the
original speed of the Cello traces is still sufficiently
low that we are effectively measuring individual I/O
latency most of the time. There is also sufficient
idle time to mask the delayed write propagations.
Therefore, we apply the model in Section 2.3 (Equa-
tion (5)) to configure the SR-Array. When applying
the formulas, we account for the different degree of
seek locality (L) in Table 3 by replacing S with S/L.
We perform replica propagation in the background
for all configurations. Although all write operations
from the trace are played, we exclude those of asyn-
chronous writes when reporting response time; most
of the asynchronous writes are generated by the file
system sync daemon at 30 second intervals. All re-
ported response times include an overhead of 2.7
ms, which includes various processing times, trans-
fer costs, track switch time, and mechanical acceler-
ation/deceleration times, as defined in Section 2.3.

Figure 6 shows the performance improvement on
the Cello workloads as we scale the number of disks
under various configurations. The curve labeled as
“SR-Array” shows the performance of the best SR-
Array configuration for a given number of disks. The
SR-Array performs well because it is able to effec-
tively distribute disks to the seek and rotational di-
mensions in a balanced manner. In contrast, the
performance of simple striping is poor due to the



0

1

2

3

4

5

6

7

2 4 6 8 10 12

R
es

po
ns

e 
T

im
e 

(m
s)

Disks

r1
r2
r3
r4
r5
r6

0

1

2

3

4

5

6

7

2 4 6 8 10 12

R
es

po
ns

e 
T

im
e 

(m
s)

Disks

r1
r2
r3
r4
r5
r6

1 1

(a) Cello base (b) Cello disk 6

Dr=1
Dr=2
Dr=3

Dr=4
Dr=5
Dr=6

Figure 7: Configurations of the SR-Array for the two
workloads of Figure 6. The curves show the performance
of the SR-Array configuration recommended by the model
of Equation (5). Each point symbol in the graph shows
the performance of an alternative SR-Array configuration
with a different number of rotational replicas (Dr).

lack of rotational delay reduction. This effect is
more apparent for larger numbers of disks due to
the diminishing returns from seek distance reduc-
tion. The performance of RAID-10 is intermediate
because the two replicas allow for a reduction in the
rotational delay to a limited extent. D-way mirror-
ing is the closest competitor to an SR-Array because
of its high degree of flexibility in choosing which
replica to read. (We will expose the weakness of
D-way mirroring in subsequent experiments.) Note
that our SATF-based implementation of RAID-10
and D-way mirroring are highly optimized versions
based on rotational positioning knowledge.

The figure also shows that the latency model of
Section 2.3 is a good approximation of the SR-Array
performance. The anomalies on the model curves
are due to the two following practical constraints:
1) Ds and Dr must be integer factors of the total
number of disks D, and 2) our implementation re-
stricts the largest degree of rotational replication to
six. This restriction is due to the difficulty of prop-
agating more copies within a single rotation, as ro-
tational replicas are placed on different tracks and a
track switch costs about 900 µs. Due to these con-
straints, for example, the largest practical value of
Dr for D = 9 is only three, much smaller than the
non-integer solution of Equation (5) (5.8 for Cello
base and 11.6 for Cello disk 6).

While the Cello base data set consumes an entire
Seagate disk, the Cello disk 6 data set only occupies
about 15% of the space on a single Seagate disk;
so the maximum seek delay of Cello disk 6 is small
to begin with for all configurations. Consequently,
a larger Dr for an SR-Array is desirable as we in-

0

1

2

3

4

5

6

7

8

15 20 25 30

R
es

po
ns

e 
T

im
e 

(m
s)

split
sr

sm_xyu_satf

RAID-10
Dsx1x2

SR-Array
DsxDrx1

Striping
Dsx1x1

Disks
12 36

0

1

2

3

4

5

6

7

8

15 20 25 30 36

R
es

po
ns

e 
T

im
e 

(m
s)

Disks

r1
r2
r3
r4

12

(a) TPC-C performance (b) SR-Array configurations

Dr=1
Dr=2
Dr=3
Dr=4

Figure 8: Average I/O response time of the TPC-C trace.
(a) Comparison of striping, RAID-10, and SR-Array. (b)
Comparison of alternative configurations of an SR-Array.

crease the number of disks. With these large Dr

values, however, the practical constraints enumer-
ated above start to take effect. Coupled with the
fact that seek time is no longer a linear function of
seek distance at such short seek distances, this ex-
plains the slightly more pronounced anomalies of the
SR-Array performance with a large number of disks
on the Cello disk 6 workload.

Figure 7 compares the performance of other pos-
sible SR-Array configurations with that of the con-
figuration chosen by the model. For example, when
the number of disks is six, the model recommends a
configuration of Ds×Dr = 2×3 for Cello base. The
three alternative configurations are 1× 6, 3× 2, and
6×1. The figure shows that the model is largely suc-
cessful at finding good SR-Array configurations. For
example, on Cello base, with six disks, the SR-Array
is 1.23 times as fast as a highly optimized RAID-10,
1.42 times as fast as a striped system, and 1.94 times
as fast as the single disk base case.

Playing the TPC-C Trace at Original Speed

Although a single new Seagate disk can accommo-
date the entire TPC-C data set in terms of capacity,
it cannot support the data rate of the original trace.
Indeed, only a fraction of the space on the original
traced disks was used to boost the data rate. We
start with 12 disks for each of the array configura-
tions. Figure 8 shows the performance as we scale
the number of disks beyond the starting point. The
data rate experienced by each disk under this work-
load is much higher than that under the Cello sys-
tem described in the last section. The workload also
contains a large fraction of writes so it also stresses
delayed write propagation as idle periods are shorter.

Compared to Figure 6, two curves are missing



0

5

10

15

20

25

30

35

40

5 10 15 20

R
es

po
ns

e 
T

im
e 

(m
s)

Scale Rate

2x3
2x3-rscan

6x1
6x1-scan

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12

R
es

po
ns

e 
T

im
e 

(m
s)

Scale Rate
(a) Cello base (b) TPC-C

SR-Array
2x3x1-RLOOK

SR-Array
2x3x1-RSATF

Striping
6x1x1-SATF

Striping
6x1x1-LOOK

Striping
36x1x1-SATF

Striping
36x1x1-LOOK

SR-Array
18x2x1-RSATF

SR-Array
18x2x1-RLOOK

11 24

Figure 9: Comparison of local disk schedulers for different
configurations as we raise the I/O rate. We use six disks
for Cello base (a), and 36 for TPC-C (b).

from Figure 8. One is D−way mirroring—it is im-
possible to support the original data rate while at-
tempting to propagateD replicas for each write. An-
other missing curve is the latency model—the high
data rate renders the latency model inaccurate. The
spirit of Figure 8, however, is very much similar to
that of Figures 6 and 7: a properly configured SR-
Array is faster than a RAID-10, which is faster than
a striped system.

What is more interesting is the fact that strip-
ing, the only configuration that does not involve
replication, is not the best configuration even un-
der the high update rate exhibited by this workload.
There are at least two reasons. First, even under this
higher I/O rate, there are still idle periods to mask
replica propagations. Second, even without idle pe-
riods, there exists a tradeoff between the benefits
received from reading the closest replicas and the
cost incurred when propagating replicas, as demon-
strated by the models of Section 2.2; a configuration
that can successfully exploit this tradeoff excels. For
example, with 36 disks, a 9× 4× 1 SR-Array is 1.23
times as fast as a 18×1×2 RAID-10, and 1.39 times
as fast as a 36× 1× 1 striped system.

Playing Traces at Accelerated Rate

Although the original I/O rate of TPC-C is higher
than that of the Cello traces, it does not stress the
12-disk arrays discussed in the last section. We now
raise the I/O rates to stress the various configura-
tions. For example, when the “scale rate” is two, we
halve the inter-arrival time of requests.

Before we compare the different array configu-
rations, we first consider the impact of the local

0

5

10

15

20

25

30

35

40

5 10 15 20

R
es

po
ns

e 
T

im
e 

(m
s)

Scale Rate

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12

R
es

po
ns

e 
T

im
e 

(m
s)

Scale Rate

9x4
12x3
18x2
36x1

raid10

1 24 1

(a) Cello base (b) TPC-C

SR-Array
2x3x1

SR-Array
3x2x1

RAID-10
3x1x2

Striping
6x1x1

6-way Mirroring
1x1x6

SR-Array
1x6x1

Striping
36x1x1

SR-Array
18x2x1

SR-Array
9x4x1

SR-Array
12x3x1

RAID-10
18x1x2

Figure 10: Comparison of I/O response time on different
configurations as we raise the I/O rate. We use six disks
for Cello base (a), and 36 for TPC-C (b).

disk schedulers. Figure 9 evaluates four schedulers:
LOOK and SATF for striping, and RLOOK and
RSATF for an SR-Array. Given a particular request
arrival rate, the gap between RLOOK and RSATF
is smaller than that between LOOK and SATF. This
is because both RLOOK and RSATF take rotational
positioning into consideration. Although it is a well
known result that SATF out-performs LOOK, we
see that SATF alone is not sufficient for address-
ing rotational delays if the array is mis-configured
to begin with. For example, under the Cello base
workload, a 2×3×1 SR-Array significantly out per-
forms a 6× 1× 1 striped system even if the former
only uses an RLOOK scheduler while the latter uses
an SATF scheduler. In the rest of the discussions,
unless specified otherwise, we use the RSATF sched-
uler for SR-Arrays and the SATF scheduler for other
configurations.

Figure 10 shows the performance of the various
configurations while we fix the number of disks for
each workload and vary the rate at which the trace
is played. Under the Cello base workload (shown in
Figure 10(a)), the 6-way mirror and the 1 × 6 SR-
Array deliver the lowest sustainable rates. These
configurations make the largest number of replicas
and it is difficult to mask the replica propagation
under high request rates. 6-way mirroring is better
than the 1 × 6 SR-Array, because the 6-way mir-
ror can afford the flexibility of choosing any disk to
service a request, so it can perform better load bal-
ancing. The 2×3 SR-Array is best for all the arrival
rates that we have examined; this is because the ben-
efits derived from the extra rotational replicas out-
weigh the cost. If we demand an average response
time no greater than 15 ms, the 2× 3× 1 SR-Array



can support a request rate that is 1.3 times that of
a 3×1×2 RAID-10 and 2.6 times that of a 6×1×1
striped system.

The situation is different for the TPC-C workload
(shown in Figure 10(b)). Under the original trace
playing rate, the 9× 4× 1 SR-Array is best. As we
raise the request arrival rate, we must successively
reduce the degree of replication; so the role of the
best configuration passes to the 12×3×1, 18×1×2,
18×2×1, and finally, 36×1×1 configurations, in that
order. If we again demand an average response time
no greater than 15 ms, the 36× 1× 1 configuration
can support a request rate that is 1.3 times that of
a 18 × 2 × 1 configuration and 2.1 times that of a
18× 1× 2 RAID-10 configuration.

Comparison Against Memory Caching

We have seen that it is possible to achieve significant
performance improvement by scaling the number of
disks. We now compare this approach against one
alternative: simply adding a bigger volatile memory
cache. The memory cache performs LRU replace-
ment. Synchronous writes are forced to disks in both
alternatives. In the following discussion, we assume
that the price per MB ratio between memory and
disk is M . At the time of this writing, 256 MB of
memory costs $300, an 18 GB SCSI disk costs $400,
and these prices give an M value of 57.

Figure 11(a) examines the impact of memory
caching on the Cello base workload. At the trace
scale rate of one, we need to cache an additional
1.5%, or 126 MB, of the file system in memory to
achieve the same performance improvement of dou-
bling the number of disks; and we need to cache
4%, or 336 MB, of the file system to reach the per-
formance of a four-disk SR-Array. M needs to be
less than 67 and 75 respectively in order for mem-
ory caching to be cost effective, which it is today.

At the trace scale rate of three, using similar rea-
soning, we can conclude thatM needs to be less than
20 in order for memory caching to be more cost ef-
fective than doubling the number of disks. Beyond
this budget, at this I/O rate, the diminishing local-
ity and the need to flush writes to disks make the
addition of memory less attractive. The addition of
disks, however, speeds up all I/O operations, albeit
at a diminishing rate.

Figure 11(b) examines the impact of memory
caching on the TPC-C workload, which has much
less locality. We start with a 12-disk SR-Array. At
a scale rate of one, M needs to be less than 80 in
order for memory caching to be a cost effective al-
ternative to increasing the number of disks to 18 or
24. Adding memory is a more attractive alternative.

0 5 10 15 20 25
Memory (% of Database)

0

2

4

6

8

10

12

14

2 4 6 8 10 12

R
es

po
ns

e 
T

im
e 

(m
s)

Disks

s1
s3

0 1 2 3 4 5
Memory (% of File System)

s1
s3

0

2

4

6

8

10

12

14

16

15 20 25 30 36

R
es

po
ns

e 
T

im
e 

(m
s)

Disks

s1
s3

(a) Cello base (b) TPC-C

1 12

Memory
Scale Rate = 3

SR-Array
Scale Rate = 3

SR-Array
Scale Rate = 1

Memory
Scale Rate = 1

Memory
Scale Rate = 3

SR-Array
Scale Rate = 3

SR-Array
Scale Rate = 1

Memory
Scale Rate = 1

Figure 11: Comparison of the effects of memory caching
and scaling the number of disks. The two SR-Array curves
show the performance improvement achieved by scaling the
number of disks (bottom x-axis) and they correspond to
playing the traces at the original speed and three times
the original speed. The two Memory curves show the per-
formance improvement achieved by scaling the amount of
memory caching (top x-axis).

At a scale rate of three, M needs to be less than
24 for memory caching to be more cost effective than
increasing the number of disks to 18. Beyond this
budget, adding memory provides little additional
performance gain, while increasing the number of
disks from 18 to 36 can provide an additional 1.76
times speedup.

4.2 Micro-benchmarks

To further explore the behavior of the prototype,
we use the Intel Iometer benchmark to stress some
array configurations in a controlled manner. In all
the following micro-benchmarks, we use a seek local-
ity index of 3, as defined in Section 2.3. We measure
the throughput in these experiments.

Throughput Models

In this experiment, we perform only random read op-
erations on the disk array while maintaining a con-
stant number of outstanding requests. (We examine
writes more fully in the next subsection.) The goals
are 1) to understand the scalability of the disk array,
2) to understand the behavior of the system under
different load conditions, and 3) to validate (part of)
the throughput model of Section 2.4.

Figure 12 shows that the SR-Array using the
RSATF scheduler scales well as we increase the num-
ber of disks under this Iometer workload. The
RLOOK scheduler is a close approximation of the
RSATF scheduler; and the RLOOK-based through-
put model closely captures the behavior of the SR-



0

200

400

600

800

1000

1200

1400

1600

2 4 6 8 10 12

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
)

Disks

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
)

Disks

SR-Array

(a) Q = 8 (b) Q = 32

1 1

DsxDrx1
RLOOK
Model

SR-Array
DsxDrx1
RSATF

SR-Array
DsxDrx1
RLOOK

RAID-10
Dsx1x2
SATF

Striping
Dsx1x1
SATF

SR-Array
DsxDrx1
RLOOK
Model

SR-Array
DsxDrx1
RSATF

SR-Array
DsxDrx1
RLOOK

RAID-10
Dsx1x2
SATF

Striping
Dsx1x1
SATF

Figure 12: Throughput as a function of array configu-
ration, number of disks, and queue length. The queue
lengths are (a) 8, and (b) 32.

Array, including the throughput degradation expe-
rienced when the queue length is short.

The SATF-based striped and RAID-10 systems
do not scale as well as the SR-Array. The through-
put gap between all these systems, however, nar-
rows as the queue length increases since the SATF
scheduler can overcome the lack of rotational repli-
cas when it has a large number of requests to choose
from.

Replica Propagation Cost

We now analyze configurations under foreground
write propagation and validate the model in Sec-
tion 2.4.

Figure 13 shows the throughput results as Iome-
ter maintains a constant queue length of mixed reads
and writes. Each write leads to immediate replica
propagations; so write ratio and foreground write ra-
tio are the same, namely, 1 − p, where p is defined
by Equation (8) of Section 2.3.

Among the configurations shown in the figure,
RAID-10 has the worst performance under high
write ratios. To understand why, consider the prop-
agation of a single write: the 3 × 2 × 1 SR-Array
requires a single seek followed by writing 2 rota-
tional replicas in a single cylinder; but a correspond-
ing 3×1×2 RAID-10 requires 2 seeks so the amount
of arm movement tends to be greater.

The performance of the striped 6 × 1 × 1 con-
figurations degrade slightly for high write ratios as
writes are slightly more expensive than reads.

The performance difference between a 3 × 2 × 1
SR-Array and a 6 × 1 × 1 striped system depends
on the write ratio with the former better for low
write ratios. If we only consider rotational delay,
the rotational replication model of Section 2.2 would

3x2-RSCAN-Model

0

200

400

600

800

1000

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
)

Foreground Propagation %

3x2-SATF
3x2-RSCAN

6x1-SATF
6x1-SCAN

raid10

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
)

Foreground Propagation %

3x2-SATF
3x2-RSCAN

3x2-RSCAN-Model
6x1-SATF
6x1-SCAN

raid10

(a) Q = 8 (b) Q = 32

Striping
6x1x1
SATF

Striping
6x1x1
LOOK

SR-Array
3x2x1
RLOOK

SR-Array
6x1x1
RLOOK
Model

SR-Array
3x2x1
RSATF

RAID-10
3x1x2
SATF

Striping
6x1x1
SATF

Striping
6x1x1
LOOK

SR-Array
6x1x1
RLOOK
Model

SR-Array
3x2x1
RLOOK

SR-Array
3x2x1
RSATF

RAID-10
3x1x2
SATF

Figure 13: Throughput as a function of foreground write
propagation rate and queue length. The total number of
disks is six. The queue lengths are (a) 8, and (b) 32.

imply that the cross-over point between them under
LOOK/RLOOK scheduling should be close to the
50% write ratio. If we also consider seek distance,
the 3× 2× 1 SR-Array has worse seek performance
so the actual cross-over point is less than 50%.

Because SATF benefits a 6× 1× 1 configuration
more than RSATF does to a 3× 2× 1 configuration,
the cross-over point between these systems under
SATF/RSATF scheduling is to the left of that under
LOOK/RLOOK scheduling. This distance is even
greater when the queue is longer (in Figure 13(b)).

The figure also shows that the RLOOK through-
put model (Equation (16)) closely tracks the exper-
imental result under varying write ratios.

5 Related Work

A number of previous storage systems were de-
signed to take into consideration the tradeoff be-
tween capacity and performance. Hou and Patt [10]
performed a simulation study of the tradeoff between
mirroring and RAID-5.

The HP AutoRAID incorporated both mirroring
and RAID-5 into a two-level hierarchy [28]. The
mirrored upper level provided faster small writes at
the expense of consuming more storage, while the
RAID-5 lower level was more frugal in its use of disk
space. Its primary focus was solving the small write
problem of RAID-5.

We have taken the tradeoff between capacity and
performance a step further by 1) improving latency
and throughput of all I/O operations, 2) being able
to benefit from more than twice the excess capacity,
and 3) providing a means of systematically config-
uring the extra disk heads.

The HP Ivy project [15] was a simulation study of
how a high degree of replication could improve read



performance. Our study differs from Ivy in several
ways. First, Ivy only explored reducing seek dis-
tance and left rotational delay unresolved. Second,
Ivy only examined mirroring. The third difference
is a feature of Ivy that we intend to incorporate into
our system in the future: Ivy dynamically chose the
candidate and the degree of replication by observing
access patterns. We are currently researching a wide
range of access patterns (including those at the file
system level) that can be used to dynamically tune
the array configuration.

Matloff [17] derived a model of linear improve-
ment of seek distance as one increased the number of
disks devoted to striping. Bitton and Gray derived a
model of seek distance reduction [3] and studied seek
scheduling [2] for a D-way mirror. Neither study
considered the impact of rotational delay.

Dishon and Liu [6] considered latency reduc-
tion on either synchronized or unsynchronized D-
way mirrors. A synchronized mirror can reduce
foreground propagation latency because the multi-
ple copies can be written at nearly the same time if
we insist that the replicas are placed at rotationally
identical positions. This advantage comes at the cost
of poor read latency because it allows no rotational
delay reduction for reads.

Polyzois [20] proposed careful scheduling of de-
layed writes to different disks in a mirror to max-
imize throughput, a technique that can potentially
benefit delayed writes in our systems when the repli-
cas are on different disks.

The “distorted mirror” [19] provided an alterna-
tive way of improving the performance of writes in
a mirror. It performed writes initially to rotation-
ally optimal but variable locations and propagated
them to fixed locations later. This technique can be
integrated with our delayed write strategy as well.

Lumb et al. [16] exploited “free bandwidth” that
is available when the disk head is in between ser-
vicing normal requests in a busy system. The free
bandwidth was used for background I/O activity.
Propagating replicas in our system is a good use of
this free bandwidth.

Ng examined intra-track replication as a means
of reducing rotational delay [18]. We extend this ap-
proach to improve large I/O bandwidth by perform-
ing rotational replication across different tracks.

The importance of reducing rotational delay has
long been recognized. Seltzer and Jacobson inde-
pendently examined a number of disk scheduling al-
gorithms that take rotational position into consid-
eration [14, 23]. Our work considers the impact of
reducing rotational delay in array configurations in
a manner that balances the conflicting goal of reduc-

ing seek and rotational delay at the same time.
At the time of this writing, the Trail system [12]

independently developed a disk head tracking mech-
anism that is similar to ours. Trail used this infor-
mation to perform fast log writes to carefully chosen
rotational positions. A similar write strategy was
in use in the earlier Mime system [5], but Mime re-
lied on hardware support for its rotational position-
ing information. Aboutabl et al. developed a sim-
ilar disk timing measurement strategy, which was
used to model the response time of individual I/O
requests [1].

A number of drive manufacturers have incor-
porated SATF-like scheduling algorithms in their
firmware. An early example was the HP C2490A [9].
Our host-based software solution enables the em-
ployment of such scheduling on drives that do not
support it internally. Furthermore, it allows experi-
mentation with strategies such as rotational replica
selection, strategies that would have been difficult
to realize even on drives that support intelligent
scheduling internally. On the other hand, if the drive
does support intelligent internal scheduling, an in-
teresting question that this study has not addressed
is how we can adapt our algorithm for such drives
without relying on complex predictions.

One of our goals of studying the impact
of altering array configurations is to understand
how to configure a storage system given certain
cost/performance specifications. The “attribute-
managed storage” project [7] at HP shares this goal,
although its focus is at the disk array level as op-
posed to individual drive level.

6 Conclusion

In this paper, we have described a way of de-
signing disk arrays that can flexibly reduce seek and
rotational delay in a balanced manner. We have
presented a series of analytical models that take
into consideration disk and workload characteris-
tics. By incorporating these models and a robust
software-based disk head position prediction mecha-
nism, the MimdRAID prototype can deliver latency
and throughput results unmatched by conventional
approaches.

Acknowledgement

We would like to thank Doug Clark, Ed Gro-
chowski, Ed Lee, Spencer Ng, Chandu Thekkath,
Honesty Young, and the class participants of Prince-
ton CS598e (spring 2000) for the early discussions
on this topic, HP Labs for supplying the I/O traces,



the OSDI reviewers for their comments, and John
Wilkes for a large number of excellent suggestions
during a meticulous and tireless shepherding pro-
cess.

References

[1] Aboutabl, M., Agrawala, A., and Decotignie, J.-D.

Temporally Determinate Disk Access: An Experimental
Approach (Extended Abstract). In Proc. of the ACM
SIGMETRICS Conference on Measurement and Mod-
eling of Computer Systems (Madison, Wisconsin, June
1998), pp. 280–281.

[2] Bitton, D. Arm Scheduling in Shadowed Disks. In Proc.
of 34th IEEE COMPCON (San Francisco, CA, February
1989), pp. 132–136.

[3] Bitton, D., and Gray, J. Disk Shadowing. In Proc. of
the Fourteenth International Conference on Very Large
Data Bases (Los Angeles, CA, August 1988), Morgan
Kaufmann, pp. 331–338.

[4] Borr, A. Transaction Monitoring in Encompass: Reli-
able Distributed Transaction Processing. In Proc. of the
Seventh International Conference on Very Large Data
Bases (Cannes, France, September 1981), IEEE Press,
pp. 155–165.

[5] Chao, C., English, R., Jacobson, D., Stepanov, A.,

and Wilkes, J. Mime: a High Performance Parallel
Storage Device with Strong Recovery Guarantees. Tech.
Rep. HPL-CSP-92-9 rev 1, Hewlett-Packard Company,
Palo Alto, CA, March 1992.

[6] Dishon, Y., and Lui, T. S. Disk Dual Copy Methods
and Their Performance. In Proc. of Eighteenth Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-
18) (Tokyo, Japan, 1988), IEEE CS Press, pp. 314–318.

[7] Golding, R., Shriver, E., Sullivan, T., and Wilkes,

J. Attribute-managed Storage. In Workshop on Model-
ing and Specification of I/O (San Antonio, TX, October
1995).

[8] Growchowski, E. Emerging Trends in Data Storage
on Magnetic Hard Disk Drives. In Datatech (September
1988), ICG Publishing, pp. 11–16.

[9] Hewlett-Packard Company, Palo Alto, CA. HP
C2490A 3.5-inch SCSI-2 Disk Drives Technical Refer-
ence Manual (HP Part No. 5961-4359), 3rd edition.
Boise, Idaho, 1993.

[10] Hou, R., and Patt, Y. N. Trading Disk Capacity
for Performance. In Proc. of the Second International
Symposium on High Performance Distributed Comput-
ing (Spokane, WA, July 1993), pp. 263–270.

[11] Hsiao, H.-I., and DeWitt, D. J. Chained Declus-
tering: A New Availability Strategy for Multiprocessor
Database Machines. In Proc. of the 1990 IEEE Interna-
tional Conference on Data Engineering (February 1990),
pp. 456–465.

[12] Huang, L., and Chiueh, T. Trail: Write Optimized
Disk Storage System. http://www.ecsl.cs.sunysb.edu-
/trail.html.

[13] Intel Server Architecture Lab. Iometer: The
I/O Performance Analysis Tool for Servers. http://-
developer.intel.com/design/servers/devtools/iometer.

[14] Jacobson, D. M., and Wilkes, J. Disk Scheduling Al-
gorithms Based on Rotational Position. Tech. Rep. HPL-
CSP-91-7rev1, Hewlett-Packard Company, Palo Alto,
CA, February 1991.

[15] Lo, S.-L. Ivy: A Study on Replicating Data for Per-
formance Improvement. Tech. Rep. HPL-CSP-90-48,
Hewlett-Packard Company, Palo Alto, CA, December
1990.

[16] Lumb, C., Schindler, J., Ganger, G. R., Riedel, E.,

and Nagle, D. F. Towards Higher Disk Head Uti-
lization: Extracting “Free” Bandwidth from Busy Disk
Drives. In Proc. of the Fourth Symposium on Operating
Systems Design and Implementation (San Diego, CA,
October 2000).

[17] Matloff, N. S. A multiple disk system for both fault
tolerance and improved performance. IEEE Transac-
tions on Reliability R-36, 2 (June 1987), 199–201.

[18] Ng, S. W. Improving disk performance via latency re-
duction. IEEE Transactions on Computers 40, 1 (Jan-
uary 1991), 22–30.

[19] Orji, C. U., and Solworth, J. A. Doubly Distorted
Mirrors. In Proc. of ACM SIGMOD Conference (May
1993), pp. 307–316.

[20] Polyzois, C., Bhide, A., and Dias, D. Disk Mir-
roring with Alternating Deferred Updates. In Proc. of
the Nineteenth International Conference on Very Large
Data Bases (Dublin, Ireland, 1993), Morgan Kaufmann,
pp. 604–617.

[21] Ruemmler, C., and Wilkes, J. UNIX Disk Access Pat-
terns. In Proc. of the Winter 1993 USENIX (San Diego,
CA, Jan. 1993), Usenix Association, pp. 405–420.

[22] Ruemmler, C., and Wilkes, J. An Introduction to Disk
Drive Modeling. IEEE Computer 27, 3 (March 1994),
17–28.

[23] Seltzer, M., Chen, P., and Ousterhout, J. Disk
Scheduling Revisited. In Proc. of the 1990 Winter
USENIX (Washington, D.C., Jan. 1990), Usenix Asso-
ciation, pp. 313–323.

[24] Teorey, T. J., and Pinkerton, T. B. A comparative
analysis of disk scheduling policies. Communications of
ACM 15, 3 (March 1972), 177–184.

[25] Teradata Corp. DBC/1012 Database Computer Sys-
tem Manual Release 2.0, November 1985.

[26] Transaction Processing Performance Council.
TPC Benchmark C Standard Specification. Waterside
Associates, Fremont, CA, August 1996.

[27] Wang, R. Y., Anderson, T. E., and Patterson, D. A.

Virtual Log Based File Systems for a Programmable
Disk. In Proc. of the Third Symposium on Operating
Systems Design and Implementation (New Orleans, LA,
February 1999), Operating Systems Review, Special Is-
sue, pp. 29–43.

[28] Wilkes, J., Golding, R., Staelin, C., and Sullivan,

T. The HP AutoRAID Hierarchical Storage System.
ACM Transactions on Computer Systems 14, 1 (Febru-
ary 1996).

[29] Worthington, B. L., Ganger, G. R., Patt, Y. N.,

and Wilkes, J. On-Line Extraction of SCSI Disk Drive
Parameters. In Proc. of the ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Sys-
tems (Ottawa, Canada, May 1995), Performance Evalu-
ation Review 23(1), pp. 146–156.


